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I. INTRODUCTION 

Resonances are one of most interesting phenomena in· scattering of quan° 
. tum particles. The problem of definition and studying resonances is payed· 

a lot of attention both in physical and mathematical literature (see, e. g., 
.the books (1] - (8]). Main difficulties connected with a rigorous definition of 
resonance are explicitly emphasized by B, Simon in his survey [9]. A pres­
ence of such difficulties is obliged, first of all, to the fact. that in a contrast 
to the usual spectrum, resonances are not an unitary invariant of an operator 
(Hamiltonian of a quantum system): The generally accepted interpretation of 

·. resonance as a complex pole of the scattering matrix continued analytically 
on unphysical sheet(s) of the energy plane, goes back to the known paper by · 
G. Gamow (10]. For radially symmetric potentials, such an interpretation.of 
the two-body resonances has been rigorously approved by R. Jost [11]. Begin­
ning from E.C. Titchmarsh (12] reson_ances are considered as well as poles ~f 
analytic continuation of the Green function ( or its matrix elements between 
suitable states (6], (7]). A survey of different physical approaches to studying 
three-body resonances may be found e. g., in (5] and (13]. 

At the moment, one of the most effective approaches to practical calcula­
tion of resonances is the complex scaling method (14] (see also (7], (9]). This 
method is applicable to the few-body problem in the case where interaction po­
tentials between particles are analytic functions of coordinates. The complex 
scaling gives a possibility to rotate the continuous spectrum of the N~body 
Hamiltonian in such a way that certain sectors become accessible for obser­
vation on unphysical sheet~ neighboring with the physical one. At the same 
time, the real discrete spectrum of the Hamiltonian stays fixed during all the 
scaling transformation. Resonances in the sectors above turn out to be extra 
discrete eigenvalues of the scaled Hamiltonian [7]. Thereby, when searching for 
resonances one may use standard methods to find discrete spectrum. Prac­
tical applications of the complex scaling method to concrete problems may 
be found, in particular, in the recent papers (15] - (17]. Alongside with the 
complex scaling, another methods are used for calculations of three-body reso­
nances which are based in particular on solving the momentum space Faddeev 
integral equations (18], [19] continued through the cut (see the survey (13] by 
K. Moller and Yu.V. Orlov and the literature cited therein). In this approach, 
resonances are searched for as poles of the T-matrix. 

The present paper is devoted to developing a method to calculate three­
body resonances using the recently found explicit representations disclosing a 
structure of the T-matrix on unphysical sheets as well as analogous representa­
tions' for the scattering matrix and resolvent (20], (21]. These representations 
were obtained in supposition that the interaction potentials were pairwise 
and falling-off in the coordinate reprt_:_s~tAtion:_not slower than exponentially. 
According to the rep~~~U.i9J: dil'Jfit~~ \natrix M(z) = {M0 ,0(z)}, 
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a, f3 = 1, 2, 3, constructed of the operator T(z) Faddeev components [18], [19], 
is explicitly expressed on unphysical sheet II1 of the energy z plane in terms 
of this matrix itself taken on the physical sheet and a certain truncation S1(z) 
of the tofal t}:iree-body scattering matrix S(z). Character of the truncation 
is determined by the index (number) l of the unphysical sheet concerned. 
Respective representations for analytic continuation of the matrix S(z) and 
resolvent R(z) follow immediately from the representations for M(z)ln. A 

. I 
main consequence of the representations admitting direct practical applica-
tions,' i~ the fact that the T-matrix and resolvent as well as the scattering 
matrix have nontrivial singularities on unphysical sheet II1 exactly at those 

,. values of the energy z where the corresponding matrix S1(z) has zero as eigen­
value. It is important that S1(z) is considered on the physical sheet only. 
Therefore, one can provide a search for resonances (poles of M(z), S(z) and 
R(z) ) on a certain unphysical sheet II1 keeping z always on the physical one 
and calculating only a position of zeros of the operator-valued function S1(z). 
For allthis, one can use any method allowing to calculate ( on the physical 
sheet) amplitudes of the processes necessary to construct the truncation S1 ( z ). 

. In the.present paper, the matrices S,(z) are computed on the base of the 
· numerical algorithm [22] elaborated to solve the Faddeev differential equations 
• 
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iri configuration.space (see the book [19], survey [23] and references therein). 
Certainly, when computing the ampHtudes on the physical sheet one has to 
extend the Faddeev. differential formulation of the scattering problem as well 
on the complex valuf!s of z. It should be noted that, in the holomorphy domain 

·. ( se~ [21]) ·of the amplitude~, the. differential formulation stays· to be correct. · · 
Unfortunateiy, .the algorithm [19], [22], [23] (see also [24] - [27]) has been 

worked out in details only for the processes (2 --+ 2, 3). Thus, there may 
be comp1;1ted in practice only the amplitudes of elastic scattering and rear­
rangement for the processes (2 --+ 2) and the breakup amplitude into three 
particles. A knowledge of these amplitudes is sufficient to compute those 
truncations S1(z) of the three-body scattering matrix S(z), zeros of which are 
"responsible" for resonances situated on the so-called two-body unphysical 
sheets, i. e. those sheets of the energy Riemann surface where the parameter 

. z may be guided going around the pair thresholds only. As a concrete appli­
cation of the method concerned we-make a search for resonances in the nnp 
system and in a model system of three bosons with the nucleon masses. 

Let us describe shortly structure of the paper. 
· , In Sec. II, we introduce main notations and formulate the explicit represen­

·•tatiops [21] for _the unphysical-sheet three-body T-matrix, scattering matrix· 
and resolvent which are used then to approve 'the numerical method of the 
work. · 

In Sec. III the system nnp ai:id a three-boson system are considered. Fo~­
mulations of the boundary-".alue problems [19], [22], [23] are given for_ the Fad­
deev partial differential equations, corresponding to the processes (2 --+ 2, 3) 
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in these systems and going out to a domain of complex energy values in the 
physical sheet. Numerical method to solve these problems is described. Trun­
cated (partial) scattering matrices are constructed in terms of the amplitudes 
for elastic scattering (2 ~ 2). Zeros of these matrices represent resonances 
(including virtual poles) on the unphysical sheet connected with the physical 
one by crossing the continuous spectrum interval between the deuteron ene_rgy 
and three-body threshold. Results of numerical computations are exposed. 

We conclude this introduction with some notation. Throughout the paper. 
we understand by ~' z E C, ,\ E IR, the main branch of the function 
(z - ,\)112

• By p we denote the unit vector in the direction p E IW. fa= r}i-
and by 5n-l' the unit sphere in IRn' fa E 5n-l _ 

II. EXPLICIT REPRESENTATIONS FOR T-MATRIX, 
SCATTERING MATRIX AND RESOLVENT ON UNPHYSICAL 

SHEETS 

The scattering matrix, T-matrix and Hamiltonian reso!Yent (Gree.~ func: 
tion) for a quantum-mechanical system are stringently connected with each 
otheF. Therefore, all these three objects, considered as functions of energy, 
have us~ally the same Riemann surface. Such a fact takes place at least in the 
multichannel scattering problem with binary channels and in the three-body 
problem with quickly decreasing interactions [28], [21]. In a "first approxi­
mation", the structure of the Riemann surfaces in these p~oblems coincides. 
The thing is that the branching points (in real axis) are stipulated to these 
surfaces in the both problems by the same reason, namely by a presence of the 
Cauchy-type integrals in the Lippmann-Schwinger or Faddeev equations. In 
the equations considered in the momentum representation, the Cauchy-type 

integrals are engendered by the kernels ;(p-; p'} with X, the channel thresh-. +p -z 
olds and p, p E IRn, the respective channel momentum variables. In the case 
of the channels (2 --+ 2, 3) in three-body problem and the odd-dimensional 
channels (i.e., with n odd) in the matrix multichannel problem, the thresholds 
,\ turn out to be the branching points of the second order. Even-dimensional 
channels in the multichannel problem as well as the channel (3 ---+ 2, 3) in the 
thre~-body problem give logarithmic branching points (see [21], [28], [13]). 

The method used for calculation of resonances in the prcsPnt work, is basPd 
on the explicit representations [21] for analytic continuation of the T-mat.rix, 
scattering matrices and Green function on unphysical sheets keeping t ruP at 
least for a part of the three-body Riemann surface. To describe this part. 
we introduce the auxiliary vector-function f(z) = (fo(z)),J1,1(z), ... ,J1,n,(z). 
h,1(z), ... ,h,n2 (z), h,1(z), ... ,/J,n3 (z)) with fo(z) = lnz and / 0 ,j(z) = 
(z - ,\0 ,j) 1

/
2

. Here, by Aa,j we understand respective bound-state energies 
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of pair subsystems a, a = 1, 2, 3, j = l, 2, ... , n 0 , numerated taking into a~­
count their multiplicities. It is supposed that n 0 < oo. The sheets· l11 of 
the vector-function f(z) Riemann surface R are numerated via muiti-index 
I =:::: (/o, !i,1, ... , l1,n11 12,1, ... , l2,n2 , l3;1, ... , /3,n3 ), where la,i = 0 if the sheet IT, . 

• corresponds to the main (arithmetic) branch of the square root (z - .Xa)1l 2
• 

Otherwise, la,i = 1 is assumed. Value· of 10 coincides with the number of . 
branch of the function In z, In z = lri jzj + i 21rlo + i</> where </> = arg z. For 
the physical sheet identified by 10 = 10 ,; = 0, a = 1, 2, 3, j = 1, 2, ... , n,;, we 
use the notation l10 • A "sticking" of the sheets rr,- of the surface R is realized 
in intervals between neighboring thresholds along rims of the cut along the 
continuous spectrum. A detailed des~ription of the surface R may be found 
in [28]. 

The type R surfaces without extra branching points arise in the multi­
channel pr~blems with binary channels only. Structure of the total three-body 
Riemann surface is essentially more complicated. For instance, the s.heets l11 
with 10 ~ ±1 have additional branching· points corresponding to resonances 
of the two-body subsystems. In the sheets IT, with 10 = 0, one can discover 
(in the left half-plane) logarithmic branching points of a kinematical origin. 
The part R(3l of the total three-body Riemann surface where the representa­
tions. [21] are val}d, consists of the surface R sheets IT, identified by lo = 0 

· (such unphysical sheets are called two-body sheets) and two three-body sheets 
ipentifi~d by lo = ±I II la,i = I, a = 1, 2, 3, j = 1; 2, ... , n 0 • Note ,that R(3

) 

includes all the unphysical sheets neighboring wi\h the physical sheet l10 • 

In the case of the rinp-system and a model three-boson system considered 
below, the s~rface R(3l is shown schematically in Fig. 1. In this case a single 
pair threshold, the deuteron energy .X = Ed is present only: Therefore, the· 
index l of the sheets l11 consists of two components only: l = (/0, 11). In the 
terminology accepted, the sheet Il(o,l) (see Fig. 1) is a two-body_ sheet, but 
the sheets rr(-1,1) II rr(l,1) are three-body ones. _ - . 

Construction of the representations for the T-matrix consists of the follow­
ing stages. At the first step, one carries out analytic continuation on unphysi­

·cal sheets,of the absolute terms.and kernels of the Faddeev integral equations 
for the comporients Maf3(z) (the continuation is understood in the sense of 
distributions). As the absolute terms as the kernels after continuation are ex­
pressed in terms of the pair T-matrices and scattering matrices taken on the 
physical sheet'. Transforming the Faddeev equations continued, one finds the 
kernels Ma{J(P, P', z)lzEIT, can be explicitly expressed in terms of these kernels 
themselves• taken on the physical sheet l10 in their off-shell and/or half-on­
shell variants. It is supposed in the last case that the first argument P of the 
kernels M 0 f3(P,P',z)lzEIT, is taken on the energy ("mass") shells jPj2 = z or 
1Pa j2 = z - Aa,i, j = 1, 2, ... , no. Here, we use the notations P = { k0 , Pa}, 

· r,n:e ka,Pa, a= 1,2,3, of the standard relative momenta [19]. Transferring in 
the expressions .obtained all the off-shell terms to the l.h. part and inverting 
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Il(o,1) 
Zres(3H) 

X 

11(-1,1) 

Zres(3B) 
X 

X 

Zres(3B) 

FIG. 1. Physical, Ila, and neighboring unphysical, II(o,l), 11(1,1) and Il(-1,1), 

sheets of the Riemann surface in the three-nucleon (nnp) and model three-boson 
problems. The near (in figure) rim of the cut in the sheet 110 is identified in the 
interval between the deuteron energy Ed and three-body threshold z = 0 with the 
remote rim of the cut in the sheet II(o,l)• On the contrary,, the remote rim in th_e 
sheet 110 is identified in this interval with the near rim in the sheet II(o,l)· In 
the interval (0, +oo ), one identifies the near rim of the cut in t'he sheet 110 with 
the remote rim in the sheet II(l,l)• Respectively, the remote rim in the sheet 110 

is identified in this interval with the near rim in the sheet 11(-l,l)· On the sheet 
Il(o,l), the virtual level Zres(3H) in the s-state of the nnp-system is marked, and the 
resonance Zres(3B) in the model three-boson system. Also, the complex conjugate 
pole Zres(3B) is marked. 
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an operator arising there, one comes to a closed system of equations for the 
half-on-shell components Map(P,P',z)lzen,· This system admits an explicit 
solution using the terms of the physical sheet only. As a result one gets the 
following representations* for the matrix M( z) = { Map( z)} , a, f3 = l, 2, 3, 
continued on the sheet Il1: 

M(z)ln, = M(z) - Bt(z)A(z)Ls,-1(z)LB(z). _(1) 

Here, the factor A(z) is the diagonal matrix, 

A(z) = diag{Ao(z), A1,1(z), ... , A1,n3 (z)}, 

combined of the functions Ao(z) = -7f'iz2 and Aa,i = -'lf'iJz - >.a,i• Nota­
tions L and L are used for diagonal number matrices whose nontrivial elements 
are the sheet Il1 indices: 

L = diag{lo,Zi,~, ... ,/3,nJ ll L = diag{llol,l1,1, ... ,/3,n3 }-

By S1(z) we understand a truncation of the three-body scattering matrix: 
,. ,. " 3 n 0 

S(z), S(z): 9--+ 9, g = L2(S5
) EB .EB L2(S2), defined by the equation 

a=l 1=1 

S,(z) = i + L[S(z) - i]L 

where i is the identity operator in g. Also, we use the notations 

B(z) = ( i~~~iM + v]) and Bt(z) = (M(z)ntJt [v + Mi]wJt). 

Here, v = diag{ v1 , v2, v3} with Va, the pair potentials, a = 1, 2, 3. At the 
same time, · 

(0 1 1) 
n = (1, 1, 1), i = 1 0 1 and '11 = diag{'111, '112, '113} 

1 1 0 

• . ¾ 3 where 'Va, Ct= l, 2, 3, are operators actmg on J = (!1, f2, ... , fnJ E .EB L2(IR ) 
I J=l . 

as 

*For the sake of simplicity, we write here these representations as well as rep­
resentations for the scattering matrix and resolvent (see below ·Eqs. (2) and (3), 
respectively) for the case of spinless particles only. A direct generalization of the 
representations on the case of spin particles causes no difficulties. 
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(\Jl,J)(P) = L 1Po,iCka)l;(Pa), 
i=l 

where, in turn, 1Pa,i is the bound state wave function of the pair subsystem 
a corresponding to the level >.a,j. By \JI* we denote operator adjoint to \JI. 
Notation J0(z) is used for operator restricting a function on the energy-shell 
IPl 2 = z. The diagonal matrix-valued function 

J1(z) = diag{J1,1(z), ... ,JJ,n3 (z)}, 

consists of the operators J a,i( z) of restriction on the energy surfaces I Po 12 = 
z - >.a,i· The operators nt, J6(z) n J!(z) represent the. "transposed" matrices 
n, J0(z) and J 1(z), respectively. Operators J6(z) n J!(z) act in the expression 
for B t ( as if) to the left. 

Representations for the scattering matrix and resolvent on unphysical 
sheets are an immediate consequence of the representations ( 1) for the matrix 
M(z)ln,· 

With some stipulations (see [21]) the representations for the scattering 
matrix S(z) look as 

S(z)ln, = £(/) { i + S11(z)[S(z) - i]e(l)} £(/). (2) 

Here,£= diag{£o,£1,1, ... ,£3,n3 } where £0 is the identity operator in L 2 (S5 ) 

if /0 = 0 and £0, the inversion, (Eof)(P) = J(-P), if [0 = ±1. Analogously. 
Ea,i is the identity operator in L2(S2) for la,i = 0 and inversion for la,j = 1. 
Notation e(l) is used for diagonal number matrix e(l) = diag{ e0, e1,1 , ... , e3.nJ 
with nontrivial elements Ea,j = 1 if la,j = 0 and Ec,,j = -1 if lo,j = I; for all 
the cases eo = 1. 

Analytic continuation R(z)ln, of the resolvent R(z) = (II - zY 1 of the 
three-body Hamiltonian H admits the representation 

R(z)ln, = R + qtALs,- 1 LQ . (:J) 

Here, 

( 
. Jo[J - V R] ). 

. Q = J1 IJ!*[J - iMRoJnt ' qt= ([J - RVJJ6, O[J - RoMi]w.11) 

with V =Vt+ V2 + v3 and Ro(z) = (Ho - zt 1
, the resolvent of the kinetil' 

energy operator Ho for the system under consideration. 
There were holomorphy domains II}hol) found in [2 I] for I lw truncated 

scatfering matrices S1(z) i_n the physical sheet. Representations (I) and (:3) 
are valid in the same do.mains. 
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It follo~s from the representations (1)-(3) that the resonances (the non­
trivial poles of M(z)ln , S(z)ln and R(z)ln) situated on the unphysical sheet 

I I I . . 
Ile are in fact those points z = z,es on the physical sheet where the matrix 
Se(z) has zero as eigenvalue. Therefore, a calculation of resonances on the un­
physical sheet Ile is reduced to a search for zeros of the trµncation Se(z) of the 
total three-body scattering matrix S( z) in the physical sheet. At the numerical 
search for the resonances, one can· use any method allowing to find analytic 
continuation on the physical sheet, of the elastic scattering, rearrangement'or 
breakup amplitudes necessary to construct the respective truncation Se(z). 

III. RESULTS OF SEARCH FOR RESONANCES IN 
THREE-NUCLEON (nnp) AND THREE-BOSON SYSTEMS 

One of the most effective methods for a study of concrete three-particle sys­
tems is the numerical algorithm (22} (see also [23), (19) and references therein) 
based on· the Faddeev differential equatio~s for the wave function components 

. in the configuration space. This method gives opportunity of comparatively 
easy calculations ofthe scattering wave functions and respective amplitudes · 
for (2 ---, 2, 3) processes. An extension of the differential formulation to a 
domain of complex energies enables us to calculate analytic continuation of 
the (2 --t 2, 3) amplitudes on the physical sheet. This is quite enough for us 
to construct the truncated s-state scattering matrices Se(z) whose zeros are 
resonances on the respective two-body unphysical sheets Ile with 10 = 0. 

As to a search for resonances on the three-body unphysical sheets Ile with 
/0 -:p 0 (in particular on the sheets Il(-I,1) and Il(i,1) in the three-nucleon 
problem), the situation· is much more complicated. To construct Se(z) in this 
case, one has, alongside with (2 --t 2), to calculate amplitudes for the pro­
cesses (3 --t 2, 3) with three asymptotically free particles in an initial state. 
Unfortunately, the reliable practical methods for calculation of the processes 
(3 --t 2, 3) are not developed so far even for the real energies. In particular, 
when using the differential formulation of the scattering problem, one has from 
the very beginning to separate explicitly contributions to the Faddeev com­
ponents not only from single-rescattering but also from double-rescatteri~g 
processes [19). In the last case, one has to take into account explicitly (see 
(19]) a presence of the "light" and "shadow" zones for the correspondent waves, 
and to use the Fresnel integral for description of intermediate regimes. More­
over, computations of the (3 --t 2, 3) amplitudes have to be carried out for 
many different directions of the incident momentum P. This circumstance is 
itself a factor enlarging numerical complexity· as compared with the case of 
the processes (2 --t 2, 3). · · · · 

So, in the present work we restrict ourselves ·with a· search for- the nnp 
system resonances situated on the unphysical sheet Ilco,i) only, connected with 
the physical one by crossing the continuum spectrum interval (Ed, 0) between 
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the deuteron energy z = Ed and breakup threshold z = 0 (see Fig. 1). To 
construct the truncated scattering matrix Sco,i)(z) (in accordance with (1)-(3) 
just its zeros represent resonances on the sheet Ilco,i)), it suffices to calculate 
the elastic nd scattering <),mplitudes only. 

To find these amplitudes we use the two-dimensional Faddeev integro­
differential equations [19} being a result of the partial and angular analysis 
of the Faddeev differential equations. In addition we make an assumption, 
rather usual in nucl~ar physics, that the nucleons involved interact in the s­
state only. With this assumption the partial equations become exact. The 
Faddeev component Uf corresponding to the total spin S = 3/2 and total 
orbital momentum L, satisfies the equation 

(HL - z)Ul(x,y) = ½(x)\llr(x,y) (4) 

with HL =· -8
8
\ --8

82
2 + L(L; l) I the partial Laplacian and x, Y, the absolute 

X y y . 
values of the Jacobi vectors (-19). Respective partial component '111(x, y) of the 
total wave function for the nnp-system is expressed by the function Ul(:t,y) 
as 

1 

. '111(x,y) = Ul(x,y)- ~ J duhL(x,y,u)Ul(x',y') (5) 
-1 

where x' = ✓ ¼ x 2 + ¾ y2 
- :{J. xyu and y' = ✓ ¾ x 2 + ¼ y2 + :{J. xyu. The 

geometric function hL is given by 

hL = _±_ xy (~)L L. L! k 
../3x'y' 2sin0' ~k!(L-k)!A(u)(v'3cos0} (sin0l-k 

with A(u), the Legendre polynomial of the order k and 0 = arctg f, 0' = 
. . X 

y' 
arctg -. The factor ½(x) represents a triplet part of the nucleon-nucleon 

x' . 
interaction potential. 

Function Ul(x, y) satisfies the boundary conditions 

Uf(x,y)lx=O = 0 II Uf(x,y)ly=O = 0. (6) 

It satisfies also the asymptotical conditions 

Ul(x, y) P~O:, 1/Jd(x) [j~( ✓ z - Edy)+ ~1(z) exp { iJ z - Edy+ i 'Ir:}] + 

exp { ivzp + izr,}} 
+A1(z,0) ..ft (7) 
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where jL is the Bessel spherical function of the order L and p = Jx2 + y2 • 

By tf;d(x) we denote the deuteron wave function and by af(z), the quartet 
amplitude for elastic nd-scattering in a state with angular momentum L. The 
function A1(z, 0) represents the partial Faddeev component of the breakup 
amplitude of this system into three particles. 

The Faddeev integro-differential equations for the doublet (S = 1/2) nd­
scattering look as 

(HL - z)Uf(2),L(x,y) = ½(s)(x)wf(2),L(x,y) (8) 

( 
wd ) . ( ud ) where wf, wf = 'V},L , is expressed by the vector Uf ~ d,l as 

2,L 2,L 

1 

'111 = U1 ;t ~ J duhL(u)BU1,· 
-1 

B= ( ¼ 
-¾ -n (9) 

By V. we understand a singlet part of the nucleon-nucleon interaction poten­
tial. 

The Faddeev partial components UlL satisfy as Ul, the boundary condi­
tions 

ufL(x,y)lx=O = 0, ufL(x,y)ly=O = 0, 

and have t4e asymptotics 

(10) 

Vi~L(x, y) P_::
00

8;11Pd(x) [h( ✓z - Edy)+ af(z)exp { ~✓z -,Edy+ i 1r
2
L}] + 

. exp { iyzp + i;L} . 
+A;,L(z,0) ../P , z = 1,2. (11) 

Here, af(z) is the doublet elastic nd-scattering amplitude in the state of the 
nnp-system with angular momentum L. At the same time, the functions At,L 
and A~ L represent the partial Faddeev components of the breakup amplitude 
for thi; state. Remind that the physical breakup amplitudes in quartet and 
doublet states are expressed by the amplitudes respectively, A1 and Af;L, AtL 
via relations analogous to (5) and (9) (see e. g., [19]). 

A component of the truncated scattering matrix S(o,t) in the state with 
a fixed angular momentum L is diagonal. Its nontrivial quartet, s1(z), and 
doublet, sf(z), elements are given by 

s1(z) = 1 + 2ia1(z), 

10 

TABLE I. Convergence of the nnp-system virtual level Zres(3H) 

N N(l) 
n NJ2) N(J) 

n Pt, fm Pmax, fm Zres(3H), MeV) 
40 10 20 30 0.40 19.0 2.9296 
60 15 30 45 0.30 23.9 2.8229 
80 20 40 60 0.25 29.9 2.7565 
120 30 60 90 0.15 34.0 2.7434 
160 40 80 120 0,10 39.1 2.7282 
180 45 90 135 0.08 39.5 2.7275 

sf (z) = 1 + 2iaf (z). 

Therefore, the sheet II(ot) resonances in the state L of the nnp-system are in 
fact, zeros of the scalar functions s1(z) and sf(z). 

When solving the boundary-value problems (4), (6), (7) and (8), (10), (11) 
numerically at complex energies z, we use the same algorithm [19], [22], [23] 
as at real z. First, we make a finite-difference approximation of the problems 
above -in polar coordinates p, 0. As mesh points, we take the intersection 
points of the arcs p = Pi, i = 1, 2, ... , Np, and rays O = Oj, j = 1, 2, ... , No, 
0i < Oi+l· At p0 = 0 and given p1 (see Table I), the mesh points in p 
for i ~ 2 are chosen in such a way that Pi+I = Pi + a(pi - Pi-I) with a 
parameter a (acceleration) not depending on the number of a mesh point. 
All the results exposed below, are related to a = 1, 01. The interval [0, 1r /2] 
where the variable O changes, is divided by special points with numbers .vt>, 
k = 1, 2, 3, into three subintervals, inside of which the mesh points in O arc 
distributed uniformly. When going from one interval to another (in direction 
of the parameter O rise), the mesh step is divided by two. The choice of the 
mesh described, is explained by a necessity to take into account essentially 
more quick change of the Faddeev component values in the domain where p 

and/or x [19] are small. Usually, we chose the numbers of points in O and pt he 
same, No = Np. A maximal value of the parameters N0 , NP has equaled to l~O .. 
With these values, the cut-off radius Pmax = PNp has reached 39 fm. Typical 
values of the mesh parameters arc given in Table I where N = No = Xp. 

As a nucleon-nucleon interaction, the Malflict.-Tjon potential l\lT I III is 
used in its initial version [29]. 

Having solved the problems ( 4 ), (6), (7) and (8), ( 10), (11) we calculate the 
functions s1( z) and· sf ( z ). Rcsonan.ccs, considered as roots of thes<' fun ct ions 
in the complex plane, arc found using the Newton method with a three-point 
approximation of derivative. · 

As a test of the computer code we have calculated the bound-state energy 
Et o[ the 3J/ nucleus as a pole of.the function· 81,(z). More precisely, this pole 
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was found as a root of the inverse amplitude 1/af(z). Beginning with mesh 
dimension 80 x 80, we obtained for Et the value -8.55 MeV. Hereafter all the 
energies are given with respect t~ the breakup threshold. Note that the value 
stated for Et is in a good agreement with known results on E1 in the MT I-III 
model (see [26]). 

When searching for the nnp resonances on the sheet II(o,i) at L = 0, 1, we 
have inspected a domain of a range about 10 MeV in vicinity of the segment 
[Ed, 0] in the complex z plane. Especially carefully we studied a vicinity 
of the points z = - 1.5 ± 0.3 + i(0.6 ± 0.3) Me V interpreted in the recent 
works [30], [31] as a location of an exited state energy of the 3H nucleus. 
Lnfortunately we have succeeded to find only one root z,es(3H) of the function 
st( z ), corresponding to the known virtual state of the nnp system at the t.otal 
spin S=l/2. Position of this root for different meshes is shown in Table I 
illustrating a degree of convergence in the method used. As one can see from 
the table, for the maximal of the meshes examined, the mesh 180x180, we have 

- found Zres(3H) = -2. 728 MeV. This means that the calculated virtual level is 
situated 0.,j04 MeV to the left from the nd threshold Ed= -2.224 MeV (in the 
:\1T I-III model [29]). Note that the shift Erzres(3H) found from experimental 
data on nd scattering, is 0.515 MeV (see [13]). Its value computed in a 
separabilizcd MT I-III model on the base of the momentum space Faddeev 
equations, equals to 0.502 McV [13]. As to the resonance z = -1.5 ± 0.3+ 
i(0.6 ± 0.3) MeV, at L = 0 discussed in [30], [31], it is quite possible to be 
situated not on the two-body sheet l1(o,i) but on the three-body sheets II(-l,l) 

or 11(1,I) (see Fig. 1). Due to the reasons mentioned at the beginning of the 
section, we may unfortunately neither approve nor disprove this hypothesis. 
As it should be expected (sec the data on three-nucleon resonances in [13]), 
we have failed to find any resonances in the quartet state at L = 0 as well as 
at L = 1. 

Also, we have studied a model three-body system including identical spin­
zero bosons with masses of the nucleon. Remind that the Faddeev integro­
diffcrcntial equations for such a three-boson system look exactly as the equa­
tions (4) except a necessity to replace the factor -1/2 in the expression (5) 
with unity. The boundary conditions for respective partial Faddeev compo­
nents Ul8 (x, y) have the form (6) and (7) where instead of a1(z) and A1(0, z), 
one has to substitute a7,8 (z) and A7,8 (0, z). 

Component of the truncated scattering matrix S(o,i) for the three-boson 
system is given in the state with the angular momentum L by 

s=t;3(z) = 1 + 2iaf8 (z). 

Resonances on the sheet l1(o,I) in this state are roots of the equation s7,8 (z) = 0 
considered on the physical sheet. 

In the three-boson problem we restrict ourselves with a treating the s-state 
only and thereby, with a searching for zeros of the function s7,8 (z) at L = 0. 
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FIG. 2. Surface of the function ls~8 (z)I in the model system of three bosons with 
the nucleon masses. The potential va(r) is used with the barrier Vb= 1.5 MeV: Po­

. sition of the resonance z,es(3B) corresponds to the minimal (zero) value of ls~8 (z)I. 
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FIG. 3. Trajectory of. the resonance Zres(3B) on the sheet II(o,i)' in the model 
system of three bosons with the nucleon masses. The potential VG(r) is used. 
Values of the barrier Vi, in MeV are given near the points marked on the curve. 
These points are distributed between Vi, = 0.85 MeV and Vi, = 1.6 MeV with the 
same step 0.05 MeV in Vi,. 
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FIG. 4. Dependence of the "deuteron" energy Ed (curve 1) and real part of the 
resonance Zres(3B) ( curve 2) on the barrier value Vi. 

As a pairwise interaction between the bosons we have used the Gauss-type 
potential ·supplied with an additional Gauss repulsive barrier term, 

V 0 (r) = Vo exp[-µ 0 r 2
] + Vi, exp[-µb(r - rb)2] 

where the values Vo = -55 MeV, µo = 0.2 fm-2, µb = 0.01 fm-2, rb = 5 fm 
have been fixed and the barrier amplitude Vi, varied. A resonance (with non­
zero imaginary part) on the sheet Il(o,i) arises in the system concerned just 
due to the presence of the barrier term. Example of a surface of the sg8 (z) 
absolute value for the barrier amplitude Vi, = 1.5 MeV is shown in Fig. 2 (for 
a 80x80 mesh). A trajectory of the resonance Zres(3B) (a zero of the function 
sg8 (z)) is shown for the changing barrier Vi, in Fig. 3. This trajectory was 
watched for the barrier Vi, decreasing in the interval between 1.6 MeV and 
0.84 MeV. When drawing the trajectory, we have used a 160 x 160 mesh. It 
can be seen from Fig. 3 that a behavior of the resonance concerned turns out to 
be rather unexpected: with monotonously decreasing real part, the imaginary 

, part of the resonance changes not monotonously and at Vi, ~. l.15 MeV it 
has an obvious minimum. There is this value of Vi, .. when real part of the 
resonance Zres(3B) coincides with the "deuteron" energy Ed (see Fig. 4). When 
Re Zre,(3B), decreasing with Vi,, leaves Ed behind, the value of Im Zres(3B) 
increases at the beginning but then, after Vi, ~ 1 MeV falls off again until the 
resonance crossing at Vi, ~ 0.84 MeV the real axis. Trajectory of the resonance 
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'coi:ice~ned in the lower complex half-plane is symmetric to the curve shown 
in Fig. 3 with respect to the real axis; ~esp_ective points, symmetric.to those 
marked in Fig. 3, correspond to the same values of Vi,. 
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Kolganova E.A., Motovilov A.K.;,, ' 
Use of the Faddeev Differential Equations 
foi Computations.ofThree~Body Resonances 

~ " 

Algorithm, based on explicit representation{ for a~alytk c_ontin'uation of the 
T~matrix Faddeev, components on unphysical sheets, is wprked out for calculatibns 

·ofresonances in the three-body quantum problem. According to the re'presentations: 
'poles. of;, T~matrix, scattering matrix and Green function·. t)n, unphysical sheet~., 
i~terpreted as resonances: coincide _with those coniplex energy values where '' 
appropriat~ truncations of the scattering matrixh.~v~ zero as eigenvaltie. Scattering. 
amplitudes on the physical sheet, necessary to, con:strnct scatleri11g matri~. ·are. 
calculated on the basis''. of the Faddeev. differential . equ.Hions. Th~. algorithm 
devdoped is,;lpplied to s~arch for the resonances, in, the IUIJJ sysi~;ll an~! in' a Illlldel' 
three-boson :system. . 
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