

СООБЩЕНИЯ Объединенного института ядерных исследований

Дубна

96-116

P13-96-116

С.П.Третьякова, Т.Гюзель*, В.А.Пономаренко

ТРЕКОВЫЕ ДЕТЕКТОРЫ ИЗ ФОСФАТНОГО СТЕКЛА

*Стамбульский университет, Турция

В настоящее время в распоряжении экспериментаторов имеется широкий набор диэлектрических детекторов с различной пороговой чувствительностью к заряженным частицам: от полимерных детекторов до неорганических (стекла, кристаллы) [1,2]. Исследовано большое количество образцов стекла [3,4]. Оказалось, что все они значительно различаются по скорости травления, эффективности регистрации, термической стабильности, и, особенно значительно, по концентрации примесей урана. Представляло интерес изготовление материалов из фосфатов, где примесный фон мог быть значительно снижен, что имеет большое значение при использовании детекторов в ядернофизических экспериментах, где фон нейтронов достаточно велик [2].

Целью настоящей работы является подробное исследование регистрационных свойств детекторов из фосфатного стекла и рассмотрение возможностей использования их в ядерно-физических экспериментах для регистрации и идентификации тяжелых частиц. В данной работе исследовалось фосфатное стекло, разработанное и изготовленное в Государственном оптическом институте (Санкт-Петербург), состав которого следующий:

Р ₂ O ₅ - 68%(мол), Na ₂ O -	2,5%,
Al ₂ O ₃ - 4,5%, ZnO -	25%.
Плотность стекла составляет 2.9 г/ см	3.

Экспериментальная часть

Образцы детекторов из фосфатного стекла (ФС) представляли собой полированные пластины толщиной ≈ 2 мм. Облучение проводилось многозарядными ионами с Z=8:56 в интервале энергий от 0,1 до 8 МэВ/а.е.м. на внешних пучках ускорителей ЛЯР ОИЯИ. Стекла облучались под углами 10, 30, 45 и 90⁰ к поверхности. При измерении эффективности регистрации угол вхождения бомбардирующих частиц в детектор плавно менялся от 90⁰ до нуля. Для травления использовались растворы HF и NaOH при комнатной температуре. После травления измерялись плотность треков и их основные параметры (диаметр, длина, угол входа) с использованием оптического микроскопа, полуавтоматического оптического анализатора MOP (Австрия) и телевизионного автоматического сканирующего устройства. Исследовалась возможность термической регрессии следов ионов и осколков деления при температурах 100, 150, 200, 250 и 300°С в течение 1, 5 и 15 ч. Измерялось изменение длины треков и их количество в зависимости от температуры и продолжительности.

Obecalie: Willin Examply

1. Introduction

In our previous paper [1] the computed differential cross sections for elastic and inelastic scattering of hydrogen, deuterium and tritium μ -atoms in the ground states on p, d, and t nuclei, respectively, have been reported for symmetric cases of collisions:

$$p\mu(F_i) + p \to p\mu(F_j) + p,$$

$$d\mu(F_i) + d \to d\mu(F_j) + d,$$

$$t\mu(F_i) + t \to t\mu(F_j) + t,$$

(1)

for a full set of total orbital angular momenta, total spins of a three-particle system (μ -atom + a nucleus) and for all possible initial, F_i , and final, F_j , spins of μ -atoms.

The knowledge of differential cross sections is necessary for describing a broad spectrum of different phenomena in muon physics [2,3]. Among these the slowing down, thermalisation and diffusion of μ -atoms in mixtures of hydrogen isotopes are of great interest from the point of view of the muon catalyzed fusion kinetics studies [4-6].

In order to describe the transport of μ -atoms in targets containing mixtures of different hydrogen isotopes it is also necessary to know the differential scattering cross sections for asymmetric cases:

$$t\mu + d \rightarrow t\mu + d, \qquad d\mu + t \rightarrow d\mu + t,$$

$$d\mu + p \rightarrow d\mu + p, \qquad p\mu + d \rightarrow p\mu + d,$$

$$t\mu + p \rightarrow t\mu + p, \qquad p\mu + t \rightarrow p\mu + t,$$

(2)

- 1996년 - 1999년 1997년 - 1997년 - 1997년 1997년

(elastic scattering) and

$t\mu + d \rightarrow d\mu + t$, $p\mu + d \rightarrow d\mu + p$,		
	(3)	
$d\mu + t ightarrow t\mu + d, \qquad t\mu + p ightarrow p\mu + t,$		
$d\mu + p \rightarrow p\mu + d$, $p\mu + t \rightarrow t\mu + p$.		

(isotope exchange processes). Presentation of such cross sections is the aim of this paper.

Recently, the values of the reactance matrix $t_{ij}^J(E)$ and corresponding partial cross sections $\sigma_{ij}^J(E)$ for reactions (2,3) have been published [7] for different values of the total orbital momentum J. The results [7] have been obtained in the adiabatic representation [8], where the Coulomb three-body problem is reduced to the multichannel scattering with one or two open channels and a great number (~ 250) of closed ones [9,10]. So far these calculations are estimated as more accurate.

Using the available values of phase shifts and an algorithm of computation similar to that reported in [1] we calculated the differential cross sections for

OTW SLOCKLAS TETT SECONDER HELSE BORAUNE

processes (2,3) in a wide range of CMS collision energies (up to a few hundreds of eV). It is worth mentioning that the calculations are done for the scattering of μ -atoms on bare nuclei, so for energies below $\approx 1eV$ the necessary corrections for the electron screening and for molecular effects would have to be introduced [11]. In contrary, an evaluation of these effects [12] show that they are negligible, above the epithermal region (E > 1 eV), in comparison with the errors appearing due to uncertainities in the initial values of $t_{ij}^{I}(E)$. In such cases presented differential cross sections may be used without the above mentioned restrictions.

2. Formulae

When considering reactions (2,3), where the mass M_a of the muonic atom $a\mu$ is different from the mass M_b of the *b* nucleus $(a, b \equiv p, d \text{ or } t)$ the system of three particles, $a \cdot \mu \cdot b$, for large internuclear distances, can be considered as a pair of states (Fig.1).

Fig.1. Structure of energy levels for $a-\mu-b$ systems in the asymptotic region of large internuclear distances.

We label with index "1" the lower state, $a\mu + b$, with the mass M_a of the muonic atom $a\mu$ greater than the mass M_b of the nucleus b. The higher state "2" $(b\mu + a)$ is separated by the energy gap E_{thr} , which is equal to isotopic shift of the ground state energy level of a muonic atom due to the replacement of nucleus a with nucleus b. The energies E_1 and E_2 are CMS collision energies in lower and upper channels, respectively. In such a system the elastic scattering $1 \rightarrow 1$, $2 \rightarrow 2$ and isotopic exchange $1 \rightarrow 2$, $2 \rightarrow 1$ are possible, depending of the collision energy (the transition $1 \rightarrow 2$ has a threshold character). The values of the threshold energies E_{thr} are 48.04 eV, 134.7 eV and 182.8 eV for d-t, p-d and p-t systems, respectively.

The differential cross section for the transition $i \rightarrow j$ (*i* and *j* denote the initial and final states, respectively) for collision energy $E(E = E_i)$ is

$$\frac{d\sigma_{ij}(E,\Omega)}{d\Omega} = \frac{1}{4k_i^2} \left| \sum_J (2J+1)(\delta_{ij} - S_{ij}^J(E)) P_J(\cos\theta) \right|^2, \tag{4}$$

A CONTRACTOR DE LA CALENCIA DE LA CA

Ь÷,					-					
	E, eV	$\sigma_{11}^{tot}, \ cm^2$	$\vec{\mu}_{11}$	$m{eta}_{0}$	eta_1	eta_2	β_3	eta_4	eta_5 ;	eta_6
÷.,	0 100F-02	0 100F 18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
	0.100E-02	0.1091-18	0.000	0.300	0.000	0.000	0.000	0.000	0.000	0.000
	0.200E-02	0.1121-18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
: :	0.000E 02	0.114E-18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
	0.500E-02	0.117E-18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.600E-02	0.118E-18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
,	0.700E-02	0.119E-18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
	0.800E-02	0.120E-18	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000
1	0.900E-02	0.121E-18	0.001	0.500	0.001	0.000	0.000	0.000	0.000	0.000
•	0.100E-01	0.122E-18	0.023	0.500	0.035	0.001	0.000	0.000	0.000	0.000
	0.200E-01	0.129E-18	0.063	0.498	0.094	0.005	0.000	0.000	0.000	0.000
	0.300E-01	0.135E-18	0.101	0.496	0.152	0.012	0.000	0.000	0.000	0.000
	0.400E-01	0.141E-18	0.138	0.493	0.207	0.022	0.000	0.000	0.000	0.000
	0.500E-01	0.145E-18	0.172	0.489	0.259	0.034	0.000	0.000	0.000	0.000
- 11	0.600E-01	0.150E-18	0.204	0.484	0.307	0.048	0.000	0.000	0.000	0.000
	0.700E-01	0.155E-18	0.234	0.179	0.351	0.063	0.000	0.000	0.000	0.000
÷.,	0.800E-01	0.160E-18	0.261	0.474	0.392	0.078	-0.001	0.000	0.000	0.000
	0.900E-01	0.164E-18	0.285	0.470	0.430	0.090	-0.004	0.000	0.000	0.000
. 1	0.100E+00	0.169E-18	0.304	0.478	0.471	0.066	-0.025	0.001	0.000	0.000
17	0.120E+00	0.178E-18	0.343	0.466	0.533	0.100	-0.030	0.002	0.000	0.000
j,	0.140E+00	0.188E-18	0.376	0.455	0.585	0.135	-0.036	0.002	0.000	0.000
	0.160E+00	0.197E-18	0.403	(0.444	0.629	0.168	-0.041	0.002	0.000	0.000
•	0.180E+00	0.206E-18	0.426	0.433	0.666	0.200	-0.045	0.002	0.000	0.000
-	0.200E+00	0.215E-18	0.445	0.423	0.698	0.231	-0.050	0.002	0.000	0.000
12	0.300E+00	0.257E-18	0.505	0.380	0.797	0.360	-0.067	0.003	0.000	0.000
· ·	0.400E+00	0.294E-18	0.531	0.349	0.845	0.452	-0.080	0.003	0.000	0.000
	0.500E + 00	0.327E-18	0.543	0.326	0.869	0.519	-0.090	0.004	0.000	0.000
÷.,	0.600E + 00	0.355E-18	0.548	0.310	0.882	0.568	-0.099	0.004	0.000	0.000
	0.700E+00	0.379E-18	0.550	0.297	0.890	0.605	-0.107	0.004	0.000	0.000
	0.800E+00	0.401E-18	0.551	0.288	0.894	0.634	-0.113	0.005	0.000	0.000
	0.900E+00	0.419E-18	0.550	0.280	0.897	0.657	-0.119	0.005	0.000	0.000
	0.100E+01	0.435E-18	0.549	0.274	0.932	0.734	-0.186	-0.095	0.008	0.003
	0.120E+01	0.462E-18	0.546	0.265	0.935	0.766	-0.199	-0.102	0.009	0.004
-	0.140E+01	0.483E-18	0.543	0.258	0.937	0.788	-0.210	-0.108	0.011	0.004
	0.160E+01	0.500E-18	0.540	0.253	0.938	0.806	-0.221	-0.113	0.012	0.004
	0.180E+01	0.513E-18	0.537	0.250	0.939	0.819	-0.231	-0.118	0.013	0.005

... continued

Table 2. Isotopic exchange, $\mu + d \rightarrow d\mu + t$, $E_{thr} = 48.042 \ eV$

Table 1. (continue	ed) 🖂	$t\mu +$	$d \rightarrow$	tμ	+	(
--------------------	-------	----------	-----------------	----	---	---

$E, \ eV$	$\sigma_{11}^{tot}, \ cm^2$	$\bar{\mu}_{11}$	β_0 β_1 β_2 β_3 β_4 p_5 p_5
		<u></u>	
0.200E+01	0.524E-18	0.534	$0.247 \ 0.940 \ 0.831 \ -0.240 \ -0.123 \ 0.014 \ 0.005$
0.300E+01	0.551E-18	0.522	0.239 0.944 0.868 -0.283 -0.146 0.020 0.008
0.400E+01	0.557E-18	0.511	0.235 0.947 0.893 -0.323 -0.170 0.028 0.011
0.500E+01	0.554E-18	0.501	0.231 0.949 0.915 -0.357 -0.192 0.038 0.015
0.600E+01	0.545E-18	0.492	0.228 0.949 0.936 -0.387 -0.211 0.048 0.019
0.700E+01	0.534E-18	0.483	$0.224 \ \ 0.948 \ \ 0.957 \ \ -0.416 \ \ -0.231 \ \ 0.060 \ \ 0.025$
0.800E+01	0.522E-18	0.475	$0.219 \ \ 0.946 \ \ 0.980 \ \ -0.442 \ \ -0.253 \ \ 0.073 \ \ 0.031$
0.900E+01	0.508E-18	0.467	0.215 0.942 1.005 -0.468 -0.277 0.090 0.039
0.100E+02	0.495E-18	0.460	$0.210 \ 0.938 \ 1.032 \ -0.492 \ -0.304 \ 0.109 \ 0.050$
0.150E+02	0.432E-18	0.431	$0.179 \ 0.907 \ 1.242 \ -0.649 \ -0.609 \ 0.300 \ 0.203$
0.200E+02	0.424E-18	0.406	$0.128 \ \ 0.731 \ 2.224 \ -1.152 \ \ -3.807 \ \ 1.329 \ \ 2.745$
0.210E+02	0.522E-18	0.359	$0.099 \ 0.405 \ 3.014 \ -1.096 \ -7.860 \ 1.847 \ 6.780$
0.220E+02	0.983E-18	0.184	$0.050 - 0.524 \ 3.349 \ 0.686 - 13.382 \ 0.908 \ 14.073$
0.221E+02	0.102E-17	0.167	$0.048 - 0.603 \ 3.225 \ 0.970 - 13.367 \ 0.631 \ 14.354$
0.222E+02	0.102E-17	0.152	$0.047 - 0.664 \ 3.067 \ 1.243 - 13.156 \ 0.340 \ 14.432$
0.223E+02	0.101E-17	0.141	$0.048 - 0.704 \ 2.884 \ 1.492 - 12.765 \ 0.045 \ 14.309$
0.224E+02	0.964E-18	0.133	$0.049 \ \text{-} 0.723 \ 2.684 \ 1.710 \ \text{-} 12.221 \ \text{-} 0.240 \ 14.002$
0.225E+02	0.908E-18	0.130	$0.052 \ \text{-} 0.723 \ 2.476 \ 1.891 \ \text{-} 11.559 \ \text{-} 0.507 \ 13.540$
0.226E+02	0.847E-18	0.129	0.056 - 0.705 2.271 2.033 - 10.822 - 0.747 12.961
0.227E+02	0.786E-18	0.132	0.059 -0.674 2.074 2.136 -10.039 -0.956 12.300
0.228E+02	0.730E-18	0.137	0.064 - 0.632 1.888 2.205 - 9.242 - 1.134 11.588
0.229E+02	0.680E-18	0.143	0.068 - 0.583 1.719 2.244 - 8.464 - 1.280 10.863
0.230E+02	0.637E-18	0.151	$0.072 - 0.529 \ 1.569 \ 2.258 - 7.724 - 1.397 \ 10.148$
0.240E+02	0.432E-18	0.230	$0.098 - 0.039 \ 0.827 \ 1.834 - 2.950 - 1.669 \ 5.017$
0.250E+02	0.372E-18	0.260	$0.096 \ \ 0.224 \ \ 0.719 \ \ 1.349 \ \ -1.245 \ -1.499 \ \ 2.890$
0.300E+02	0.296E-18	0.311	$0.075 \ \ 0.406 \ \ 0.835 \ \ 0.857 \ \ 0.151 \ -1.059 \ \ 0.814$
0.350E+02	0.261E-18	0.320	$0.049' 0.314 \ 0.910 \ 1.023 \ -0.328 \ -1.044 \ 0.573$
0.400E+02	0.235E-18	0.330	$0.031 \ \ 0.160 \ \ 0.915 \ \ 1.381 \ \ \ 0.432 \ \ -1.153 \ \ \ 0.541$
0.450E+02	0.216E-18	0.345	$0.024 - 0.027 \ 0.856 \ 1.842 \ 0.544 - 1.308 \ 0.570$
0.500E+02	0.208E-18	0.374	0.035 -0.250 0.640 2.378 0.847 -1.437 0.574
0.580E+02	0.187E-18	0.452	$0.075 \ \textbf{-}0.573 \ 0.357 \ \textbf{3}.130 \textbf{1}.027 \ \textbf{-}\textbf{1}.462 \textbf{0}.704$
0.680E+02	0.153E-18	0.507	0.129 -0.747 0.263 3.387 0.722 -1.224 0.977
0.780E+02	0.123E-18	0.509	0.174 -0.810 0.295 3.317 0.179 -0.975 1.341
0.880E+02	0.100E-18	0.486	0.213 -0.840 0.368 3.124 -0.464 -0.714 1.796
0.980E+02	0.833E-19	0.453	0.245 -0.853 0.474 2.852 -1.178 -0.417 2.327

	E, eV	σ_{12}^{ioi}, cm^2	$\ddot{\mu}_{12}$	β_0	β_1	β_2	β_3	β_4	eta_5	β_6
ļ	E 0 10E 00	0.00010.00	0.050	0.100	0.000			0.000		
	$E_{thr} + 0.10E-02$	0.289E-23	-0.058	0.498	-0.086	0.007	0.000	0.000	0.000	0.000
	$E_{thr} + 0.10E_{-01}$	0.926E-23	-0.137	0.498	-0.208	0.005	0.005	0.001	0.000	0.000
	$E_{thr} + 0.10E + 00$	0.351E-22	-0.321	0.468	-0.542	0.076	0.100	0.034	0.000	0.000
	$E_{thr} + 0.50E + 00$	0.146E-21	-0.235	0.435	-0.702	-0.071	0.577	0.445	0.008	0,000
	$E_{thr} + 0.10E + 01$	0.340E-21	-0.005	0.452	-0.078	-0.490	0.949	1.055	0.028	0.000
	$E_{thr} + 0.20E + 01$	0.918E-21	0.125	0.502	-0.633	-1.261	1.310	2.089	0.082	0.001
	$E_{thr} + 0.30E + 01$	0.174E-20	0.218	0.541	-0.608	-1.834	1.455	2.849	0.148	0.003
	$E_{thr} + 0.40E + 01$	0.281E-20	0.270	0.565	-0.589	-2.237	1.503	3.397	0.216	0.006
	$E_{thr} + 0.50E + 01$	0.407E-20	0.300	0.580	-0.572	-2.517	1.501	3.789	0.285	0.010
	$E_{thr} + 0.70E + 01$	0.705E-20	0.333	0.590	-0.538	-2.852	1.428	4.288	0.421	0.020
	$E_{thr} + 0.10E + 02$	0.119E-19	0.352	0.588	-0.481	-3.081	1.234	4.663	0.627	0.046
	$E_{thr} + 0.15E + 02$	0.188E-19	0.363	0.572	-0.370	-3.204	0.798	4.887	1.017	0.127
	$E_{thr} + 0.20E + 02$	0.231E-19	0.372	0.555	-0.236	-3.218	0.247	4.892	1.509	0.274
	$E_{thr} + 0.25 \text{E} + 02$	0.255E-19	0.385	0.538	-0.082	-3.182	-0.414	4.752	2.117	0.503
	$E_{thr} + 0.30E + 02$	0.266E-19	0.402	0.522	0.091	-3.103	-1.171	4.476	2.833	0.822
	$E_{thr} + 0.35E + 02$	0.271E-19	0.421	0.505	0.273	-2.980	-1.986	4.070	3.617	1.224
	$E_{thr} + 0.40 \text{E} + 02$	0.273E-19	0.443	0.487	0.457	-2.817	-2.823	3.548	4.435	1.694
	$E_{thr} + 0.45 \text{E} + 02$	0.273E-19	0.465	0.470	0.636	-2.618	-3.647	2.930	5.248	2.215
	$E_{thr} + 0.50E + 02$	0.271E-19	0.486	0.453	0.806	-2.387	-4.434	2.233	6.029	2.774
	n - Malifa Galeri, Sanggilinaa Shina ay shara aha Silaan	요리는 모델에서 영습을 같이 있는 도구한 모르겠다.			1999-1499 1999 - 1999		seety o eo la			2.22
	lang sensari seri a sar Tang sensari kana darawa	가격 너 나무님께 시작 지하니?			1년 - 1년 신 - 161 - 16				같은 가운 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것	
	이는 사람은 물건을 받아야 한다. 1월 19일 - 1일								livid). Santili	844.
	and the full state of the second state of the		나온 바이 가지라. 이번 아이 가지 않는 것은	이 가슴이 가슴. 이 가슴이 다음				n ang é Provensi		분산가
	e i reserve i propriet.							9 24 4 	고려다	사람 같은 것 같은 것이 같이
	· · · · · · · · · · · · · · · · · · ·	Table 3. Is	otopic e	xchang	e, $d\mu$ -	$t \to t$	$t\mu + d$			
	i de la constanta de liter	h a tha bh Clàic Th	te starre	1973 - 1974 19	1,0040	1411	201 문화	나는 가슴이 같은 가슴이		
			· · · · · ·	1 1 1/ 		1.0.2.4	a kanalaran Kanalari ta	122	- Veres	전화 성
	E, eV	$\sigma_{21}^{tot}, \ cm^2$	$\bar{\mu}_{21}$ /	B ₀ (β_1 β_1	$\beta_2 = \beta$	3 β4	β	5 β	6
										2.1 C.2
	0.100E-02 0).136E-18 -(0.058 0.	498 -0.0	086 0.0	007 0.0	00 0.00	0.0 0.0	0.0 00	00 .
	0.200E-02 ().961E-19 -0	0.075 0.	499 -0.	112 0.0	004 0.0	01 0.00	0.0 0.0	0.0 00	00
	0.300E-02 ().787E-19 -0	0.087 0.	500 -0.	131 0.0	001 0.0	01 0.00	0.0	0.0 00	00
	0.400E-02).682E-19 -0	0.096 0.	501 -0.	146 -0.0	002 0.0	02 0.00	0.0 0.0	0.0 00	00
	. 0.500E-02 0).612E-19	0.105 0.	501 -0.	159 -0.0	004 0.0	03 0.00	0.0	0.0 00	00 .
	0.600E-02 0).559E-19 -0	0.112 0.	502 -0.	170 -0.0	007 0.0	04 0.00	01 0.00	0.0 00	00 00
	0.700E-02 ().519E-19 -0	0.119 0.	503 -0.	181 -0.0	0.0 000	04 0.00	01 0.00	0.0 00	00 · 0
	0.800E-02).486E-19 -0	0.125 0.	503 -0.	191 -0.0	010 0.0	05 0.00	01 0.00	0.0 00	00

... continued

27

Table 3. (continued) $d\mu + t \rightarrow t\mu + d$

Tab	le	3.	continued) d	$\mu +$	$t \rightarrow t$	$t\mu^{\perp}$	+a	l :1	5
-----	----	----	-----------	-----	---------	-------------------	----------------	----	-------------	---

E, eV	$\sigma_{21}^{tot}, \ cm^2$	$ar{\mu}_{21}$	$eta_0 eta_1 eta_2 eta_3 eta_4 eta_5 eta_6$
0.900E-02	0.459E-19	-0.131	0.504 -0.200 -0.012 0.006 0.001 0.000 0.000
0.100E-01	0.436E-19	-0.136	0.504 -0.208 -0.013 0.007 0.001 0.000 0.000
0.200E-01	0.315E-19	-0.186	0.502 -0.288 -0.009 0.016 0.004 0.000 0.000
, 0.300E-01	0.262E-19	-0.220	0.498 -0.345 0.002 0.026 0.007 0.000 0.000
0.400E-01	0.232E-19	-0.246	0.493 -0.390 0.016 0.035.0.009 0.000 0.000
0.500E-01	0.212E-19	-0.266	0.488 -0.426 0.029 0.045 0.012 0.000 0.000
0.600E-01	0.198E-19	-0.282	0.483 -0.456 0.042 0.054 0.016 0.000 0.000
0.700E-01	0.187E-19	-0.296	$0.478 - 0.482 \ 0.054 \ 0.064 \ 0.019 \ 0.001 \ 0.000$
0.800E-01	0.178E-19	-0.306	0.474 - 0.505 0.063 0.075 0.023 0.001 0.000
0.900E-01	0.172E-19	-0.315	$0.470 \ \textbf{-}0.525 \ \ 0.072 \ \ 0.086 \ \ 0.028 \ \ 0.001 \ \ 0.000$
0.100E+00	0.166E-19	-0.322	$0.467 \ \textbf{-0.542} \ \ 0.079 \ 0.098 \ 0.033 \ 0.001 \ 0.000$
0.120E+00	0.158E-19	-0.332	0.463 -0.572 0.084 0.124 0.046 0.001 0.000
0.140E+00	0.152E-19	-0.337	0.458 -0.597 0.089 0.151 0.061 0.001 0.000
0.160E+00	0.147E-19	-0.339	0.455 -0.616 0.090 0.177 0.076 0.002 0.000
0.180E+00	0.144E-19	-0.339	0.451 -0.632 0.090 0.204 0.093 0.002 0.000
0.200E+00	0.142E-19	-0.337	0.449 -0.645 0.088 0.230 0.111 0.002 0.000
0.300E+00	0.136E-19	-0.312s	$0.438 \ \text{-}0.684 \ \ 0.058 \ 0.357 \ 0.211 \ 0.004 \ 0.000$
0.400E+00	0.137E-19	-0.274	0.434 -0.698 0.004 0.472 0.324 0.007 0.000
0.500E+00	0.140E-19	-0.234	0.433 -0.701 -0.064 0.575 0.443 0.010 0.000
0.600E+00	0.144E-19	-0.196	0.434 -0.699 -0.140 0.667 0.564 0.012 0.000
0.700E+00	0.148E-19	-0.159	0.437 -0.695 -0.222 0.749 0.687 0.016 0.000
0.800E+00	0.153E-19	-0.125	0.440 -0.689 -0.306 0.823 0.809 0.019 0.000
0.900E + 00	0.159E-19	-0.094	0.445 -0.684 -0.393 0.889 0.930 0.023 0.000
0.100E+01	0.164E-19	-0.065	0.450 - 0.678 - 0.481 0.948 1.050 0.027 0.000
0.120E+01	0.178E-19	-0.012	0.460 -0.667 -0.655 1.056 1.289 0.037 0.000
0.140E+01	-0.200E-19	0.031	0.448 -0.661 -0.705 1.148 1.435 0.045 0.001
0.160E+01	0.217E-19	0.068	0.449 -0.656 -0.805 1.225 1.598 0.054 0.001
0.180E+01	0.225E-19	0.099	0.468 -0.649 -0.993 1.282 1.814 0.067 0.001
0.200E+01	0.226E-19	0.125	0.501 -0.633 -1.253 1.311 2.082 0.082 0.001
0.300E+01	0.292E-19	0.219	0.539 -0.609 -1.824 1.456 2.841 0.147 0.003
0.320E+01	0.305E-19	0.231	0.546 -0.605 -1.923 1.471 2.970 0.161 0.004
0.340E+01	0.319E-19	0.243	0.552 -0.601 -2.010 1.483 3.088 0.175 0.004
0.360E+01	0.332E-19	0.253	0.556 -0.597 -2.088 1.492 3.195 0.188 0.005
0.380E+01	0.346E-19	0.262	0.560 -0.594 -2.159 1.500 3.294 0.202 0.005
0.400E+01	0.359E-19	0.270	0.563 -0.591 -2.224 1.506 3.385 0.215 0.006

÷				
1	E, eV	$\sigma_{21}^{tot}, \ cm^2$	$\bar{\mu}_{21}$	β_0 β_1 β_2 β_3 β_4 β_5 β_6
		a and a second		
	0.420E + 01	0.372E-19	0.277	0.568 -0.587 -2.293 1.508 3.478 0.229 0.007
1	0.440E+01	0.385E-19	0.284	0.571 -0.583 -2.354 1.508 3.563 0.243 0.007
	0.460E+01	0.399E-19	0.290	0.574 -0.580 -2.410 1.508 3.642 0.257 0.008
	0.480E+01	0.412E-19	0.296	0.576 -0.576 -2.461 1.507 3.714 0.270 0.009
	0.500E + 01	0.425E-19	0.301	0.578 -0.573 -2.508 1.505 3.781 0.284 0.010
	0.600E + 01	0.487E-19	0.321	0.586 -0.558 -2.704 1.480 4.068 0.351 0.014
	0.700E+01	0.545E-19	0.333	0.589 -0.540 -2.844 1.434 4.281 0.419 0.020
	0.800E+01	0.597E-19	0.342	0.590 -0.522 -2.946 1.377 4.441 0.486 0.027
.[0.900E+01	0.642E-19	0.348	0.589 -0.503 -3.022 1.312 4.565 0.555 0.036
	0.100E+02	0.680E-19	0.353	0.587 -0.484 -3.076 1.241 4.657 0.624 0.046
	0.150E+02	0.777E-19	0.364	0.572 -0.372 -3.200 0.807 4.884 1.013 0.126
	0.200E+02	0.775E-19	0.373	0.555 -0.239 -3.216 0.255 4.891 1.505 0.273
	0.250E+02	0.734E-19	0.385	0.538 -0.083 -3.181 -0.408 4.752 2.114 0.502
	0.270E+02	0.713E-19	0.392	0.531 -0.015 -3.154 -0.704 4.657 2.392 0.620
	0.280E+02	0.703E-19	0.395	0.528 0.019 -3.139 -0.856 4.602 2.535 0.683
1	0.290E+02	0.693E-19	0.398	0.525 0.054 -3.121 -1.009 4.542 2.681 0.750
	0.300E+02	0.683E-19	0.402	0.521 0.089 - 3.102 - 1.165 4.477 2.830 0.820
1	0.350E+02	0.635E-19	0.421	0.505 0.272 -2.981 -1.981 4.072 3.615 1.222
	0.400E+02	0.592E-19	0.443	0.487 0.455 -2.818 -2.814 3.553 4.429 1.690
	0.450E+02	0.555E-19	0.466	0.470 0.636 -2.617 -3.645 2.927 5.250 2.218
	0.500E+02	0.524E-19	0.487	0.453 0.805 -2.387 -4.431 2.232 6.029 2.776

Table 4. Elastic scattering, $d\mu + t \rightarrow d\mu + t$

and the second second states of the second

17 Barry

Section and

and the state of the second states

	· 동안 제 48 - 1817년 191 · ···	网络帕尔斯 化乙酸	and the second	이 이 건가에서는 병화가는 것 같아요? 아파 승규가는
	e di successi di		1221-11	11-20 周期,自己的专用的问题的是自己的问题。
	E, eV	$\sigma_{22}^{tot}, \ cm^2$	$\bar{\mu}_{22}$	β_0 β_1 β_2 β_3 β_4 β_5 β_6
÷				· · · · · · · · · · · · · · · · · · ·
1	0.100E-02	0.156E-19	-0.024	0.504 -0.031 -0.011 -0.009 0.000 0.000 0.000
^a	0.200E-02	0.167E-19	-0.044	0.507 -0.054 -0.023 -0.021 0.001 0.001 0.000
-	0.300E-02	0.175E-19	-0.056	0.510 -0.066 -0.033 -0.031 0.003 0.001 0.001
• 1	0.400E-02	0.182E-19	-0.064	0.513 -0.073 -0.041 -0.040 0.004 0.002 0.001
÷.,	0.500E-02	0.189E-19	-0.069	0.515 -0.076 -0.047 -0.048 0.005 0.003 0.001

...continued

9.

8

...continued

a far her and the second s

Table 4. (continued) $d\mu + t \rightarrow d\mu + t$

Table 4. (continued) $d\mu + t \rightarrow d\mu + t$

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
E, eV	σ_{22}^{tot}, cm^2	$ar{\mu}_{22}$	β_0	eta_1	β_2	β_3	β_4	β_5	eta_6
	A.F. Orte								
0.600E-02	0.194E-19	-0.074	0.516	-0.079	-0.052	-0.056	0.006	0.003	0.002
0.700E-02	0.200E-19	-0.077	0.517	-0.080	0.057	-0.063	0.007	0.004	0.002
0.800E-02	0.205E-19	-0.080	0.518	-0.081	-0.061	-0.069	0.008	0.005	0.003
0.900E-02	0.210E-19	-0.083	0.519	-0.081	-0.064	-0.075	0.008	0.005	0.003
0.100E-01	0.214E-19	-0.085	0.520	-0.082	-0.067	-0.080	0.009	0.006	0.004
0.200E-01	0.252E-19	-0.108	0.523	-0.097	0.080	-0.115	0.015	0.010	0.007
0.300E-01	0.282E-19	-0.122	0.523	-0.109	-0.086	-0.132	0.019	0.012	0.010
0.400E-01	0.308E-19	-0.132	0.523	-0.119	-0.088	-0.142	0.022	0.014	0.011
0.500E-01	0.332E-19	-0.140	0.523	-0.128	-0.090	-0.147	0.024	0.015	0.012
0.600E-01	0.353E-19	-0.149	0.523	-0.140	-0.091	-0.150	0.027	0.016	0.013
0.700E-01	0.372E-19	-0.153	0.523	-0.146	-0.093	-0.151	0.028	0.016	0.013
0.800E-01	0.391E-19	-0.157	0.524	-0.152	-0.095	-0.152	0.030	0.017	0.013
0.900E-01	0.409E-19	-0.160	0.524	-0.157	-0.097	-0.152	0.031	0.018	0.014
0.100E+00	0.425E-19	-0.163	0.525	-0.161	-0.100	-0.152	0.032	0.018	0.014
0.120E+00	0.455E-19	-0.166	0.527	-0.167	-0.107	-0.150	0.034	0.019	0.014
0.140E+00	0.483E-19	-0.169	0.528	-0.173	-0.112	-0.149	0.036	0.020	0.014
0.160E+00	0.508E-19	-0.171	0.530	-0.177	-0.117	-0.147	0.037	0.021	0.014
0.180E+00	0.532E-19	-0.172	0.531	-0.180	-0.122	-0.146	0.038	0.022	0.014
0.200E+00	0.555E-19	-0.173	0.532	-0.182	-0.126	-0.144	0.039	0.023	0.013
0.300E+00	0.649E-19	-0.172	0.538	-0.185	-0.145	-0.139	0.041	0.025	0.013
0.400E+00	0.722E-19	-0.167	0.543	-0.181	-0.162	-0.137	0.043	0.028	0.013
0.500E+00	0.783E-19	-0.161	0.548	-0.172	-0.177	-0.137	0.044	0.030	0.013
0.600E+00	0.834E-19	-0.153	0.552	-0.160	-0.190	-0.139	0.045	0.032	0.013
0.700E+00	0.879E-19	-0.145	0.557	-0.147	-0.203	-0.143	0.045	0.034	0.014
0.800E+00	0.918E-19	-0.137	0.560	-0.132	-0.215	-0.148	0.045	0.037	0.014
0.900E+00	0.953E-19	-0.128	0.564	-0.116	-0.225	-0.155	0.045	0.039	0.015
0.100E+01	0.985E-19	-0.120	0.567	-0.101	-0.235	-0.162	0.045	0.042	0.016
0.120E+01	0.104E-18	-0.096	0.574	-0.055	-0.254	-0.184	0.042	0.047	0.018
0.140E+01	0.108E-18	-0.032	0.582	0.063	-0.269	-0.224	0.025	0.053	0.020
0.160E + 01	0.112E-18	0.009	0.585	0.141	-0.273	-0.255	0.012	0.059	0.022
0.180E+01	0.115E-18	0.010	0.587	0.147	-0.280	-0.266	0.013	0.064	0.024
0.200E+01	0.119E-18	-0.024	0.588	0.090	-0.292	-0.259	0.027	0.068	0.026
0.300E+01	0.130E-18	0.059	0.590	0.260	-0.282	-0.351	-0.004	0.092	0.037
0.320E+01	0.131E-18	0.074	0.588	0.290	-0.274	-0.368	-0.011	0.097	0.039
0.340E + 01	0.133E-18	0.088	0.586	0.320	-0.264	-0.385	-0.018	0.101	0.040
0.360E+01	0.134E-18	0.102	0.583	0.348	-0.252	-0.401	-0.026	0.105	0.042
0.380E+01	0.136E-18	0.115	0.580	0.375	-0.238	-0.416	-0.033	0.109	0.044
d the energy	1 1 1 1 1 1 1 1 1 1 1 1 1					10.1		1.1.1.	412

			2 - 14 - 1 - 1 - 1 1	1	1.11		مرد المراجع من المراجع م	· · · · · · · · · · · · · · · · · · ·		د. در ایک د ا
	E, eV	$\sigma_{22}^{tot}, \ cm^2$	$ar{\mu}_{22}$	β_0	β_1	β_2	β_3	β_4	β_5	eta_6
	0.400E+01	0.137E-18	0.128	0.576	0.401	-0.222	-0.430	-0.041	0.112	0.046
-	0.420E+01	0.139E-18	0.139	0.572	0.426	-0.206	-0.445	-0.049	0.116	0.048
	0.440E+01	0.140E-18	0.151	0.567	0.450	-0.188	-0.458	-0.057	0.120	0.050
	0.460E+01	0.141E-18	0.162	0.562	0.472	-0.169	-0.470	-0.065	0.123	0.052
	0.480E+01	0.142E-18	0.172	0.556	0.493	-0.149	-0.482	-0.073	0.126	0.054
	0.500E+01	0.143E-18	0.182	0.551	0.513	-0.127	-0.492	-0.081	0.128	0.055
	0.600E+01	0.149E-18	0.225	0.517	0.596	-0.008	-0.528	-0.118	0.138	0.063
	0.700E+01	0.153E-18	0.261	0.479	0.658	0.128	-0.548	-0.158	0.145	0.073
1	0.800E+01	0.157E-18	0.291	0.437	0.699	0.271	-0.542	-0.195	0.147	0.081
1	0.900E+01	0.161E-18	0.316	0.395	0.720	0.411	-0.512	-0.227	0.143	0.089
	0.100E+02	0.164E-18	0.339	0.355	0.727	0.547	-0.462	-0.254	0.136	0.097
	0.150E + 02	0.177E-18	0.425	0.189	0.611	1.059	0.003	-0.297	0.056	0.120
	0.200E+02	0.184E-18	0.486	0.098	0.398	1.278	0.577	-0.213	-0.035	0.128
	0.250E+02	0.187E-18	0.529	0.059	0.184	1.290	1.087	-0.032	-0.099	0.121
	0.270E + 02	0.187E-18	0.543	0.053	0.108	1.257	1.258	0.058	-0.113	0.115
	0.280E+02	0.187E-18	0.549	0.051	0.072	1.235	1.337	0.106	-0.118	0.112
	0.290E+02	0.187E-18	0.555	0.050	0.037	1.210	1.411	0.156	-0.121	0.108
	0.300E+02	0.187E-18	0.560	0.049	0.004	1.182	1.480	0.207	-0.122	0.105
	0.350E + 02	0.184E-18	0.581	0.055	-0.139	1.010	1.759	0.482	-0.105	0.084
	0.400E+02	0.180E-18	0.595	0.068	-0.247	0.804	1.934	0.773	-0.048	0.063
	0.450E+02	0.175E-18	0.605	0.086	-0.323	0.587	2.022	1.061	0.042	0.045
	0.500E + 02	0.169E-18	0.612	0.104	-0.375	0.368	2.038	1.340	0.163	0.034
`	1.111111111111111111111111111111111111	Step Figure 18 6.	-31 1 . r	31 4 K	se en ta	are à t	and the	to gi le	1. Mar	a di fari he

12.2 10.42

12.13

11

영양 관계 전쟁 소문 전쟁 문제로

中产的复数进行任务委任职制

网络金属 网络马斯特斯马克 建合物 计字符工具 化合金合成合金

10

... continued

Table 5. Elastic scattering, $d\mu + p \rightarrow d\mu + p$

Table 5. (continued) $d\mu + p \rightarrow d\mu + p$

13

							A.1						T				· · · · · · · · · · · · · · · · · · ·			
E, eV	$\sigma_{11}^{tot}, \ cm^2$	$ar{\mu}_{11}$	eta_{0}	β_1	β_2	β_3 β_4	eta_5 eta_6	. 1			E, eV	$\sigma_{11}^{tot}, \ cm^2$	$\bar{\mu}_{11}$	β_0	β_1	β_2	β_3	β_4	β_5	eta_6
0.100D.00	0.02CE 10	0.005	0.400	0.007	0.004.0	000 0 000		÷ in			· 11. 化学的分子学	n to known far t	1998년 ³¹			장산국의	$(1,1) \in \mathbb{R}^{n}$	行業権	11576	
0.100E-02	0.236E-19	0.005	0.499	0.007	0.004 0					a.	0.200E+01	0.121E-20	0.147	0.220	-0.645	-0.359	0.610	1.694	1.166	0.430
0.200E-02	0.221E-19	0.011	0.498	0.010	0.005 0					4	0.300E+01	0.214E-20	-0.216	0.606	-0.583	-1.185	-0.308	1.182	1.037	0.371
0.300E-02	0.217E-19	0.010	0.498	0.023	0.007 0						0.400E+01	0.349E-20	-0.208	0.747	-0.276	-1.361	-0.686	0.819	0.876	0.298
0.400E-02	0.213E-19	0.020	0.497	0.030	0.008 0						0.500E+01	0.497E-20	-0.141	0.808	-0.008	-1.410	-0.919	0.622	0.810	0.266
0.500E-02	0.209E-19	0.024	0.497	0.030							0.600E+01	0.651E-20	-0.072	0.839	0.207	-1.430	-1.084	0.512	0.782	0.245
0.600E-02	0.207E-19	0.027	0.490	0.041	0.012 0			'		•	0.700E+01	0.808E-20	-0.012	0.857	0.384	-1.435	-1.223	0.443	0.773	0.232
0.700E-02	0.202E-19	0.031	0.490	0.045	0.013 0	.001 0.00		<u>'</u>			0.800E+01	0.969E-20	0.038	0.869	0.534	-1.450	-1.355	0.412	0.783	0.224
0.800E-02	0.208E-19	0.035	0.495	0.049	0.014 0			<u>, </u>			0.900E+01	0.113E-19	0.079	0.877	0.663	-1.464	-1.480	0.400	0.800	0.219
0.900E-02	0.207E-19	0.035	0.495	0.052	0.010 0	.001 0.00					0.100E+02	0.130E-19	0.111	0.882	0.774	-1.482	-1.601	0.406	0.824	0.215
0.100E-01	0.199E-19	0.038	0.494	0.000	0.017 0						0.150E+02	0.224E-19	0.175	0.898	1.147	-1.685	-2.183	0.675	0.990	0.201
0.200E-01	0.182E-19	0.050	0.490	0.082	0.030 0	.002 0.00			1		0.200E+02	0.353E-19	0.138	0.904	1.306	-2.056	-2.669	1.275	1.171	0.185
0.300E-01	0.108E-19	0.070	0.480	0.103	0.042 0	.004 0.00		212			0.250E+02	0.566E-19	0.059	0.891	1.287	-2.558	-2.914	2.196	1.282	0.155
0.400E-01	0.167E-19	0.081	0.483	0.118	0.001 0						0.300E+02	0.975E-19	-0.009	0.840	1.105	-3.017	-2.757	3.247	1.250	0.117
0.500E-01	0.150E-19	0.095	0.479	0.137	0.002 0						0.350E+02	0.182E-18	-0.029	-0.746	0.803	-3.262	-2.148	4.152	1.033	0.079
0.600E-01	0.150E-19	0.103	0.477	0.149	0.009 0	0110.00		<u>, </u>			0.400E+02	0.325E-18	0.005	0.629	.0.471	-3.229	-1.265	4.698	0.691	0.055
0.700E-01	0.141E-19	0.114	0.474	0.104	0.0780	011 0.00				e is	0.450E+02	0.442E-18	0.072	0.516	0.178	-2.991	-0.335	4.873	0.308	0.049
0.800E-01	0.134E-19	0.124	0.471	0.178	0.087 0	013 0.00		2			0.470E+02	0.451E-18	0.103	0.475	0.079	-2.865	0.011	4.861	0.159	0.052
0.900E-01	0.129E-19	0.134	0.408	0.191	0.095.0	015 0.00		20			0.490E+02	0.440E-18	0.134	0.438	-0.008 -	-2.730	0.335	4.817	0.017	0.058
0.100E+00	0.125E-19	0.142	0.465	0.202	0.102 0			J .			0.500E+02	0.429E-18	0.149	0.421	-0.047 -	-2.660	0.488	4.784 -	0.052	0.062
0.120E+00	0.116E-19	0.160	0.460	0.220	0.118 0	0.022 0.00	4 0.000 0.000	2			0.510E+02	0.417E-18	0.164	0.405	-0.084 -	-2.591	0.634	4.746 -	0.118	0.066
0.140E+00	0.108E-19	0.177	0.454	0.249	0.1350	028 0.00		2			0.530E+02	0.390E-18	0.193	0.375	-0.151	-2.452	0.908	4.656 -	0.245	0.076
0.160E+00	0.101E-19	0.194	0.448	0.272	0.152 0	0.034 0.00		J .			0.550E+02	0.362E-18	0.220	0.349	-0.209	-2.315	1.158	4.552 -	0.363	0.088
0.180E+00	0.955E-20	0.210	0.442	0.291	0.168 0	0.040 0.00	8 0.000 0.00				0.135E+03	0.150E-18	0.360	0.151	-0.666	0.980	3.772 -	2.574 -	2.466	3.757
0.200E+00	0.900E-20	0.226	0.436	0.312	0.185 0	.046 0.01					0.140E+03	0.148E-18	0.335	0.158	-0.728	1.076	3.739 -	3.146 -	2.364	4.291
0.300E+00	0.689E-20	0.302	0.405	0.401	0.274 0	.087 0.01	9 0.000 0.00	J .		·	0.145E+03	0.149E-18	0.326	0.154	-0.707	1.232	3.514 -	3.832 -	2.128	4.909
0.400E+00	0.541E-20	0.375	0.369	0.478	0.373 0	.141.0.03	2 0.000 0.00).		•	0.150E+03	0.151E-18	0.325	0.149	-0.669	1.398	3.211 -	4.539 -	1.795	5.547
0.500E+00	0.436E-20	0.444	0.330	0.539	0.479 0	.211 0.05	1 0.000 0.00				0.155E+03	0.155E-18	0.330	0.144	-0.613	1.562	2.823 -	5.252 -	1.368	6.200
0.600E+00	0.356E-20	0.512	0.287	0.588	0.595.0	.301 0.07	5 0.000 0.00) [::-			0.160E+03	0.160E-18	0.339	0.138	-0.548	1.717	2.372 -	5.933 -	0.857	6.837
0.700E+00	0.292E-20	0.575	0.241	0.616	0.715 0	$0.410\ 0.10$	6 0.000 0.00				0.165E+03	0.164E-18	0.352	0.132	-0.469	1:851	1.860 -	6.566 -	0.278	7.450
0.800E+00	0.246E-20	0.631	0.192	0.621	0.837 0	.541 0.14	6.0.000.0.00	0. 2.			0.170E+03	0.170E-18	0.370	0.123	-0.382	1.962	1.307 -	7.092	0.356	7.987
0.900E+00	0.208E-20	0.673	0.146	0.597	0.947 0	0.686 0.19	2 0.000 0.00			1	0.175E+03	0.174E-18	0.388	0.122	-0.287	2.033	0.716 -	7.588	1.026	8.526
0.100E+01	0.182E-20	0.717	0.097	0.395	0.712 0	0.866 0.72	7 0.376 0.14	3			0.180E+03	0.179E-18	0.409	0.118	-0.190	2.087	0.119 -	7.987	1.707	8.988
0.120E+01	0.143E-20	0.727	0.025	0.224	0.700 1	.029 1.05	1 0.582 0.22	J		· .	0.185E+03	0.182E-18	0.431	0.114	-0.095	2.109	-0.460 -	8.275	2.372	9.364
0.140E+01	0.121E-20	0.653	0.000	-0.022	0.549 1	.092 1.36	9 0.807 0.30	2		j	A State of	Sat States	e ta La Andar	in an mi	va la la	144.0				
0.100E+01	0.113E-20	0.500	0.035	-0.285	0.285 1	.021 1.59	0 0.986 0.36											가루가 관 같다. 기초 - 다. ㅋ		最高级
0.180E+01	0.114E-20	0.320	0.117	-0.504	-0.052 0	0.839 1.70	4 1.120 0.41	5 ···)	n ta fa sta	ni sun sun sun sun. Ti sun sun sun sun	n an an Santa A an an Antaire	- 11 - 1 11 - 5		n triteri. Ta di se	(148) 일종 (148) 전종	segund og e Generalise	भाषाः स्टिप्टि स्वयः स्वयः	en de ser al para. Nomena

 $\dots continued$

Table 7. (continued) $p\mu + d \rightarrow d\mu + p$

Table 6. Isotopic exchange, $d\mu + p \rightarrow p\dot{\mu} + d$, $E_{thr} = 134.709 \ eV$.

$E, \ eV$	$\sigma_{12}^{tot}, \ cm^2$	$ar{\mu}_{12}$	$eta_0 eta_1 eta_2 eta_3 eta_4 eta_5 eta_6$
			· 사이가 제품 · · · · · · · · · · · · · · · · · ·
$E_{thr} + 0.10 \text{E-}02$	0.571E-22	0.015	0.500 0.022 0.000 0.000 0.000 0.000 0.000
$E_{thr} + 0.50 \text{E}-02$	0.127E-21	0.027	$0.500\ 0.040\ 0.001\ 0.000\ 0.000\ 0.000\ 0.000$
E_{thr} + 0.10E-01	0.179E-21	0.039	0.499 0.058 0.002 0.000 0.000 0.000 0.000
E_{thr} + 0.50E-01	0.392E-21	0.087	0.497 0.131 0.009 0.000 0.000 0.000 0.000 0.000
$E_{thr} + 0.10E + 00$	0.547E-21	0.124	0.494 0.185 0.018 0.001 0.000 0.000 0.000
$E_{thr} + 0.50 \text{E} + 00$	0.118E-20	0.270	$0.470\ 0.403\ 0.089\ 0.003\ 0.002\ 0.000\ 0.000$
$E_{thr} + 0.10E + 01$	0.168E-20	0.359	$0.441 \ 0.536 \ 0.174 \ \ 0.006 \ \ \ 0.007 \ \ 0.000 \ \ 0.000$
$E_{thr} + 0.20E + 01$	0.248E-20	0.442	$\begin{bmatrix} 0.391 & 0.658 & 0.312 & 0.008 & 0.026 & 0.000 & 0.002 \end{bmatrix}$
$E_{thr} + 0.50E + 01$	0.442E-20	0.463	0.296 0.700 0.539 -0.009 0.107 -0.001 0.022
$E_{thr} + 0.10E + 02$	0.694E-20	0.382	$0.223\ 0.637\ 0.658\ -0.106$ $0.181\ 0.000\ 0.149$
E_{thr} + 0.15E+02	0.887E-20	0.310	0.187 0.631 0.743 -0.279 0.008 0.004 0.449
$E_{thr} + 0.20E + 02$	0.104E-19	0.257	$0.163\ 0.683\ 0.922\ -0.502\ -0.541\ 0.010\ 0.969$
$E_{thr} + 0.25E + 02$	0.117E-19	0.212	$0.146\ 0.764\ 1.239\ \text{-}0.753\ \text{-}1.518\ 0.014\ 1.711$
$E_{thr} + 0.30E + 02$	0.130E-19	0.179°	$0.133\ 0.851\ 1.706\ -0.977$ $-2.899\ 0.007\ 2.650$
$E_{thr} + 0.35E + 02$	0.141E-19	0.139	$0.118 \ 0.898 \ 2.321 \ \text{-}1.136 \ \ \text{-}4.651 \ \text{-}0.018 \ 3.771$
$E_{thr} + 0.40 \text{E} + 02$	0.156E-19	0.130	$0.112\ 0.958\ 2.964\ -1.225\ -6.470\ -0.067\ 4.859$
$E_{thr} + 0.45E + 02$	0.169E-19	0.111	$0.104 \ 0.953 \ 3.646 \ \text{-} 1.210 \text{-} 8.347 \ \text{-} 0.142 \ 5.948$
$E_{thr} + 0.50E + 02$	0.182E-19	0.094	0.099 0.908 4.297 -1.105 -10.114 -0.242 6.943

Table 7. Isotopic exchange, $p\mu + d \rightarrow d\mu + p$

영화 프라이어 -			
<i>E</i> , <i>eV</i>	$\sigma_{21}^{tot}, \ cm^2$	$ar{\mu}_{21}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
0.100E-02	0.724E-17	0.015	0.500 0.022 0.000 0.000 0.000 0.000 0.000
0.200E-02	0.511E-17	0.020	0.500 0.030 0.000 0.000 0.000 0.000 0.000
0.300E-02	0.416E-17	0.024	0.500 0.035 0.001 0.000 0.000 0.000 0.000
0.400E-02	0.360E-17	0.027	0.500 0.040 0.001 0.000 0.000 0.000 0.000
0.500E-02	0.322E-17	0.029	0.500 0.044 0.001 0.000 0.000 0.000 0.000
0.600E-02	0.294E-17	0.031	0.500 0.047 0.001 0.000 0.000 0.000 0.000
0.700E-02	0.272E-17	0.033	0.500 0.050 0.001 0.000 0.000 0.000 0.000
0.800E-02	0.254E-17	0.035	0.500 0.053 0.001 0.000 0.000 0.000 0.000
0.900E-02	0.239E-17	0.037	0.499 0.056 0.002 0.000 0.000 0.000 0.000

					· ·		·		18 28 P	10.00
	$E, \ eV$	$\sigma_{21}^{tot}, \ cm^2$	$\bar{\mu}_{21}$	$oldsymbol{eta}_{0}$	$oldsymbol{eta_1}$	β_2	eta_3	eta_4	eta_5	$oldsymbol{eta}_6$
	0.100E-01	0.227E-17	0.039	0.499	0.058	0.002	0.000	0.000	0.000	0.000
	0.200E-01	0.159E-17	0.055	0.499	0.082	0.003	0.000	0.000	0.000	0.000
÷	0.300E-01	0.129E-17	0.068	0.498	0.101	0.005	0.001	0.000	0.000	0.000
	0.400E-01	0.112E-17	0.078	0.498	0.117	0.007	0.001	0.000	0.000	0.000
	0.500E-01	0.994E-18	0.087	0.497	0.131	0.009	0.001	0.000	0.000	0.000
	0.600E-01	0.905E-18	0.096	0.497	0.143	0.010	0.001	0.000	0.000	0.000
	0.700E-01	0.836E-18	0.103	0.496	0.155	0.012	0.001	0.000	0.000	0.000
	0.800E-01	0.780E-18	0.111	0.495	0.165	0.014	0.001	0.000	0.000	0.000
	0.900E-01	0.734E-18	0.117	0.495	0.175	0.016	0.001	0.000	0.000	0.000
	0.100E+00	0.694E-18	0.124	0.494	0.185	0.017	0.001	0.000	0.000	0,000
	0.120E+00	0.632E-18	0.136	0.493	0.202	0.021	0.001	0.000	0.000	0.000
	0.140E+00	0.583E-18	0.146	0.492	0.219	0.025	0.001	0.000	0.000	0.000
	0.160E+00	0.544E-18	0.156	0.491	0.233	0.028	0.002	0.001	0.000	0.000
	0.180E+00	0.511E-18	0.166	0.489	0.248	0.032	0.002	0.001	0.000	0.000
	0.200E+00	0.484E-18	0.175	0.488	0.261	0.035	0.002	0.001	0.000	0.000
	0.300E+00	0.392E-18	0.213	0.482	0.318	0.053	0.002	0.001	0.000	0.000
	0.400E+00	0.338E-18	0.244	0.476	0.364	0.071	0.003	0.002	0.000	0.000
	0.500E+00	0.302E-18	0.270	0.470	0.403	0.089	0.003	0.002	0.000	0.000
	0.600E + 00	0.275E-18	0.293	0.464	0.436	6 0.107	0.004	0.003	0.000	0.000
	0.700E+00	0.255E-18	0.312	0.458	0.466	0.124	0.004	0.004	0.000	0.000
	0.800E+00	0.239E-18	0.330	0.452	0.492	2 0.141	0.005	6 0.005	0.000	0.000
	0.900E+00	0.226E-18	0.345	0.446	0.515	5 0.157	0.005	5 0.006	0.000	0.00
	0.100E+01	0.215E-18	0.359	0.441	0.536	$5\ 0.174$	0.000	6 0.007	0.000	0.00
	0.120E+01	0.198E-18	0.383	0.430	0.571	0.204	0.000	6 0.010	0.000	0.00
	0.140E+01	0.185E-18	0.403	0.419	0.600	0.234	0.007	7 0.014	0.000	0.00 (
	0.160E+01	0.175E-18	0.419	0.409	0.623	3 0.261	0.008	3 0.018	0.000	0.00
3.1	0.180E+01	0.166E-18	0.431	0.400	0.642	2 0.287	0.008	3 0.022	0.000	0.00 (
	0.200E+01	0.159E-18	0.442	0.391	0.658	3 0.312	0.008	3 0.026	0.000	0.00
	0.300E+01	0.137E-18	0.469	0.351	L 0.700	0.414	0.00	6 0.051	0.000	0.00
· •	0.400E+01	0.125E-18	0.471	0.320	0.70	7 0.487	0.00	0.079	0.000) 0.01
	0.500E+01	0.116E-18	0.463	0.296	6 0.700	0.539	-0.009	$9\ 0.107$	-0.00	1 0.02
	0.600E+01	0.110E-18	0.449	0.276	6 0.68	7 0.577	-0.02	2 0.133	-0.00	1 0.03
	0.700E+01	0.105E-18	0.433	0.259	0.67	3 0.605	5 -0.03	8 0.155	-0.00	1 0.05
	0.800E+01	0.101E-18	0.416	0.24	6 0.659	9 0.626	5 -0.05	7 0.171	-0.00	1 0.08
	0.900E+01	0.977E-19	0.399	0.23	1 0.64'	7 0.643	3 -0.08	0 0.180	0.00	U 0.1 1

... continued

15

... continued

Table 8. (continued) $p\mu + d \rightarrow p\mu + d$

Table 7. (continued) $p\mu + d \rightarrow d\mu + p$

A			
	- 2 ⁰ - 10 ²	1	
E, eV	σ_{21}^{tot}, cm^2	$\bar{\mu}_{21}$	β_0 β_1 β_2 β_3 β_4 β_5 β_6
0.100E+02	0.947E-19	0.382	0.223 0.637 0.658 -0.106 0.181 0.000 0.149
0.150E+02	0.835E-19	0.310	0.187 0.631 0.743 -0.279 0.009 0.004 0.448
0.200E + 02	0.757E-19	0.257	$0.163\ 0.682\ 0.921\ -0.501\ -0.539\ 0.010\ 0.966$
0.250E+02	0.708E-19	0.212	0.146 0.763 1.238 -0.752 -1.515 0.014 1.708
0.300E + 02	0.674E-19	0.179	$0.133\ 0.851\ 1.705\ -0.976\ -2.895\ 0.007\ 2.647$
0.350E+02	0.647E-19	0.139	0.118 0.897 2.319 -1.135 -4.644 -0.018 3.765
0.400E+02	0.643E-19	0.130	0.112 0.958 2.962 -1.224 -6.463 -0.067 4.853
0.450E+02	0.639E-19	0.111	$0.104\ 0.953\ 3.645\ -1.210\ -8.345\ -0.142\ 5.946$
0.500E + 02	0.637E-19	0.094	0.099 0.908 4.296 -1.105 -10.111 -0.242 6:941
이 문화 방송	8 (494) (1 9	1. 1	
	n lat e pla		
	t, l'an be	fa e tas	그는 그 같은 물건가 많이 물건이 많이 있는 것
, 글 1, 글 문 중 중 ()			

	Table 8	. Elastic	ic scattering, $p\mu + d \rightarrow p\mu + d$.
		ta barra	and the second
신철의 전문을		19 J. 19	1、1211年4月1日日、日本日本市内市
E, eV	$\sigma_{22}^{rot}, \ cm^2$	$\bar{\mu}_{22}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
<u>) 1994 a 1964</u>	t off designs	1. 381 4	3. 新加速的运动者或组织者等的关键。并且在中国人的。
0.100E-02	0.601E-19	-0.007	0.501 -0.009 -0.003 -0.004 0.000 0.000 0.000
0.200E-02	0.609E-19	-0.011	0.502 -0.013 -0.006 -0.007 0.000 0.000 0.000
0.300E-02	0.614E-19	-0.014	0.503 -0.016 -0.009 -0.009 0.000 0.000 0.000
0.400E-02	0.619E-19	-0.016	0.504 -0.017 -0.011 -0.012 0.000 0.000 0.000
0.500E-02	0.624E-19	-0.018	0.504 -0.018 -0.013 -0.014 0.000 0.000 0.000
0.600E-02	0.629E-19	-0.019	0.505 -0.019 -0.014 -0.015 0.001 0.000 0.000
0.700E-02	0.631E-19	-0.020	0.505 -0.020 -0.015 -0.017 0.001 0.000 0.000
0.800E-02	0.635E-19	-0.021	0.505 -0.020 -0.017 -0.019 0.001 0.000 0.000
0.900E-02	0.638E-19	-0.022	0.506 -0.021 -0.018 -0.020 0.001 0.000 0.000
0.100E-01	0.641E-19	-0.023	0.506 -0.021 -0.018 -0.022 0.001 0.001 0.000
0.200E-01	0.665E-19	-0.032	0.508 -0.028 -0.024 -0.032 0.002 0.001 0.001
0.300E-01	0.684E-19	-0.038	0.508 -0.035 -0.026 -0.038 0.002 0.001 0.001
0.400E-01	0.699E-19	-0.044	0.509 -0.041 -0.028 -0.042 0.003 0.002 0.001
0.500E-01	0.712E-19	-0.048	0.509 -0.046 -0.029 -0.045 0.003 0.002 0.001
0.600E-01	0.724E-19	-0.053	0.509 -0.051 -0.030 -0.047 0.004 0.002 0.001
0.700E-01	0.735E-19	-0.056	0.509 -0.056 -0.031 -0.049 0.004 0.002 0.002

and the second second	میکیمور (میرود) رواند ایرانی ایرانی			N. 191		la ser esta la composición de la compos			alay di k Katalah
an a					1.2494		s a fr	er e ge	
$E, \epsilon V$	$\sigma_{22}^{tot}, \ cm^2$	$\bar{\mu}_{22}$	β_0	β_1	β_2	β_3	β_4	β_5	β_6
	a da ang ang ang ang ang ang ang ang ang an	$\mathcal{L}^{(1)} \to \mathcal{L}^{(1)}$		511 190	serve processione		er seğe	د. محمد معنون المراجع محمد 1997 م	
0.800E-01	0.747E-19	-0.060	0.509 -	0.061	-0.032	-0.050	0.005	0.002	0.002
0.900E-01	0.756E-19	-0.063	0.509 -	0.065	-0.032	-0.051	0.005	0.002	0.002
0.100E+00	0.765E-19	-0.066	0.510 -	0.069	-0.033	-0.051	0.006	0.002	0.002
0.120E+00	0.782E-19	-0.071	0.510 -	0.076	-0.036	-0.052	0.006	0.003	0.002
0.140E+00	0.797E-19	-0.075	0.511 -	0.083	-0.038	-0.053	0.007	0.003	0.002
0.160E+00	0.812E-19	-0.079	0.511 -	0.088	-0.040	-0.053	0.008	0.003	0.002
0.180E+00	0.825E-19	-0.083	0.512 -	0.094	-0.041	-0.053	0.008	0.003	0.002
0.200E + 00	0.837E-19	-0.086	0.512 -	0.099	-0.043	-0.053	0.009	0.004	0.002
0.300E+00	0.888E-19	-0.098	0.514 -	0.117	-0.050	-0.053	0.011	0.004	0.002
0.400E+00	0.930E-19	-0.105	0.516 -	0.129	-0.056	-0.052	0.013	0.005	0.002
0.500E+00	0.963E-19	-0.110	0.517 -0	0.137	-0.061	-0.052	0.015	0.006	0.003
0.600E + 00	0.990E-19	-0.113	0.518 -0	0.141	-0.066	-0.052	0.016	0.006	0.003
0.700E+00	0.101E-18	-0.115	0.520 -	0.144	-0.071	-0.053	0.018	0.007	0.003
0.800E+00	0.103E-18	- 0. 115	0.521 -	0.144	-0.075	-0.054	0.019	0.008	0.003
0.900E+00	0.105E-18	-0.116	0.522 -0	0.144	-0.079	-0.055	0.020	0.009	0.003
0.100E+01	0.106E-18	-0.115	0.523 -0	0.143	-0.084	-0.057	0.021	0.009	0.004
0.120E+01	0.108E-18	-0.113	0.525 -0	0.138	-0.092	-0.061	0.024	0.011	0.004
0.140E+01	0.110E-18	-0.111	0.527 -0	D.133	-0.099	-0.065	0.026	0.013	0.005
0.160E+01	0.111E-18	-0.108	0.529 -0	0.127	-0.105	-0.069	0.028	0.014	0.005
0.180E+01	0.112E-18	-0.105	0.530 -0	0.121	-0.111	-0.073	0.030	0.016	0.006
0.200E+01	0.113E-18	-0.102	0.532 -0	D.115	-0.116	-0.076	0.031	0.017	0.007
0.300E+01	0.116E-18	-0.081	0.537 -0	0.078	-0.139	-0.092	0.039	0.025	0.010
0.400E+01	0.117E-18	-0.055	0.542 -0	0.031	-0.156	-0.110	0.043	0.033	0.013
0.500E+01	0.116E-18	-0.026	0.545	0.021	-0.168	-0.129	0.044	0.041	0.016
0.600E+01	0.115E-18	0.003	0.548	0.073	-0.178	-0.149	0.043	0.049	0.020
0.700E+01	0.114E-18	0.031	0.550	0.124	-0.184	-0.170	0.040	0.058	0.025
0.800E+01	0.113E-18	0.058	0.551	0.174	-0.186	-0.192	0.034	0.066	0.029
0.900E+01	0.111E-18	0.085	0.551	0.223	-0.184	-0.215	0.027	0.076	0.035
0.100E+02	0.110E-18	0.110	0.550	0.271	-0.177	-0.238	0.016	0.085	0.041
0.150E+02	0.102E-18	0.213	0.534	0.465	-0.096	-0.333	-0.067	0.127	0.081
0.200E+02	0.946E-19	0.284	0.506 (D.579	0.038	-0.362	-0.188	0.149	0.132
0.250E + 02	0.882E-19	0.333	0.473 (0.621	0.193	-0.307	-0.324	0.146	0.192
0.300E+02	0.830E-19	0.367	0.439	0.602	0.341	-0.167	-0.449	0.114	0.257
0.350E+02	0.803E-19	0.388	0.410	0.529	0.453	0.046	-0.529	0.057	0.317
0.400E+02	0.748E-19	0.408	0.379 (0.429	0.549	0.315	-0.591	-0.015	0.395
0.450E+02	0.717E-19	0.420	0.353	D.306	0.586	0.604	-0.571	-0.089	0.461
0.500E+02	0.692E-19	0.430	0.331	0.177	0.583	0.890	-0.506	-0.155	0.534

... continued

16

17

- 1. A. A. A.

Table 9. Elastic scattering, $t\mu + p \rightarrow t\mu + p$

Table 9. (continued) $t\mu + p \rightarrow t\mu + p$

19

										1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- i r		r	· · · · · · · · · · · · · · · · · · ·							
	E, eV	σ_{11}^{tot}, cm^2	$ar{\mu}_{11}$	β_0	eta_1	β_2	β_3 μ	β_4 β_5	$oldsymbol{eta}_6$					E, eV	$\sigma_{11}^{tot}, \ cm^2$	$\bar{\mu}_{11}$	β_0	β_1	β_2	β_3	eta_4	eta_5	β_6
	0.100E-02	0.458E-19	0.005	0.495	-0.001	0.015 0.	014 0.0	000.0.000	0.000					0.200E+01	0.237E-20	0.768	0.023	0.188	0.599	1.055	1 182	0 773	0.284
	0.200E-02	0.452E-19	0.010	0.495	0.005	0.016 0.	015 0.0	000.000	0.000	1			· .	0.300E+01	0.165E-20	0.459	0.157	-0.475	-0.519	0.718	2.154	1.711	0.204
	0.300E-02	0.446E-19	0.013	0.494	0.011	0.017 0.	015 0.0	000.0 000	0.000		4			0.400E+01	0.208E-20	0.055	0.559	-0.537	-1.661	-0.341	2.011	1.924	0.646
	0.400E-02	0.437E-19	0.017	0.494	0.015	0.018 0.	016 0.0	000.000	0.000				÷.,	0.500E+01	0.300E-20	-0.066	0.794	-0.242	-2.068	-1.018	1.577	1.758	0.563
	-0.500E-02	0.434E-19	0.019	0.494	0.019	0.018 0.	016 0.0	000.000	0.000		1			0.600E+01	0.420E-20	-0.060	0.901	0.061	-2.176	-1.397	1.274	1.603	0.487
	0.600E-02	0.431E-19	0.022	0.494	0.023	0.019 0.	016 0.0	01 0.000	0.000					0.700E+01	0.559E-20	-0.022	0.952	0.305	-2.204	-1.635	1.105	1.500	0.430
	0.700E-02	0.414E-19	0.024	0.493	0.026	0.020 0.	017 0.0	01 0.000	0.000					0.800E+01	0.711E-20	0.019	0.978	0.501	-2.214	-1.818	1.019	1.442	0.390
• •	0.800E-02	0.420E-19	0.026	0.493	0.029	0.021_0.	017 0.0	001 0.000	0.000	ŕ.,,				0.900E + 01	0.875E-20	0.053	0.992	0.658	-2.220	-1.970	0.984	1.409	0.360
	0.900E-02	0.419E-19	0.028	0.493	0.031	0.021 0.	.018 0.0	01 0.000	0.000	· .				0.100E+02	0.105E-19	0.081	0.999	0.787	-2.239	-2.106	0.996	1.396	0.336
i.	0.100E-01	0.417E-19	0.030	0.492	0.033	0.022 0.	018 0.0	01 0.000	0.000		11 - 12 - 34 - 12 - 12			0.150E+02	0.221E-19	0.118	1.003	1.141	-2.517	-2.643	1.497	1.449	0.254
1. A. A. A.	0.200E-01	0.383E-19	0.043	0.490	0.051	0.029 0.	.022 0.0	01 0.001	0.000					0.200E + 02	0.427E-19	0.057	0.972	1.180	-2.990	-2.886	2.488	1.487	0.188
2	0.300E-01	0.372E-19	0.053	0.488	0.064	0.035 0.	025 0.0	02 0.001	0.000	1 · ·				0.250E+02	0.891E-19	-0.012	0.889	0.982	-3.410	-2.620	3.654	1.336	0.121
~	0.400E-01	0.360E-19	0.062	0.486	0.075	0.040 0.	029 0.0	03 0.001	0.000	1.			1	0.300E+02	0.204E-18	-0.029	0.754	0.647	-3.533	-1.844	4.570	0.972	0.068
÷.,	0.500E-01	0.343E-19	0.070	0.484	0.085	0.045 0.	.033 0.0	03 0.001	0.000	1	•			0.350E+02	0.408E-18	0.015	0.604	0.299	-3.333	-0.814	5.004	0.494	0.043
	0.600E-01	0.327E-19	0.078	0.482	0.095	0.050 0.	.037 0.0	004 0.002	0.001				·. •	0.360E+02	0.441E-18	0.028	0.575	0.237	-3.264	-0.607	5.034	0.396	0.042
1	0.700E-01	0.315E-19	0.086	0.481	0.104	0.055 0.	.041 0.0	05 0.002	0.001				÷	0.370E+02	0.464E-18	0.043	0.548	0.178	-3.190	-0.404	5.048	0.301	0.042
2	0.800E-01	0.303E-19	0.093	0.479	0.111	0.060 0.	.045 0.0	06 0.002	0.001				Ъ.,	0.380E+02	0.476E-18	0.058	0.521	0.122	-3.111	-0.206	5.047	0.207	0.043
ŝ,	0.900E-01	0.297E-19	0.099	0.477	0.119	0.064 0.	.048 0.0	07 0.002	0.001	1				0.390E+02	0.477E-18	0.074	0.496	0.070	-3.028	-0.014	5.034	0.116	0.044
ŝ,	0.100E+00	0.288E-19	0.105	0.475	0.125	0.069 0.	.052 0.0	008 0.003	0.001	1.1			•	0.400E + 02	0.470E-18	0.090	0.472	0.021	-2.942	0.171	5.009	0.027	0.047
Sec. 10	0.120E+00	0.270E-19	0.117	0.472	0.139	0.078 0.	.060 0.0	010 0.004	0.001	4				0.410E + 02	0.456E-18	0.106	0.450	-0.025	-2.855	0.348	4.975	-0.059	0.051
1	0.140E+00	0.257E-19	0.129	0.468	0.152	0.087 0.	.067 0.0	012 0.004	0.002	r t			-8	0.420E+02	0.438E-18	0.122	0.428	-0.067	-2.768	0.518	4.933	-0.141	0.055
2	0.160E+00	0.245E-19	0.140	0.465	0.163	0.096 0.	.075 0.0	014 0.005	0.002	1.1			71	0.430E+02	0.418E-18	0.138	0.408	-0.106	-2.680	0.680	4.883	-0.221	0.060
	0.180E+00	0.234E-19	0.151	0.461	0.174	0.105 0.	.083 0.0	017 0.006	0.002	1.5			-2	0.440E+02	0.398E-18	0.154	0.389	-0.142	-2.592	0.834	4.828	-0.298	0.066
ġ	0.200E+00	0.223E-19	0.161	0.458	0.185	0.114 0.	.091 0.0	019 0.007	0.003				14,	0.450E + 02	0.378E-18	0.169	0.371	-0.176	-2.505	0.980	4.767	-0.371	0.073
	0.300E+00	0.182E-19	0.210	0.440	0.232	0.157 0.	.130 0.0	035 0.014	0.005				· .	0.500E + 02	0.297E-18.	0.238	0.298	-0.307	-2.096	1.601	4.420	-0.693	0.114
	0.400E+00	0.153E-19	0.255	0.421	0.270	0.200 0.	.171 0.0	053 0.023	0.009		(24 st)		1	0.183E+03	0.192E-18	0.421	0.069	-0.043	3.096	-0.564 -	10.356	2.364	10.296
	0.500E + 00	0.130E-19	0.301	0.401	0.308	0.246 0.	.216 0.0	077 0.034	0.013				- 1 -	0.185E+03	0.191E-18	0.421	0.071	-0.030	3.123	-0.755 -	10.573	2.602	10.518
	0.600E + 00	0.111E-19	0.344	0.379	0.338	0.291 0.	262 0.1	05 0.047	0.018		1 1 2 2 2 3			0.190E+03	0.192E-18	0.430	0.073	0.039	3.133	-1.287 -	10.920	3.216	10.968
ŝ,	0.700E+00	0.963E-20	0.381	0.359	0.359	0.332 0	.308 0.1	35 0.063	0.024		an the second			0.203E+03	0.194E-18	0.470	0.072	0.205	3.048	-2.418 -	11.275	4.553	11.669
1	0.800E+00	0.839E-20	0.425	0.334	0.384	0.380 0.	.362 0.1	73 0.083	0,032	14				0.213E+03	0.193E-18	0.504	0.072	0.320	2.929	-3.146 -	11.255	5.423	11.922
	0.900E+00	0.739E-20	0.466	0.309	0.403	0.427 0.	.417 0.2	217 0.107	0.041				1	0.223E+03	0.189E-18	0.535	0.072	0.415	2.797	-3.728 -	11.110	6.124	12.027
	0.100E+01	0.650E-20	0.504	0.283	0.414	0.469 0.	.473 0.2	265 0.135	0.051	:			· '	0.233E+03	0.184E-18	0.562	0.072	0.494	2.661	-4.193 -	10.887	6.685	12.027
	0.120E+01	0.511E-20	0.580	0.228	0.423	0.552 0	.596 0.3	886 0.208	0.078	$r \sim 10^{\circ}$													
4	0.140E+01	0.409E-20	0.648	0.171	0.408	0.616 0.	.723 0.5	535 0.303	0.113							N. GAR							
41 	0.160E + 01	0.335E-20	0.708	0.114	0.365	0.655 0.	.852 0.7	24 0.432	0.162							in katat	MARE.		154.11				
1	0.180E+01	0.278E-20	0.749	0.063	0.293	0.657 0.	.968 0.9	038 0.584	0.215			· · · · ·		S. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		1.5							

18

... continued

Table 10. Isotopic exchange, $t\mu + p \rightarrow p\mu + t$, $E_{thr} = 182.751 \ eV$.

and the second second second second						· · · · · · · · · · · · · · · · · · ·			
	and the second sec	100 C				8 A 4 19	· · · · · · · · · · · · · · · · · · ·	1.511.41	
E, eV	σ_{12}^{tot}, cm^2	$\bar{\mu}_{12}$.	β_0	β_{1}	β_2	β_3	β_4	β_5	β_6
$E_{thr} + 0.10 \text{E-}02$	0.198E-22	0.021	0.500	0.032	0.001	0.000	0.000	0.000	0.000
$E_{thr} + 0.50 \text{E-}02$	0.441E-22	0.037	0.499	0.056	0.002	0.000	0.000	0.000	0.000
$E_{thr} + 0.10 \text{E-}01$	0.622E-22	0.054	0.498	0.080	0.005	0.000	0.000	0.000	0.000
$E_{thr} + 0.50 \text{E-}01$	0.138E-21	0.119	0.493	0.178	0.022	0.000	0.000	0.000	0.000
$E_{thr} + 0.10E + 00$	0.194E-21	0.167	0.485	0.250	0.044	0.001	0.000	0.000	0.000
$E_{thr} + 0.50 E + 00$	0.448E-21	0.338	0.431	0.498	0.207	0.015	0.000	0.000	0.000
$E_{thr} + 0.10E + 01$	0.678E-21	0.420	0.374	0.607	0.376	0.038	0.000	-0.001	0.000
$E_{thr} + 0.20E + 01$	0.109E-20	0.470	0.293	0.653	0.621	0.088	0.000	-0.003	0.003
$E_{thr} + 0.50E + 01$	0.222E-20	0.441	0.172	0.539	0.989	0.220	-0.030	-0.022	0.032
$E_{thr} + 0.10E + 02$	0.383E-20	0.371	0.107	0.353	1.255	0.411	-0.257	-0.103	0.180
$E_{thr} + 0.15 E + 02$	0.513E-20	0.330	0.093	0.233	1.479	0.618	-0.765	-0.254	0.466
$E_{thr} + 0.20E + 02$	0.621E-20	0.302	0.096	0.129	1.756	0.879	-1.532	-0.475	0.876
$E_{thr} + 0.25E + 02$	0.717E-20	0.278	0.106	0.020	2.078	1.203	-2.472	-0.757	1.367
$E_{thr} + 0.30E + 02$	0.803E-20	0.255	0.120	0.102	2.414	1.579	-3.474	-1.078	1.888
$E_{thr} + 0.35E + 02$	0.882E-20	0.233	0.135	-0.234	2.738	1.985	-4.451	-1.417	2.397
$E_{thr} + 0.40E + 02$	0.953E-20	0.210	0.150	0.378	3.026	2.411	-5.342	-1.759	2.866
$E_{thr} + 0.45 \text{E} + 02$	0.102E-19	0.188	0.165	-0.519	3.272	2.830	-6.120	-2.092	3.283
$E_{thr} + 0.50E + 02$	0.107E-19	0.168	0.178	-0.661	3.463	3.242	-6.759	-2.409	3.633

Table 11. Isotopic exchange, $p\mu + t \rightarrow t\mu + p$.

<u>*************************************</u>	the second for the	est de la comp	化化物化 化化化物化物 建苯基乙基 化乙烯酸乙基 法财产的 化化化物
E, eV	$\sigma_{21}^{tot}, \ cm^2$	$\bar{\mu}_{21}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
0.100E-02	0.347E-17	0.021	$0.500\ 0.031\ 0.001\ 0.000\ 0.000\ 0.000\ 0.000$
0.200E-02	0.245E-17	0.027	0.500 0.041 0.001 0.000 0.000 0.000 0.000
0.300E-02	0.200E-17	0.032	0.499 0.048 0.002 0.000 0.000 0.000 0.000
0.400E-02	0.173E-17	0.036	0.499 0.054 0.002 0.000 0.000 0.000 0.000
0.500E-02	0.155E-17	0.039	0.499 0.059 0.003 0.000 0.000 0.000 0.000
0.600E-02	0.141E-17	0.042	0.499 0.063 0.003 0.000 0.000 0.000 0.000
0.700E-02	0.131E-17	0.045	0.499 0.067 0.004 0.000 0.000 0.000 0.000
0.800E-02	0.122E-17	0.047	$0.499\ 0.071\ 0.004\ 0.000\ 0.000\ 0.000\ 0.000$

... continued

Table 11. (continued) $p\mu + t \rightarrow t\mu + p$

	· · · · · · · · · · · · · · · · · · ·			
	<i>E</i> , <i>eV</i>	$\sigma_{21}^{tot}, \ cm^2$	$\bar{\mu}_{21}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	0.900E-02	0.115E-17	0.050	0.499.0.075.0.004.0.000.0.000.0.000.0.000
	0.100E-01	0.109E-17	0.052	
	0.200E-01	0.769E-18	0.074	
	0.300E-01	0.626E-18	0.090	
	0.400E-01	0.541E-18	0.104	
	0.500E-01	0.483E-18	0.116	
	0.600E-01	0.440E-18	0.127	
	0.700E-01	0.407E-18	0.137	
	0.800E-01	0.380E-18	0.146	
	0.900E-01	0.358E-18	0.154	
	0.100E+00	0.340E-18	0.163	0.486 0.244 0.042 0.000 0.000 0.000 0.000
	0.120E+00	0.310E-18	0.177	
	0.140E+00	0.287E-18	0.191	0.480 0.286 0.059 0.001 0.000 0.000 0.000
	0.160E+00	0.268E-18	0.203	0.478 0.304 0.067 0.001 0.000 0.000 0.000
	0.180E+00	0.253E-18	0.215	$0.475 \ 0.321 \ 0.075 \ 0.002 \ 0.000 \ 0.000 \ 0.000$
	0.200E+00	0.240E-18	0.226	0.472 0.337 0.083 0.002 0.000 0.000 0.000
	0.300E+00	0.197E-18	0.270	0.459 0.402 0.124 0.006 0.000 0.000 0.000
	0.400E+00	0.172E-18	0.305	$0.446 \ 0.452 \ 0.163 \ 0.009 \ 0.000 \ 0.000 \ 0.000$
	0.500E+00	0.155E-18	0.333	0.433 0.491 0.201 0.013 0.000 0.000 0.000
	0.600E+00	0.143E-18	0.356	$0.421\ 0.523\ 0.238\ 0.018\ 0.000\ 0.000\ 0.000$
	0.700E+00	0.134E-18	0.375	$0.409\ 0.549\ 0.272\ 0.023\ 0.000\ 0.000\ 0.000$
1	0.800E+00	0.127E-18	0.391	0.398 0.570 0.306 0.027 0.000 0.000 0.000
1	0.900E+00	0.121E-18	0.404	0.387 0.587 0.338 0.032 0.000 0.000 0.000
	0.100E+01	0.116E-18	0.416	0.377 0.602 0.368 0.037 0.000 -0.001 0.000
	0.120E+01	0.109E-18	0.434	$0.358 \ 0.624 \ 0.426 \ 0.047 \ 0.001 \ -0.001 \ 0.001$
	0.140E+01	0.104E-18	0.448	0.340 0.638 0.479 0.057 0.001 -0.001 0.001
	0.160E+01	0.994E-19	0.457	0.324 0.646 0.527 0.067 0.001 -0.002 0.002
1	0.18013+01	0.961E-19	0.464	$0.309\ 0.650\ 0.572\ 0.077$, $0.000\ -0.002\ 0.002$
I	0.200E+01	0.934E-19	0.468	0.295 0.651 0.613 0.087 0.000 -0.003 0.003
	0.300E+01	0.849E-19	0.470	0.241 0.628 0.777 0.133 -0.004 -0.007 0.009
	0.4002+01	0.802E-19	0.458	$0.202\ 0.586\ 0.895\ 0.177\ \text{-}0.013\ \text{-}0.013\ 0.018$
	0.0000+01	0.750E 10	0.441	0.174 0.541 0.982 0.217 -0.030 -0.022 0.032
ĺ	0.000 ± 01	0.730E 10	0.425	0.154 0.498 1.050 0.255 -0.054 -0.033 0.051
l	0.800F.101	0.714E 10	0.409	U.138 U.458 1.107 0.292 -0.089 -0.046 0.075
L	2.200 T T 01	0.114C-19	0.395	U-120 U-422 1.157 0.328 -0 133 -0 062 0 104 1

CONSIDER THE STATE OF A CONSTRUCT OF

140T

20

Table 12. (continued) $p\mu + t \rightarrow p\mu + t$

			·*	
Table	11.	(continued)	$p\mu + t \rightarrow t$	μ-

E, eV	$\sigma_{21}^{tot}, \ cm^2$	$ar{\mu}_{21}$	β_0	β_1	β_2	β_3	β_4	β_5	β_6
na ann an an an Ar	(A,D) = A	or see	3	- Sp. 1	i sata	e de la composición de la comp	a dise	ी करती	2.20
0.900E+01	0.698E-19	0.382	0.117	0.389	1.202	0.365	-0.188	-0.081	0.138
0.100E+02	0.684E-19	0.371	0.110	0.359	1.246	0.402	-0.255	-0.102	0.178
0.150E+02	0.626E-19	0.330	0.095	0.237	1.473	0.609	-0.761	-0.252	0.463
0.200E+02	0.584E-19	0.302	0.097	0.134	1.749	0.868	-1.524	-0.472	0.871
0.250E+02	0.552E-19	0.278	0.108	0.026	2.070	1.189	-2.459	-0.753	1.359
0.300E+02	0.529E-19	0.255	0.122	-0.096	2.405	1.563	-3.457	-1.072	1.878
0.350E+02	0.510E-19	0.233	0.137	-0.227	2.726	1.967	-4.430	-1.410	2.384
0.400E+02	0.493E-19	0.209	0.152	-0.371	3.014	2.394	-5.320	-1.752	2.855
0.450E + 02	0.479E-19	0.188	0.166	-0.513	3.260	2.811	-6.096	-2.082	3 268
0.500E + 02	0.465E-19	0.167	0.179	-0.655	3 451	3 224	-6 733	-2 398	3 618
4 40 100	9 (ag) a 40							2.000	119.70

일 같아요. 여러 물건물 그는 것은 것으로 물고 있다.

Table 12. Elastic scattering, $p\mu + t \rightarrow p\mu + t$.

			en la sur la construction de la construction de la segura d
199401994	2, 6240-12	264 Q	and a supply first and a supply for the supply of the
E, eV	σ_{22}^{tot}, cm^2	$\bar{\mu}_{22}$	$eta_0 \qquad eta_1 \qquad eta_2 \qquad eta_3 \qquad eta_4 \qquad eta_5 \qquad eta_6$
	10 (KA 9 8	$\mathcal{H}^{(2,\infty)}(\mathbb{R})$	经结常的情况,你说到了这一位好再点的吧。"他想到
0.100E-02	0.230E-19	-0.016	0.502 -0.020 -0.005 -0.008 0.000 0.000 0.000
0.200E-02	0.237E-19	-0.024	$0.504 \ \text{-} 0.027 \ \text{-} 0.012 \ \text{-} 0.014 \ 0.001 \ 0.000 \ 0.000$
0.300E-02	0.243E-19	-0.028	0.505 -0.031 -0.017 -0.018 0.001 0.000 0.000
0.400E-02	0.247E-19	-0.031	0.507 -0.034 -0.021 -0.023 0.001 0.001 0.000
0.500E-02	0.251E-19	-0.034	0.508 -0.035 -0.024 -0.027 0.001 0.001 0.000
0.600E-02	0.255E-19	-0.036	0.509 -0.036 -0.027 -0.030 0.002 0.001 0.001
0.700E-02	0.259E-19	-0.038	0.509 -0.037 -0.030 -0.034 0.002 0.001 0.001
0.800E-02	0.261E-19	-0.039	0.510 -0.037 -0.032 -0.037 0.002 0.001 0.001
0.900E-02	0.264E-19	-0.041	0.511 -0.038 -0.034 -0.040 0.002 0.002 0.001
0.100E-01	0.267E-19	-0.042	0.511 -0.039 -0.036 -0.043 0.003 0.002 0.001
0.200E-01	0.289E-19	-0.057	0.514 -0.050 -0.045 -0.062 0.005 0.003 0.002
0.300E-01	0.308E-19	-0.067	0.515 -0.059 -0.050 -0.072 0.006 0.004 0.003
0.400E-01	0.323E-19	-0.075	0.515 -0.067 -0.052 -0.078 0.008 0.005 0.004
0.500E-01	0.336E-19	-0.082	0.515 -0.075 -0.054 -0.083 0.009 0.005 0.004
0.600E-01	0.349E-19	-0.087	0.516 -0.082 -0.055 -0.085 0.010 0.006 0.004
0.700E-01	0.361E-19	-0.092	0.516 -0.089 -0.056 -0.087 0.011 0.006 0.005

...continued

 σ_{22}^{tot}, cm^2 E, eV β_4 β_5 β_6 $\bar{\mu}_{22}$ β_0 · β_1 β_2 β_3 0.800E-01 0.372E-19 -0.0960.516 -0.094 -0.057 -0.088 0.012 0.006 0.005 0.900E-01 0.382E-19 -0.1000.516 -0.100 -0.058 -0.089 0.013 0.007 0.005 0.100E+00 0.391E-19 -0.104 0.516 -0.105 -0.059 -0.090 0.014 0.007 0.005 0.120E+00 0.410E-19 -0.1100.517 -0.114 -0.063 -0.090 0.015 0.007 0.005 0.140E+00 0.427E-19 -0.1150.518 -0.123 -0.066 -0.090 0.016 0.008 0.005 0.160E + 000.443E-19 -0.1200.519 -0.130 -0.069 -0.089 0.017 0.008 0.005 0.180E + 000.457E-19 -0.1240.519 -0.136 -0.071 -0.088 0.019 0.009 0.005 0.200E+00 0.471E-19 -0.1270.520 -0.142 -0.074 -0.088 0.019 0.009 0.005 0.300E+00 0.531E-19 -0.1400.523 -0.164 -0.084 -0.084 0.023 0.011 0.005 0.400E+00 0.579E-19 -0.1480.525 -0.178 -0.093 -0.081 0.026 0.012 0.006 0.527 -0.187 -0.100 -0.079 0.029 0.013 0.006 0.500E + 000.620E-19 -0.1530.600E+00 0.655E-19 -0.156 0.529 -0.193 -0.107 -0.078 0.031 0.014 0.006 0.700E + 000.684E-19 -0.1580.530 -0.196 -0.113 -0.078 0.033 0.015 0.006 0.800E + 000.710E-19 -0.1590.532 -0.198 -0.119 -0.079 0.035 0.016 0.006 0.900E+00 0.733E-19 -0.1590.533 -0.198 -0.125 -0.080 0.037 0.018 0.007 0.100E + 010.752E-19 -0.1590.535 -0.197 -0.131 -0.082 0.039 0.019 0.007 0.120E+01 0.787E-19 -0.157 0.538 -0.192 -0.142 -0.088 0.042 0.022 0.008 0.140E+01 0.815E-19 -0.1540.540 -0.185 -0.152 -0.094 0.046 0.025 0.009 0.160E+01 0.839E-19 -0.1500.543 -0.176 -0.162 -0.100 0.048 0.027 0.010 0.180E+01 0.861E-19 -0.145 0.545 -0.167 -0.171 -0.105 0.051 0.030 0.011 0.879E-19 -0.1390.200E+01 0.548 -0.157 -0.180 -0.110 0.053 0.033 0.012 0.300E+01 0.949E-19 -0.1070.558 -0.097 -0.217 -0.139 0.059 0.045 0.017 0.400E + 010.991E-19 -0.0720.566 -0.030 -0.245 -0.170 0.060 0.058 0.022 0.102E-18 0.573 0.037 -0.266 -0.202 0.059 0.071 0.027 0.500E + 01-0.0360.600E + 010.103E-18 -0.0010.578 0.103 -0.282 -0.235 0.055 0.085 0.033 0.700E+01 0.104E-18 0.582 0.168 -0.292 -0.271 0.048 0.099 0.039 0.032 0.105E-18 0.800E+01 0.0630.584 0.231 -0.295 -0.308 0.037 0.114 0.047 0.900E+01 0.105E-18 0.093 0.585 0.291 -0.292 -0.345 0.024 0.129 0.054 0.105E-18 0.100E+02 0.1200.584 0.348 -0.283 -0.382 0.008 0.144 0.063 0.150E + 020.103E-18 0.227 0.561 0.569 -0.168 -0.531 -0.103 0.211 0.109 0.200E + 020.101E-18 0.295 0.521 0.690 0.011 -0.590 -0.231 0.250 0.151 0.973E-19 0.475 0.739 0.209 -0.567 -0.355 0.261 0.187 0.250E + 020.340 0.942E-19 0.300E+02 0.3700.429 0.733 0.386 -0.470 -0.434 0.243 0.204 0.350E + 020.910E-19 0.3900.386 0.693 0.538 -0.327 -0.481 0.206 0.213 0.400E + 020.878E-19 0.405 0.349 0.634 0.647 -0.157 -0.468 0.159 0.203 0.450E + 020.846E-19 0.417 0.316 0.566 0.726 0.023 -0.426 0.108 0.190 0.427 0.500E+02 0.816E-19 0.288 0.496 0.767 0.198 -0.339 0.061 0.166

Результаты

Избирательность травления, чувствительность детектора и эффективность регистрации

Известно, что трек при травлении проходит три стадии, при которых имеет различную форму [5]. На первой стадии травления полностью выявляется латентный трек (зона дефектов): вторая стадия охватывает процесс травления конуса, образованного ионом, до его полного вытравливания: третья - связана с растравливанием сферической поверхности при выравнивании скоростей травления в зоне трека. Если на первых двух стадиях существует зависимость диаметра трека иона от dE/dX, то на третьей - диаметр трека зависит от длины латентного трека иона, т.е. от его энергии [5]. Фактически величиной, характеризующей чувствительность, является скорость травления вдоль трека Vt или избирательность травления V, т.е. отношение Vt/VM, где V_м - скорость травления материала. На рис. 1 представлены зависимости скорости травления фосфатного стехла в 40% растворе НF и 10N NaOH от температуры. В растворах шелочи травление материала происходит более интенсивно, что значительно снижает избирательность травления. Это наглядно иллюстрируют микрофотографии (рис. 2). На рис. 3 представлены результаты различной длительности травления (40% HF при 20°C) треков ионов Аг, перпендикулярно входящих в детектор, с различной энергией. С увеличением времени травления диаметры треков ионов с различной энергией сильнее различаются.

Для идентификации заряженных частиц с помощью ФС необходимо иметь не только достаточную чувствительность, но и крутую зависимость V от dE/dx. На рис. 4 представлена зависимость избирательности травления тяжелых ускоренных ионов от удельных потерь энергии для данного стекла. Удельные потери энергии ионов рассчитаны согласно программе работы [6] в соответствии с их энергией. Можно видеть, что порог чувствительности ФС при V~1 находится в районе 9-10 МэВ мг^{-1.}см². В исследуемом стекле дефекты структуры, создаваемые ионами кислорода, не приводят к выявлению треков в области максимальных потерь энергии этих ионов в веществе [7]. Как видно из рис. 4, представленная зависимость вблизи порога имеет асимптотический характер. В этом районе эффективность регистрации может быть меньше, чем для более высоких значений V. Так, ионы неона, входящие перпендикулярно в детектор с энергией 0,1 - 0,5 МэВ на нуклон, наблюдаются в виде мелких углублений, но с 25-

Рис.1. Скорость травления ФС в 40% НF (кривая 1) и 10N NaOH (кривая 2) в зависимости от температуры раствора

Рис.2. Микрофотографии треков ионов ⁴⁰Ar с энергией 104 МэВ, входящих в детектор под углом 30⁰ и протравленных в 40% HF (а) и 10N NaOH (б)

50% эффективностью регистрации. Для осколков деления в ФС при концентрированной плавиковой кислоте травлении 34 B эффективность регистрации составляет (92±4)%, при этом диаметр следа достигает около 1.5 мкм. Если травление проводить в 20% растворе NaOH до того же диаметра треков, эффективность осколков снижается до (75±5)%. Ионы, входящие в детектор под углом 90° и имеющие ионизационные потери выше пороговых значений, регистрируются со 100% эффективностью. Известно, что при уменьшении угла входа иона в детектор уменьшается избирательность травления и, следовательнс, для них увеличивается порог регистрации. Для иллюстрации на микрофотографии (рис. 5а) представлены треки ионов аргона, входящие под углами 15 и 90° в детектор с одинаковыми потерями энергии и протравленные в 10N растворе NaOH. Треки ионов

Рис.3. Зависимость диаметра D протравленных различное время в 40% HF при 20⁰C треков ионов Ar, перпендикулярно входящих в детектор с энергией 100, 140 и 203 МэВ

Рис.4. Зависимость избирательности травления треков ускоренных ионов от их удельных потерь dE/dX в ФС. Удельные потери ионов для данного состава ФС посчитаны по программе [6] согласно их энергии

Рис.5. Микрофотографии треков Ar, входящих в ФС под углом 90⁰ (черные кружки на рис. 5а) и под углом 15⁰ (светлые треки на рис. 5а и 5б). Травление проводилось при температуре 20⁰ в 10N NaOH (рис. 5а) и в 40% HF (рис. 5б)

с углом входа 90° были протравлены прямо с поверхности ФС и имели вид темных кружков, в то время как треки ионов под углом 15° травились только на такой глубине слоя (остроконечные светлые треки), где перпендикулярно направленные ионы пересекали пологие и их ионизационные потери достигали пороговой величины. Необходимо заметить, что при травлении детектора в концентрированной НF треки под углом 15° травились непосредственно с поверхности стекла (рис. 56). Это свидетельствует о зависимости порога выявления трека не только от угла входа иона в детектор, но и от выбранного раствора для травления. Энергетический порог регистрации осколков деления в ФС определялся по поглощению их в AI-фольге, толщина которой

менялась. Осколки от деления ядер ²⁴⁴Cm входили в детектор под углом ≈90⁰. Облучение проводилось в вакууме. Из экспериментального соотношения пробег-энергия для осколков в АI [8] пороговые значения энергии регистрации осколков находились в районе 7-10 МэВ. В дальнейшем это значение было подтверждено облучением ФС ускоренными ионами Ge и Xe. Возвращаясь к рис. 4, можно видеть, что при увеличении удельной ионизации избирательность травления возрастает и для ионов с удельной ионизацией ~35 МэВ Mr⁻¹ см² величина V_t/V_m достигает значения ~17-18.

Ввиду того, что порог чувствительности ФС достаточно высок. в пробега последних микронах не создаются травимые дефекты, относящиеся к ядерной составляющей удельных потерь энергии, и трек после травления получается несколько короче, чем истинный пробег иона в этих детекторах [1]. Для учета этого эффекта были проведены калибровочные измерения на пучках ионов с разным Z. Для легких ионов дефицит пробега составляет 2-3 мкм, а для ионов Z≥40 - порядка 1 мкм. Этот эффект необходимо учитывать при определении энергии ионов путем измерения их пробега в ФС. На рис. 6 для примера представлены экспериментально полученные зависимости пробег-энергия для ионов ⁴⁰Ar, ⁶⁶Zn и ¹³²Xe, а на рис. 7 показаны распределения длин ионов Хе и Ті с энергией 124 и 190 МэВ. Полученные длины ионов хорошо согласуются с расчетными данными. Точность измерения энергии по длине зависит от пробега иона в ФС и составляет порядка 5% в области Е~1 МэВ/а.е.м. Для пробегов ионов ≥100 мкм точность измерения достигает ~1-2%.

Рис.7. Распределение длин треков ионов Хе и Ті, входящих в детектор под углом 45⁰ с энергией 124 и 190 МэВ, соответственно

Зависимость диаметров треков, протравленных в 48% НF и 10N NaOH, от энергии ионов представлена на рис.8. Полученные в данной работе результаты находятся в хорошем согласии с результатами работы [9], выполненной на ФС другого состава и с использованием NaOH в качестве травителя. Можно видеть, что при больших энергиях наступает насыщение, поэтому целесообразно при идентификации ионов с помощью диаметров работать в области пропорциональности, где энергетическое разрешение составляет 2-3%. Начиная с энергии более 60 МэВ при диаметрах порядка 80 мкм, зависимость диаметра от энергии становится более слабой и энергетическое разрешение ухудшается.

Рис.8. Зависимость диаметров протравленных в 48% HF и 10N NaOH треков различных ионов, входящих нормально к поверхности ФС, изучаемого в данной работе и в [9], от их энергии. Первое травилось в 48% HF при 20 ⁰С в течение 8 суток, а второе - 17 часов в 10N NaOH при 55 ⁰С

Термическая устойчивость латентных треков в ФС.

Важным свойством диэлектрических детекторов является термическая устойчивость радиационных нарушений структуры заряженными частицами. Термическая стойкость латентных треков осколков деления ядер ²⁴⁴Cm в ФС представлена на рис.9 (а,б,в). Можно видеть, что нагревание при температуре 100 ⁰C в течение более 5 ч вызывает укорочение треков осколков деления и уменьшение их количества.

Рис.9. Зависимость от температуры отжига (после облучения): а) длительности нагревания относительной средней длины I(t)/I20⁰C) осколков деления ²⁴⁴Cm (кривые 1, 2) и ионов⁴⁰Ar (кривые 3, 4);

б) относительной средней длины I(t)/I(20⁰C) треков осколков ²⁴⁴Cm и их количества N(t)/N(20⁰C) для 1 ч (кривые 1, 3) и 15 ч (кривые 2, 4) нагревания;

в) эффективности регистрации є осколков деления ²⁴⁴Cm поликарбоната Makrofol E (кривая 1),

полиэтиленгликольтерефталата Melinex-E (кривая 2) и фосфатного стекла (кривая 3)

Треки аргона (220 МэВ) укорачиваются быстрее осколков деления (рис. 9а). Наибольшая разница между ними наблюдается после 100⁰ и длительного травления с практически полным сохранением эффективности регистрации осколков деления. Необходимо отметить,что в первые часы отжига при 150 °C длина как осколков деления, так и ионов уменьшаются быстрее, чем в последующие (рис. 9а). Это обстоятельство свидетельствует о весьма сложном характере восстановления зоны дефектов, образуемых тяжелыми ионами в ФС, приводящем к постепенному уменьшению скорости травления вдоль следа. Результаты рис. 96 свидетельствуют, что при 200 °С остается всего лишь ~ 70% треков осколков деления от первоначального количества, причем их длина уменьшается более, чем на 50%. Это необходимо учитывать при использовании ФС в качестве детектора в физическом эксперименте. Для сравнения на рис. 9в показано изменение эффективности регистрации осколков деления в трех наиболее используемых детекторах при их нагревании после облучения до 300°С.

Собственный фон детектора фосфатного стекла

При проведении экспериментов по поиску и регистрации редких событий деления ядер весьма существенным является наличие фоновых эффектов в детекторе. В ФС имитировать искомый эффект могут треки осколков спонтанного деления ядер тяжелых элементов, содержащихся в материале детектора; треки осколков OT индуцированного другим излучением деления ядер или тяжелых фрагментов, генерируемых в детекторе фоновыми частицами; фигуры травления дефектов структуры: трещин, царапин, пузырьков. В ФС треки от спонтанного деления примесных ядер устраняются с помощью отжига при температуре более 350 °С (см. рис. 9). В исследуемом ФС концентрация делящихся элементов в пучках нейтронов не превышала 10⁻⁸, что допустимо для использования в физическом эксперименте на интенсивных пучках тяжелых ионов. Фигуры травления различных дефектов ФС после предварительного травления надежно отличаются от искомых треков ионов.

Идентификация заряженных частиц и фрагментов

Как было показано ранее, для идентификации заряженных частиц и измерения их энергии можно использовать их пробег в ФС. В этом случае используют экспериментально полученные калибровочные кривые (см. рис. 6, 7) либо расчетные данные, если состав материала известен [6].

Для спектроскопии осколков деления были апробированы два метода

идентификации. В первом была использована тонкая мишень ²³⁵U и 5-мкм алюминиевый поглотитель для получения существенного различия в удельной ионизации двух групп осколков [10]. При кратковременном травлении в 48% НF треков осколков деления (до диаметра примерно 20 мкм), перпендикулярно входящих в ФС, по распределению диаметров треков были определены средние энергии легкой и тяжелой групп осколков с точностью 5-8% [11]. В другом случае в основу метода была положена зависимость диаметра сильно растравленных треков осколков деления D, перпендикулярно входящих в летектор, от их энергии E: D²=CE^{1/2}, где C - константа, зависящая от

Рис.10. А. Калибровочная кривая D(E),построенная по измерениям диаметров сепарированных осколков вынужденного деления ²³⁵U (обозначены как "ff") на масс- сепараторе ИЯФ УзАН и ускоренных ионов Хе и Zr различной энергии. Травление проводилось 48% HF в течение З ч (кривая 1), 24 ч (кривая 2) и 6 суток (кривая 3 - для тяжелых фрагментов и 4 - для легкой группы фрагментов).

Б. Распределение диаметров треков осколков вынужденного деления ²³⁵U (а) и спонтанного деления ²⁵⁶Fm (б), перпендикулярно входящих в ФС (точки), и распределение осколков деления тех же самых ядер, полученное с помощью полупроводниковых детекторов (линия). Значения энергии на оси абсцисс соответствуют диаметрам треков из калибровочных экспериментов рис. 11А. Соотношения количества треков в разных точках спектра следующие:

для 235 U N_L/N_H = 1,3; N_L/N_V = 3,9; N_H/N_V = 2,9 256 Fm N_L/N_H = 1,33; N_L/N_V = 2,0; N_H/N_V = 1,5

Рис.11. А. Зависимость избирательности травления V=Vt/Vм от остаточного пробега для ионов ²⁴Mg, ²⁸Mg, ²⁷Al, ²⁸Si в ФС. Сплошные линии - результаты калибровки ускоренными тяжелыми ионами. Точки - экспериментальные данные, полученные в работе [17] по изучению гластерного распада ²³⁶Pu с вылетом ²⁸Mg.

Б. 1). Микрофотографии треков осколков деления ядер плутония (2 большие кружка) и иона ²⁸Mg (маленький круг), вылетающих при распаде этих ядер.

2). Микрофотографии треков ионов ⁶⁶Zn (длинные) и ³³S (короткие), входящие в ФС под углом 30⁰ к поверхности с энергией 5,0 МэВ/а.е.м.

материала детектора и времени травления. Этот метод был предложен и апробирован в работах [12, 13] для измерения энергии осколков спонтанного деления ²⁵²Сf, индуцированного деления ядер ²³²Th и ²³⁹Ри с разрешением порядка 1 - 2 МэВ. В данной работе исследовалось энергетическое распределение осколков деления тепловыми нейтронами ядер ²³⁵U и спонтанного деления ядер ²⁵⁶Fm. полученного в реакции ²⁴⁹Bk+²²Ne, где он является практически единственной долгоживущей активностью (2,63 ч), образующейся при распаде ²⁵⁶Md. В этом случае ядра отдачи вылетали из мишени берклия (0.3 мг/см²) и тормозились в стопке из 10 алюминиевых фольг толщиной 0.22 мг/см². Облучение ФС осколками деления ядер урана (использовалась тонкая мишень ~ 50 мкг/см² на 2.5-мкм лавсановой подложке) и фермия проводилось в вакууме через коллиматор, обеспечивающий попадание осколков в детектор под углом ~90°. На рис. 10 приведены полученные экспериментальные результаты и для сравнения данные. полученные с помошью полупроводниковых детекторов [14]. Калибровочная кривая D(E) (рис. 10А) была построена по измерениям диаметров треков сепарированных осколков деления урана тепловыми нейтронами на установке ИЯФ Узбекской АН (г.Ташкент). Из полученных данных видно, что изучаемое стекло имеет разрешение не хуже, чем используемое в работе [12] фосфатное стекло, по составу отличающееся от изучаемого в данной работе. Подобные результаты с ИСТОЧНИКОМ КАЛИФОРНИЯ И ИСПОЛЬЗОВАНИЕМ ИЗУЧАЕМОГО ЗДЕСЬ СТЕКЛА были получены группой В.А.Николаева [15].

Спектроскопию кластеров, эмиссия которых является чрезвычайно редким процессом и наблюдается, как правило, в условиях высокого фона α -частиц ($\geq 10^{14}$ см²), проводят с помощью ФС, используя метод реплик [16]. На рис.11 показаны кривые для идентификации кластеров ²⁸Mg, вылетающих из ²³⁶Pu [17]. Разрешение детектора по заряду составляет $\Delta \overline{Z}$ =±0,2 и атомному весу - Δ A=±2.

Применение

На основе вышесказанного детекторы из ФС могут быть использованы для определения энергии ионов, спектроскопии осколков деления, идентификации тяжелых заряженных частиц, в том числе и остановившихся в объеме стекла, используя геометрию "трек в треке", при бомбардировке детектора перпендикулярно направленными к поверхности ускоренными тяжелыми ионами (см.рис. 5). ФС позволяет вводить термическим способом в поверхностный слой и объем детектора значительные количества исследуемых элементов (до нескольких % по весу [18]) без существенного изменения

регистрирующих свойств, что является существенным преимуществом перед другими диэлектрическими детекторами. Это используется при измерениях характеристик многолучевых событий в объеме стекла [19], возникающих при распаде ядер.

ФС, характеристики которого представлены здесь, были использованы в экспериментах по определению периода полураспада спонтанного деления тяжелых ядер, кластерного распада, по исследованию углового рассеяния ионов [3].

Авторы выражают благодарность профессору Ю.Ц.Оганесяну за внимание к работе, полезные обсуждения и поддержку, В.П.Перелыгину за помощь при проведении облучений ионами, К.И.Меркиной, Т.И.Рыбаковой за помощь в получении достоверных результатов измерения, А.Д.Беляеву за осуществление облучения детекторов сепарированными осколками деления, О.В.Тимофеевой за помощь при оформлении работы.

Работа выполнена при финансовой поддержке РФФИ N96-02.17975.

Литература

- 1. Fleischer R.I. et al., Nuclear Tracks in Solids: Principles and Applications (University of California, Berceley, 1975); Phys. Rev/188 (1969), 563.
- 2. Перелыгин В.П. и др., ПТЭ,4, (1964) 64, ПТЭ, 1 (1968), 43-46.
- 3. Третьякова С.П. Диссертация на степень доктора физ.-мат. наук "Диэлектрические детекторы, их применение в экспериментальной ядерной физике".
- 4. Price P.B. et al., Nucl. Instr. Meth. B21 (1987), 60-67.
- 5. Николаев В.А. и др., ПТЭ, 2 (1976), 8-17.
- 6. Ziegler I.F. et al., The Stopping and Range of lons in Solids, Pergamon Press, New York (1985).
- 7. Отгансурен О. и др., Proc. 8th Intern. Cont. of Nucl. Photograph and SSNTD, 1972, Bucharest, IFA, 231-241.
- 8. Fulmer C.B., Phys. Rev. 108 (1957), 1115-1120.
- 9. Fiedler G. et al., Nucl. Instr. Meth, 147 (1977), 36-39.
- 10. Nicolaev V.A. Nucl. Instrum. Meth, 147 (1977), 283-285.
- 11. Nicolaev V.A. Instrum. Exper. Techniques, 4 (1976), 88-89.
- 12. Aschenbach et al., Nucl. Instr. Meth. 116 (1974), 389-395.
- 13. Siegert G., et al., Z. Naturforch 28a (1973), 544-552.
- 14. Schmitt H.W. et al., Phys. Rev. 137B (1965), 837-845.

15. Kopchenov V.E. et al., Nucl. Tracks Radiat.Meas. 11 (1986), N4/5,221-227.

14

- 16. Wang S. et al., Phys. Rev. c39 (1989), 1647-1655.
- 17. Юссонуа М. и др., Письма в ЖЭТФ, 62 (1955), 685-689.
- Perelygin V.P. et al., Proc. of the Internat. Conf. on Nucl. Track Registr. in Insulating Solids, Clermont-Ferrand, 1969, v.1, 28-36.
- 19. Fiedler G.et al., Nucl. Instr. Meth. 173 (1980), 85-92.

Рукопись поступила в издательский отдел З апреля 1996 года.

Fig. 4. Differential cross sections $d\sigma_{22}/d\Omega$ for the $d\mu + t$ elastic scattering.

Fig. 5. Differential cross sections $d\sigma_{11}/d\Omega$ for the $d\mu + p$ elastic scattering.

29 a f

- -

