


I. INTRODUCTION;

Resonances are one of most interesting phenomena. in sca.tterlng of quan-
_tum particles. The problem of definition and studying resonances is payed"
a lot of attention both in physical and mathematical literature (see, e. g.,
‘the books [1] - [8]). Main difficulties connected with a rigorous definition of
resonance are explicitly emphasized by B, Simon in his survey [9] A pres-
ence of such difficulties is obliged, first of all, to the fact.that in a contrast
to the usual spectrum, resonances are not an unltary invariant of an opera.tor .
(Hamlltoman of a quantum system): The generally accepted interpretation of

- resonance as a complex pole of the scattering matrix continued analytically

on unphysical sheet(s) of the energy plane, goes back to the known paper by °

G. Gamow [10]. For radially symmetric potentials, such an interpretation of -

the two-body resonances has been rigorously approved by R. Jost [1 1] Begin-
~ ning from E.C. Titchmarsh [12] resonances are considered as well as poles of
analytic continuation of the Green function (or its matrix elements between
suitable states [6], [7]). A survey of different physical approaches to studying
three-body resonances may be found e. g., in [5] and [13]. '

At the moment, one of the most effective approaches to practical calcula-
tion of resonances s the complex scaling method [14] (see also {7], [9]). This
method is applicable to the few-body problem in the case where interaction po-
tentials between particles are analytic functions of coordinates. The complex
scaling gives a possibility to rotate the continuous spectrum of the N-body
Hamiltonian in such a way that certain sectors become accessible for obser-
vation on unphysical sheets neighboring with the physical one. At the same
time, the real discrete spectrum of the Hamiltonian stays fixed during all the
scaling transformation. Resonances in the sectors above turn out to be extra
discrete eigenvalues of the scaled Hamiltonian [7]. Thereby, when searching for
resonances one may use standard methods to find discrete spectrum. Prac-
tical applications of the complex scaling method to concrete problems may
be found, in particular, in the recent papers [15] — [17]. Alongside with the
complex scaling, another methods are used for. calculations of three-body reso-
nances which are based in particular on solving the momentum space Faddeev
integral equations [18], [19] continued through the cut (see the survey {13] by
K. Méller and Yu.V. Orlov and the literature cited therein). In this approach,
resonances are searched for as poles of the T- matrix.

The present paper 1s devoted to developing a method to calculate three-
body resonances using the recently found explicit representations disclosing a.
structure of the T-matrix on unphysical sheets as well as analogous representa-
tions for the scattering matrix and resolvent [20], [21]. These representations
were obtained in supposition that the interaction potentials were pairwise
and falling-off in the coordinate representqa‘q;gn*not slower than exponentially.
According to the repy\;;smmanﬁﬁibj: {2117 ,thg %matrlx M(z) = {Mqp(2)},
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a,=1,2,3, constructed of the operator T'(z) Faddeev components [18] [19],
is exphcrtly expressed on unphysical sheet II; of the energy z plane in terms
of this matrix itself taken on the physical sheet and a certain truncation Si(z)
,of the total three-body scattering matrix S(z).- Character of the truncation

is determined by the index (number) ! of the unphysical sheet concerned.

‘Respective representations for analytic continuation of the matrix S(z) and
 resolvent R(z) follow immediately from the representations for M(z)|p,
_” main consequence of the representations admitting direct practical apphca—
- tions, is the fact that the T-matrix and resolvent as well as the scattering
matrix have nontrivial singularities on unphysical sheet II; exactly at those
..values of the energy z where the correspondlng matrix Sj(z) has zero as eigen-
value. It is important that Sj(z) is considered on the physical sheet only.

. Therefore, one can provide a search for resonances (poles of M(z), §(z) and

R(z) ) on a certain unphysical sheet II; keeping 2 always on the physical one

~ and calculating only a position of zeros of the operator-valued function Sj(z).
For all this, one can use any method allowing to calculate (on the physical -

‘sheet) amphtudes of the processes necessary to construct the truncation Si(z).

. In the present paper, the matrices 5j(z) are computed on the base of the -
* numerical algorithm [22] elaborated to solve the Faddeev differential equations -

- “in configuration space (see the book (19], survey (23] and references therein).
- Certainly, when computing the amplitudes on the physical sheet one has to

- extend the Faddeev. differential formulation of the scattermg problem as well

“on the complex values of z. It should be noted that, in the holomorphy domain
f(see [21]) of the amplitudes, the differential formulatlon stays-to be correct.

Unfortunately, the algorithm [19], [22], [23] (see also [24] - [27)) has been

worked out in details only for the processes (2 —» 2,3). Thus, there may

B '_,be computed in_practice only the amplitudes of elastlc scattermg and rear-

- rangement for the processes (2 — 2) and the breakup amplitude into three
particles, A knowledge of these amplitudes is sufficient to compute those
-~ truncations Sj(2) of the three-body scattering matrix S(z), zeros of which are
- respons1b1e for resonances situated on the so-called two-body unphysical

"+ sheets, i. e. those sheets of the energy Riemann surface where the parameter
" . z'may be guided going around the pair thresholds only. As a concrete appli-

" cation of the method concerned we. -make a search for resonances in the nnp
. system and in a model system of three bosons with the nucleon masses.
Let us describe shortly structure of the paper. )

- In Sec. I1, we introduce main notations and formulate the explicit represen—

"tatlons [21] for the unphysical-sheet three-body T-matrix, scattering matrix -
- and resolvent which are used then to approve the numerrcal method of the
. work.

In Sec. III the system nnp and a three- boson system are considered. For-
mulations of the boundary- value problems [19], [22], [23] are given for the Fad-

‘deev ‘partial dlfferentla.l equations, corresponding to the processes (2—2 ,3)

(2 = Aaj)'/?

in these systems and going out to a domain of complex energy values in the

physical sheet. Numerical method to solve these problems is described. Trun-
cated (partial) scattering matrices are constructed in terms of the amplitudes
for elastic scattering (2 — 2). Zeros of these matrices represent resonances.
(including virtual poles) on the unphysical sheet connected with the physical
one by crossing the continuous spectrum interval between the deuteron energy
and three-body threshold. Results of numerical computations are exposed.
We conclude this introduction with some notation. Throughout the paper.
we -understand by Vz—XA-z € C, A € R, the main branch of the: functlon

(z — A\)'/2. By p we denote the umt vector in the direction p € R™. p = | |
and by S™7!, thé unit sphere in R®, p € S™~1.

, II. EXPLICIT REPRESENTATIONS FOR T-MATRIX,
 SCATTERING MATRIX AND RESOLVENT ON UNPHYSICAL
SHEETS

The scattering matrix, T-matrix and Hamiltonian resolvent (Green fumnc-
tion) for a quantum-mechanical system are stringently connected with each
other. Therefore, all these three objects, considered as functions of energy,
have usually the same Riemann surface. Such a fact takes place at least in the
multichannel scattering problem with binary channels and in the three-body
problem with quickly decreasing interactions [28], [21]. In a “first approxi-
mation”, the structure of the Riemann surfaces in these problems coincides.
The thing is that the branching points (in real axis) are stipulated to these
surfaces in the both problems by the same reason, namely by a presence of the
Cauchy-type integrals in the Lippmann-Schwinger or Faddeev equations. In
the equations considered in the momentum representation, the Cauchy-type

— .
integrals are engendered by the kernels %_pjp—z_:‘% with A, the chanuel thresh-

olds and p, p € IR", the respective channel momentumn variables. In the case
of the channels (2 — 2,3) in three-body problem and the odd-dimensional
channels (i. e., with n odd) in the matrix multichannel problem, the thresholds
A turn out to be the branching points of the second order. Even-dimensional
channels in'the multichannel problem as well as the channel (3 — 2,3) in the
three-body problem give logarithmic branching pomts see [21], [28] [13])
The method used for calculation of resonances in the present work, is based
on the explicit representations [21] for analytic continuation of the T-matrix,
scattering matrices and Green function on unphysical shects keeping true- at
least for a part of the three-body Riemann surface. To describe this part
we introduce the auxiliary vector-function f(z) = (fo(2)), f1.1(2), s f1m, ().
f21(2), s f2ma(2), f31(2), ooy fams(2))  with  fo(z) = Inz and f, (z) =

. Here, by A, ; we understand respective bound-state energies



of pair subsystems a, a = 1,2,3, j = 1,2, ...,n4, numerated taking into ac-
count their multiplicmes It is supposed that ne < 0o. The sheets II; of
the vector-function f(z) Riemann surface ® are numerated via multi-index

l - (107,11,11 11,111112.11 12,112,13.1) 13 11.3) where laJ - 0 lf the Sheet HI .

" corresponds to the main (arithmetic) 'branch of the square root (z — Aa)'/2.

Otherwise, I, ; = 1 is assumed. Value of Iy coincides with the number of .

a,

branch of the function Inz, Inz = In|z| + 127l + iqS'where ¢ = argé For
the physical sheet identified by lp = loj=0,a=1,23, j=12,..,n4 we
use the notation Ip. A ‘sticking” of the sheets H1 of the surface §R is realized
in mtervals between neighboring thresholds along rims of the cut along the
contmuous spectrum. A detailed description of the surface §R may be found
~in [28]. S

~ The type R surfaces without extra branching points arise in the multi—
channel problems with binary channels only. Structure of the total three-body
Riemann surface is essentially more complicated For instance, the sheets II;
with lp = +1 have additional branchuig points corresponding to resonances

" of the two-body subsystems. In the sheets IT; with I; = 0, one can discover’
(in the left half-plane) logarithmic branchmg points of a kinematical origin.

The part §R(3) of the total three-body Riemann surface where the representa-

tions [21] are valid, consxsts of the surface R sheets II; identified by lp = 0

o (such unphys1cal sheets are called two- body sheets) and two three-body sheets
- identified by I = 1 a l,; = 1, @ = 1,2,3, § = 1,2,...,n,. Note that R

includes all the unphysical sheets nelghborlng w1th the phys1cal sheet ITo.

~In the case of the nnp-system and a model three-boson system considered

below ‘the surface 3 is shown schematically in Fig. 1. In this case a single .
pair threshold the deuteron energy A = Ej is present only. Therefore, the
index [ of the sheets II; consists of two components only: [ = (lp, ;). In the -

termmology accepted, the sheet I, 1) (see Fig. 1) is a two-body sheet, but
the sheets II(_; 1) u II(; ;) are three-body ones.

Construction of the representations for the T-matrix consists of the follow-
ing stages. At the first step, one carries out analytic continuation on unphysi-
-cal sheets, of the absolute terms and kernels of the Faddeev integral equations
for the components M,g4(z) (the continuation is understood in the sense of
distributions) As the absolute terms as the kernels after continuation are ex-

g5 pressed.in: terms of the pair T-matrices and scattering matrices taken on-the

physical sheet. Transforming the Faddeev equations continued, one finds.the
kernels Mag(P P z)|, e, can be explicitly expressed in terms of these kernels
themselves- taken on. the physical sheet IIp in their off-shell and/or half-on-
shell variants. It is supposed in the last case that the first argument P of the
kernels M,p(P, P',z)|,¢p, is taken on the energy (“mass”) shells |P|?* = z or
Ipal? = 2 — Asj, 7 = 1,2,...,n4. Here, we use the notations P = {ks,pa},
‘toe Koy Poy @ = 1,2, 3, of the standard relative momenta [19]. Transferring in
the expressions obtained all the off-shell terms to the Lh. part and inverting

H(l

-1,

FIG. 1. Physical, Ilp, and neighboring unphysical, Moy, M,y and Mgy,
sheets of the Riemann surface in the three-nucleon (nnp) and model three-boson
problems. The near (in figure) rim of the cut in the sheet Il is identified in the
interval between the deuteron energy E, and three-body threshold z = 0 with the
remote rim of the cut in the sheet Iy, 1) On the contrary, the remote rim in the
sheet IIo is identified in this interval with the near rim in the sheet M- In
the interval (0,+00), one identifies the near rim of the cut in the sheet I with
the remote rim in the sheet I(1,1). Respectively, the remote rim in the sheet Iy
is identified in this interval with the near rim in the sheet Il(_1,)- On the sheet
IT(o,1), the virtual level z¢s(*H) in the s-state of the nnp-system is marked, and the
resonance Zres(3B) in the model three-boson system. Also, the complex conjugate
pole Zs(3B) is marked.



an operator arising there, one comes to a closed system of equations for the
half-on-shell components Mas(P, P',2)|,cpp,- This system admits an explicit
solution using the terms of the physical sheet only. As a result one gets the
following representations* for the matrix M(z) = {Mas(2)},0,8 = 1,2,3,
continued on the sheet 1I;:

M(z)ln, = M(z) = B! (2) A(:) LS (:) LB(2). o

Here, the factor A(2) is the diagonal matrix,

A(z) = diag{Ao(2), A11(2), ...y A1 ns(2) },

combined of the functions Ag(z) = —wiz? and Aq; = ~7iy/z — A, ;. Nota-
tions L and L are used for diagonal number matrices whose nontrivial elements
are the sheet II; indices:

L = diag{lo, 111, ., lany } ® L = diag{[lo], 11,1, ., lams }-
By Si(z) we understand a truncation of the three'body scattering \mat‘rix:
- a - 3 ng
S(2), S(2): G =G, G=Ly(S% ® D Ly(5?), defined by the equation
a=1 j= .
Si(z) =1+ L[S(z) - ]L
where | is the identify operator in G. Also, we use the notations

JofIM

B(z) = ( U YM +v]) and BY(z) = (M(z)anJ,, [v+Mr]q:J1).

Here, v = diag{vi, v2, v3} with v,, the pair potentials, « = 1,2,3. At the
same time, :

Q= (1, 1, 1), T= and ¥ = dia.g{\Ill,‘I‘g,\Ila} :

—_——
— O
S

i

@ Ly(R?)

where ¥,, a = 1,2, 3, are operators actingon f = (fi, fa, ..., fn.) €
. . i . =1 ’

as

*For the sake of simplicity, we write here these representations as well as rep-
resentations for the scattering matrix and resolvent (see below Eqs. (2) and:(3),
respectively) for the case of spinless particles only. A direct generalization of the
representations on the case of spin particles causes no difficulties.
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(al)(P) = Y oi(ka) i(re),

where, in turn, ¥, ; is the bound state wave function of the pair subsystem
« corresponding to the level A, ;. By ¥* we denote operator adjoint to .
Notation Jo(2) is used for operator restricting a function on the energy-shell
|P|? = z. The diagonal matrix-valued function

-]1(2) = diag{Jl_l(Z), ...,J3'nJ(Z)},

consists of the operators J, ;(z) of restriction on the energy surfaces |p,|? =
z — Aq,j. The operators Q, J}(z) u JI(2) represent the “transposed” matrices
Q, Jo(2) and Jy(2), respectively. Operators J}(z) u J!(2) act in the expression
for Bt (as if) to the left. : .

Representations for the scattering matrix and resolvent on unphysical
sheets are an immediate consequence of the representations (1) for the matrix
M(z)|p,-

With some stipulations (see [21]) the representations for the scattering
matrix S(z) look as :

S(2)ln, = EW) {7+ 57 (2)(S(2) - e } £00). (2)

Here, £ = diag{&,&1,1, ., Eany } where & is the identity operator in Ly(S®)
if Ip = 0 and &, the inversion, (&f)(P) = f(—P),if lp = £1. Analogously,
&q,; is the identity operator in L;(S?) for [, ; = 0 and inversion for laj=1.
Notation e(!) is used for diagonal number matrix e(l) = diag{eo, e; 1, ..., €30, }
with nontrivial elements eq,; = 1 if l,; = 0 and ea,; = —1 il I, ; = 1; for all
the cases eg = 1.

Analytic continuation R(z)|y, of the resolvent R(z) = (H — z)=! of the
three-body Hamiltonian H admits the representation

R(z)|lp, = R+ Q'ALS'LQ. (3)

Here,

JoI-VR
@= (5,000 ratgnr )+ Q1= (1= AV, 00 - raaTiwa)
with V = v + v3 + v3 and Ro(z) = (Hp — 2)™, the resolvent of the kinetic

energy operator Hy for the system under consideration. :

There were holomorphy domains Hfh"l) found in [21] for the truncated
scattering matrices Si(z) in the physical sheet. Representations (1) and (3)
are valid in the same domains.



It follows from the representations (1)—(3) that the resonances (the non-

trivial poles of M(z)ly, , (z)[rI and R(z)|y,) situated on the unphysical sheet

[I; are in fact those points z = z. on the physical sheet where the matrix
Si(z) has zero as eigenvalue. Therefore, a calculation of resonances on the un-
" physical sheet I1; is reduced to a search for zeros of the truncation Si(z) of the
total three-body scattering matriz S(z) in the physical sheet. At the numerical
search for the resonances, one can'use any method allowing to find analytic
continuation on the physical sheet, of the elastic scattering, rearrangement or
breakup amplitudes necessary to construct the respective truncation S;(z).

I11. RESULTS OF SEARCH FOR RESONANCES TN
THREE-NUCLEON (nnp) AND THREE-BOSON SYSTEMS

One of the most effective methods for a study of concrete three-particle sys-
tems is'the numerical algorithm [22] (see also {23], [19] and references therein)
based on'the Faddeev differential equations for the wave function components
‘in the configuration space. This method gives opportunity of comparatively

easy calculations of the scattering wave functions and respective amplitudes -

for (2 — 2,3) processes. An extension of the differential formulation to a
."domain of complex energies enables us to calculate analytic continuation of
the (2 — 2,3) amplitudes on the physical sheet. This is quite enough for us
to construct the truncated s-state scattering matrices S;(z) whose zeros are
resonances on the respective two-body unphysical sheets IT; with lp = 0. -

As to a search for resonances on the three-body unphysical sheets II; with
lo # 0 (in particular on the sheets II_;y and I,y in the three-nucleon
problem), the situation is much more complicated. To construct Sj(z) in this
case, one has, alongside with (2 — 2), to calculate amplitudes for the pro-
cesses {3 — 2,3) with three asymptotically free particles in an initial state.
Unfortunately, the reliable practical methods for calculation of the processes
(3 — 2,3) are not dcveloped so far even for the real energies. In particular,
when using the differential formulation of the scattering problem, one has from
the very beginning to separate explicitly contributions to the Faddeev com-
ponents not only from single-rescattering but also from double-rescattering
processes [19]. In the last case, one has to take into account explicitly (see
[19]) a presence of the “light” and “shadow” zones for the correspondent waves,
and to use the Fresnel integral for description of intermediate regimes. More-
over, computations of the (3 — 2,3) amplitudes have to be carried out for
many different. dircctions of the incident momentum P. This circumstance is

itsell a factor enlarging nurnerical complexity” as compared with the case of

the processes (2 — 2,3).

~ So, in the present work we restrict ourselves with a search for the nnp
system resonances situated on the unphy51cal sheet Il(o,1) only, connected with
the physical one by crossing the continuum spectrum interval (Ed, 0) between
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the deuteron energy z = E; and breakup threshold z = 0 (see Fig. 1). To
construct the truncated scattering matrix Sy1)(z) (in accordance with (1)-(3)
just its zeros represent resonances on the sheet I(g,y)), it suffices to calculate
the elastic nd scattering amplltudes only. ,

To find these amplitudes we use the two~dimensional Faddeev integro—
differential equations [19] being a result of the partial and angular analysis
of the Faddeev differential equations. In addition we make an assumption,
rather usual in nuclear physics, that the nucleons involved interact in the s-
state only. With this assumption the partial equations become exact. The
Faddeev component U} corresponding to the total spin S = 3/2 and total
orbital momentum L, satlsﬁes the equation

(HL—zwL(z,y):v,,(z)w;%z,y) ' 0

: 2 2
with Hy, = —--a——'ﬁ—+L(L +1)

527 3y ———, the partial Laplacian and z, y, the absolute
z y

~ values of the Jacobi vectors [19]. Respective partial component Ui (z,y) of the

total wave function for the nnp-system is expressed by the functlon Ul(z,y)
as

1 )
Wi(z,y) = Ule,y) - / Whte,y, ) U y) ()

-1

" where ' = \/%m2+%y2—-\/23zyu and y' = \/%m2+%y2+3@myu. The

geometric function k% is given by
: 4 oy ([ -1 \\'& I koo
L_ Lk
h* = ‘\/_:_;. ‘:L“E‘; (m) kZ mpk(u) (\/§COS 0) (sm 0) )

: =

with Pi(u), the Legendre polynomial of the order k and 0 = arctg-y—, 0 =
!
arctg %— The factor Vi(z) represents a triplet part of the nucleon nucleon

interaction potential. ‘
* Function Uj(z,y) satisfies the boundary conditions

q(mi y lz_O = O u Uz(x’ y)ly:O : O' ’ (6)

It satisfies also the asymptotlcal condltlons

(a: ¥) ~ tu(a) []L \/:—4—_E’Zy)+aL exp{ \/z_—Esz+z——H

exp {z\/zp + i—2—} '
/i

+4L(2,0) (M)



where ji, is the Bessel spherical function of the order L and p = /22 + y2.
By a(z) we denote the deuteron wave function and by af(z), the quartet
amplitude for elastic nd-scattering in a state with angular momentum L. The
function Aj}(z,0) represents the partial Faddeev component of the breakup
amplitude of this system into three particles.

The Faddeev integro-differential equations for the doublet (S = 1/2) nd-
scattering look as

(HL - Z)Ufl(Z),L(Ia y) = V;(s)(z)\pfl(z)'L(x, y) : (8)
d : : d
where ¥4, ¥4 = ( $§'L ), is expressed by the vector U = ( g}ll‘ ) as
2,L ,

it . l .
W= Ui+ g [l B, B

R |

(9)

~3)
4
1
4

OO W=

By V; we understand a singlet part of the nucleon-nucleon interaction poten-
tial.

The Faddeev partla] components U,f{L satisfy as U}, the boundary condi-
tions :

Unn(@:)|,0o =0, Ulp(z:)],o =10, : (10)

and have the asymptotics

i‘fL(z,y) :.J i a(z []L(VZ~Edy)+aL z)exP{ w/z—Ederz—L—H +

U
A o)eXp{i\/Eeri’—’Q—}
+A; 1z,
' VP

Here, a$(z) is the doublet elastic nd-scattering amplitude in the state of the
nnp-system with angular momentum L. At the same time, the functions A{ ;
and Ag’ 1, represent the partial Faddeev-components of the breakup amplitude
for this state. Remind that the physical breakup amplitudes in quartet and
doublet states are expressed by the amplitudes respectively, A} and A1 I A
via relations analogous to (5) and (9) (see e. g., [19]).

A component of the truncated scattering matrix S(o,) in the state with
a fixed angular momentum L is diagonal. Its nontrivial quartet, s¥(z), and
doublet, s L(z), elements are given by

. i=1,2. (1)

$1(2) = 1 + 2ia}(2),
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TABLE 1. Convergence of the nnp-system virtual level z.es(3H)

N O NP NI ptm| pmas fm| 5 (CH), MeV)
401 10 20 [ - 30 0.40 19.0 2.9296

60 15 30 45 0.30 23.9 2.8229

80 20 | 40 60 0.25 29.9 2.7565

120 30 60 90 0.15 34.0 2.7434

160 40 80 120 0,10 . 391 2.7282

180 45 90 135 0.08 39.5 2.7275

s4(2z) = 1 + 2ial(2).
Therefore, the sheet II(o;) resonances in the state L of the nnp-system are in
fact, zeros of the scalar functions s (z) and s%(z). -
When solving the boundary-value problems (4), (6), (7) and (8), (10), (11)
numerically at complex energies z, we use the same algorithm [19], [22], [23]
as at real z. First, we make a finite-difference approximation of the problems
above in polar coordinates p, §. As mesh points, we take the intersection

‘points of the arcs p = p;, ¢+ = 1,2,...,N,, and rays 0 = 0;, 7 = 1,2,..., V.

0; < 0;41. ‘At po = 0 and given p, (see Table I), the mesh points in p
for ¢ > 2 are chosen in such a way that gy = pi + a(pi — pi-1) with a
parameter a (acceleration) not depending on the number of a mesh point.
All the results exposed below, are rclated to a = 1,01. The interval [0, 7/2]

where the variable 0 changes, is divided by special points with numbers Ngk),
k = 1,2,3, into three subintervals, inside of which the mesh poiuts in 8 arc

~ distributed uniformly. When going from one interval to another (in direction

of the parameter 8 rise), the mesh step is divided by two. The choice of the
mesh described, is explained by a necessity Lo take into account essentially
more quick change of the Faddeev component values in the domain where p
and/or z [19] are small. Usually, we chose the numbers of points in 0 and p the
same, Ny = N,. A maximal value of the parametcrs Ny, N, has equaled to 180,
With these values, the cut-ofl radius pn.. = pn, has reached 39 fin. Typical
values of the mesh paramncters are given in Table 1 where N = Ny = \N,.

As a nuclcon-nucleon interaction, the Malfliet-Tjon potential MT 1111 is
used in its initial version [29]. :

Having solved the problems (4), (6), (7) and (8), (10), (11) we calculate the
functions s} (z) and s¢(z). Resonances, considered as roots of these functions
in the complex plane, are found using th(‘ N(‘wtou niethod with a three-point
approximation of derivative:”

As a test of the computer code we have calculated the bound-state energy
E; of the *H nucleus as a pole of the function s§(z). More precisely, this pole
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was found as a root of the inverse amplitude 1/af(z). Beginning with mesh
dimension 80 x 80, we obtained for £, the value —8.55 MeV. Hereafter all the

~ energies are given with respect to the breakup threshold. Note that the value
stated for E, is in a good agreement with known results on E; in the MT [-1II
model (see [26]).

When searching for the nnp resonances on the sheet M,y at L=0,1, we
have inspected a domain of a range about 10 MeV in vicinity of the segment
[E4,0] in the complex z plane. Especially carefully we studied a vicinity
of the points z = —1.5 £ 0.3 4+ (0.6 + 0.3) MeV interpreted in the recent
works [30], [31] as a location of an exited state energy of the *H nucleus.
Unfortunately we have succeeded to find only one root z.s(*H) of the function
sa(z), corresponding to the known virtual state of the nnp system at the total
spin S=1/2. Position of this root for different meshes is shown in Table I
illustrating a degree of convergence in the method used. As one can see from
the table, for the maximal of the meshes examined, the mesh 180x180, we have

“found z.es(°H) = —2.728 MeV. This means that the calculated virtual level is
situated 0.504 MeV to the left from the nd threshold Fy=—2.224 MeV (in the
MT I-11I model {29]). Note that the shift E;—~z.(°H) found from experimental
data on nd scattering; is 0.515 MeV (see [13]). Its value computed in a
separabilized MT I-11I model on the base of the momentum space Faddeev
equations, equals to 0.502 MeV [13]. As to the resonance z =—1.54 0.3 +

i(0.6 £ 0.3) MeV at L = 0 discussed in [30], [31], it is quite possible to be

situated not on the {wo-body sheet (o) but on the three-body sheets IT(_, )
or (1) (see Fig. 1). Duc to the reasons mentioned at the beginning of the
section, we may unfortunately neither approve nor disprove this hypothesis.
As it should be expected (see the data on three-nucleon resonances in [13]),
we have failed to find any resonances in the quartet state at L = 0 as well as
at L=1. :

Also, we have studied a model three-body system including identical spin-

zero bosons with masses of the nucleon. Remind that the Faddeev integro-
differential equations for such a three-boson system look exactly as the equa-
tions (4) except a necessity to replace the factor —1/2 in the expression (5)
with unity. The boundary conditions for respective partial Faddeev compo-
nents U7B(z,y) have the form (6) and (7) where instead of aL( ) and A} (0, 2),
one has to substitute a32(z) and A3B(0,z). .

Component of the truncated scattering matrix S(o,1) for the three-boson
system is given in the state with the angular momentum L by

P(z) =14 2P ().

Resonances on the sheet Il (g 1y in this state are roots of the equation s38(z) = 0
considered on the physical sheet.

In the three-boson problem we restrict ourselves with a treatmg the s-state
“only and thereby, with a searching for zeros of the function s32(z) at L = 0.
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FIG. 2. Surface of the functlon |s3B(2)| in the model system of three bosons:with
the nucleon masses. The potentijal VG(r) is used with the barrier V; = 1.5 MeV. Po-

sition of the resonance z,es(3B) corresponds to the minimal (zero) value of IsoB(z)l
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FIG 3. TraJectory of- the resonance zm(BB) on the sheet H(o 1)“in the model‘
system of three bosons with the nucleon masses. The potential VG(r) is used.
Values of the barrier ¥} in MeV are given near the points marked on the curve. -
These points are distributed between V; = 0.85 MeV and V;, = 1.6 MeV with the
same step 0.05 MeV in V;. .
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FIG. 4. Dependence of the “deuteron” energy Egq (curve 1) and real part of the
resonance Zzres(3B) (curve 2) on the barrier value V;. ‘

As a pairwise interaction between the bosons we have used the Gauss-type
potential supplied with an additional Gauss repulsive barrier term,

VE(r) = Vo exp[—por?] + Vs exp[— #b(r ~5)’]

where the values Vy = —55 MeV, po = 0.2 fm™2, ,ub =0.01 fm=2, r, = 5fm
have been fixed and the barrier amplitude V, varied. A resonance (with non-
zero imaginary part) on the sheet I, arises in the system concerned ]ust
due to the presence of the barrier term. Example of a surface of the s3B(z)
absolute value for the barrier amplitude V3 = 1.5 MeV is shown in Fig. }2 (for
a 80x80 mesh). A trajectory of the resonance z,es(3B) (a zero of the function
38(2)) is shown for the changing barrier V; in Fig. 3. This trajectory was
watched for the barrier V; decreasing in the interval between 1.6 MeV and
0.84 MeV. When drawing the trajectory, we have used a 160 x 160 mesh. It
can be seen from Fig. 3 that a behavior of the resonance concerned turns out to
be rather unexpected: with monotonously decreasing real part, the imaginary
. part of the resonance changes not monotonously and at V; =.1.15 MeV it
has an obvious minimum. There is this value of V; when real part of the
resonance z.s(3B) coincides with the “deuteron” energy Ey (see Fig. 4). When
Re 2.5(3B), decreasing with V;, leaves Eq behind, the value of Irnz,es(3B)

increases at the beginning but then, after ¥, =1 MeV falls off again until the.

resonance crossing at V;, = 0.84 MeV the real axis. Trajectory of the resonance

14

concerned in the lower complex half-plane is syrnmetnc to the curve. shown

in Fig. 3 with respect to the real axis: Respective points, symmetric to those
marked in Fig. 3, correspond to the same values of Vb
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for Computatlons ot Three Body Rcsondnces

Use of the Faddcev Dltterenual Equatlom
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