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The problem of a hydrogen atom in the generalized van der W~~ls field [1-3] 

(1) 

( where 1 > 0 and ·/3 are constants and (x,y,z) are the coordinates of an electron rel11.tive 

to a nucleus ) has a broad interest in physics.· A large number.of recent,publications deal 

with different aspects of the well-known particular case·, /3·= 0, .. oLthe problem{,the 

quadratic Zeeman effect [4] ). Another physically interesting limit; as an, example of a . 

confining potential [5], is the spherical quadratic Zeeman inter.action (/3 = 1) [6]. The 
' ' 

case, /3 = ../2, corresponds to the instantaneous van d~r Waals interaction between an 

atom and meta{ surfaces [7] and is a subject of extensive discussions so far [8]. Note also 
' 

the connection which was found in [2] between the pr~blem (1) and a set of two coupled 

sextic a11harmonic oscillators and the recent analysis of the chaos-order-chaos transitions 

in this system ( see [2],[9],[10] and Refs. therein ). 

1n the paper [1] a general consideration ( for arbitrary Cl ~ /3 ~·· 2 ), based on the 

adiabatic invariant 

(2) 

( where A is the Runge-Lenz vector [4] ), has been suggested for the weak perturbation 

~V (1). This generalization for an arbitrary (3 of the result A= 4A2 - 5A~, obtained in 
,,, ' • 1, ! ' 

[11],[12] for the special case (3 = 0, has permitted a reducing of the weak perturbation (1) 
,,. ; ',. 

to a simple effective operator withing the manifold n = const 

(3) 

By studying problem (1) as a function of (3, one may analyze how the instantaneous van 



'-

der Waals ( /3 = v'2 ) and the well-studied diamagnetic ( /3 = 0 ) cases are related one to 

another and connected with the adjacent dynamical symmetries found in [I] for certain 
: : . ,, 

values of /3 ( /3 = 1/2, 1 and 2 ). 

In this Letter I extend the consideratio~ to the non-perturbative region of the problem. 

Highly excited states of a hydrogen· atom subjected to interaction b,. V (1) are analyzed 

with the met4od of global approximation on a subspace grid [13] by using as an example 

the n = 10, m = 0 multiplet studied in paper [l] by the perturbative way. Problem (I) is 

reduced to the system of N differential equations [14] 

N d:-
2)5ki dR2 + 2(5kjCN - Vij(R))}1Pi(R) = 0. 

J 

(4) 

for the eigenvalue c:N and eigenfuncion 1PN ( R, fl,i) = k • Ni( R)} we are looking for on the 

subspace grid fl,i = {cos0i}f". Where 

Vij(R) = r-½ + ,R2
(sin20k + /32cos20k)}Dkj + 2~2. f,zcz- l)P1-1(0k)Pi;1, (5) 

I 

P,(0) are the Legendre polynomials and P1-;1 is the inverse matrix N x N to {P1(0J} 

defined on the grid fl,i = { cos0i }{". The' summation index I takes the values 1,3, ... , 

2N-l and 2,4, ... ,2N for the respective states with positive or negative Z-parity, and the 

negative nodes of the 2N-point Gauss quadrature on [-1,.1] are used as N grid points 

n,k = -cos0~ E [-1,0] ( k = 1,2·, ... ,N ). ( Interaction (1) ~ermits the separation of the 

azimuthal variable <pin spherical coordinates (R, 0, </J) ). Using the solution 1jJj(R) of the 

system of equations ( 4) one can evaluate th~ wave function 

N 1 ;... ( I 1P (R,0) = R'7;'P1 0)P,-; 1Pi(R), (6) 

2 
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' .J 

I 
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•' 
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approximating the eigenfunction 1jJ(R,0) of the initial problem (1) as N-+ oo. In my 

previous paper [14], devoted to the problem of a hydrogen atom in crossed fields, a fast 

convergence of the expansion (6) with respect to N was demonstrated and also the error 

analysis of the numerical integration of system. ( 4) over R was given for the diamagnetic 

case ( f3 = 0 ): low-lying excited states have been analyzed in the region of very strong 

fields, 1 :S H = ~ :S 103 ( 10-3 :S 1 :S 105 ), and highly accurate binding energies for 

these states were.obtained. In this Letter the consideration i~ extended to a highly excited 

atom ( n ~ 10) perturbed by the interaction (1). Th~ evaluation has been performed for 

two field strenghts, 1 , from the region where the perturbation formulas [l] are still working 

well and where the system already exhibits ~onsiderable non-perturbative behaviour. •Two 

such cases are demonstrated on Figs. l(a,b) where the normalized energy shifts, b.E = 
,,; 

(c: + l/(2n2))/(,n4) , of the states in then= 10, m = 0 manifold calculated as a function 

of f3 are given for two fields 1 = 2 · 10-10 and 2 ·, 10-s. Note that in the diamagnetic 

limit (/3 = 0) the calculated spectrum represents the eigenstates of a hydrogen atom in 

the strong mag11etic fields H = ~ ~ 105 G and ~ 106 G, respectively. The calculations 

with N S 6(! S 12) give the order of accuracy ~ 10-3 for the shifts b.E, for 1 = 2 · 10-s 

and more accurate evaluations for the weaker perturbatio~ 1 = 2 · 10-10
• The deviation 

of the shifts b.E of the n=lO-manifold presented on Fig.l(a) from the perturbation result 

[1] obtained by a diagonalisation of the operator (3) does not exceed the value ~ 10-
3 

for the field 1 = 2 · 10-10 • Rather unexpectedly the non-perturbati\,e regime is already 

apparent for 1 = 2 • 10-s in the region 1n4 ~ 1. In this case ( Fig.l(b) ) the system 

exhibits considerable deviation of the spectrum b.E from the perturbative behaviour -as 

3 



in Fig.l(a). This effect is more evidently developed for oscillator strengths. This is 

de~onstrated in Figs. 1 ( c,d) , where the relative oscillator strengths ( dipole transition 

probabilities Wi7'.,L = 3 I< 1P1s I z I 1PnL >12 ) are given for /3 = 2 and v'2, for I from 

both p,ertu~bative and non-perturbative region. The calculated wave functions ipf ( R, 0) 

' . ' . . 
of the multiplet n = 10, m = 0 are presented in Fig.2 for diamagnetic ( /3 ,= 0 ) ;111d 

instantaneous van de~ W~als (/J' = v'2) perturbations. For labeling these wave functions 

0 0 ' C 0 

I use the rotational quantum number L - a good quantum number of the rotationally 
I 

invariant case /3 = l ~he~e the dynamical symmetry 0(4).:::)0(3)£ o~curs, the square L2 

of the angular momentum is a constant of motio'n and A= 3(n2 
- 1 - L2 ) [1]. Applying 

to the calculated ,,'correlative diagrams" given in ,Figs.l{a,b) one may use the L quantum 

number for labeling the spectrum of the van der Waals perturbed hydrogen atom (1) in the 

entire region 0 S (3 S 2, although for deciphering the points of the calculated spectrum, 

which are far removed from.the value /3 = I, one needs to use the good quantum numbers 

of other dynamical symmetries of the system [l] , appropriate to the considere,d case of /J. 

In the vicinity of the point /3 = 1 /2 it is the eigenvalues 77( 77 + 1) of ~he square £ 2 of the 

operator £ = (Ax, Ay, Lz) ( A= 15/4(A; + A;) as (3 = 1/2 and the system exhibits the 

0( 4) :::) 0(3)~ :::) O(2)m symmetry ). Near (3 = 2 the spectrum has a doublet structure 

since A = l5A~ as (3 = 2, the Az is a constant of motion with the eigenvalues q ~ n2 - n1 

arid the dynamical symmetry'is 0(4):::) O(2)q 18) O(2)m (the problem becomes'separable 

in parabolic co·o~dinates ). 

Note that although a considerable violation of the analytical spectrum of the van der 

. Waals perturbed atom (1) at the points of the dynaII1ical sy_mmetrt (I], 

{ 

¥11(77+l)-¾m2 +¼n2+¥, /3=½ 
2n26EnAm= 5n2 +l-3L(L+l), /3=1 

15(n2 - n 1 )
2 

- 3m2 + 5n2 + 7, (3 = 2 

occurs for 1 = 2 • 10-s, nevertheless the spectrum still preserves the rotational structure 

, 4 

i 
f 

,\ 

11ear the points /J = 1/2 and 1 and the doublet structure at the vicinity of /J = 2 ( see 

Figs. l ). The states of the spectrum at the point (3 = v'2 exhibit both neighbouring 

symmetries of /3 = 1 and 2, which is more sharply demonstrated by the picture 'of the 

dipole oscillator strengths (Fig.I( d) ): the lines above 6E = 2.5 repeat the doublet 

structure of the /3 = 2 case ( Fig. I ( c) ) and below this point are strongly suppressed as 

i11 t.hP C<tS<' of rotation<tl symmetry /3 = I. 

111 conclusion I woukl like to underline that ·non-perturbative belrnviour of the hydrogen 

at.om iu the field 6 V (I) is found already in the region ,cn4 ~ 10-4 « I ( n ~ 10) and must 

be tak,en into <tccom1t in the analysis of atomic spectra perturbed by strong magnetic fields 

or by the instantaneous van der Waals interaction with a metallic wall [8] when 1 ~ 1,. 

( He = If; ~ 't06G for /J = 0 ) . Moreover, an evaluation for higher 11( ~ :30 - -10) 

shows a significant decrease of the critical field, ':'fc, corresponding to a transition to tlw 

11011-perturbative region. 

Due to the.fast. covergence of the expans\on (6), applying of the method or global 

approximation on a subspace grid [13],[14] offers highly accurate quantum computation 

of the van der W,~als perturbed hydrogen atom. Tlw,key idea of this ap1iroach, tlw rednc-

tion of the initial multidimensional problem to the problem of type ( 4) on tlw subs pa.cc 

grid [13], has also successfully been exploited in the "discrete variable repr<'~entation" 

(15], recently applied to the hydrogen atom in crnssed fields(I6], in the Lagrange-mt'sh 

calculations(l7] and in the "pseudospectral mcthod"(IS]. 

I would like to thank A. Adamczak, A. Houkour, R.Hewitt and t-.1. .kitkr for their 

help ,and useful discussions. 

The work has been supported by U.S. National Scienn· Fo1111dat.io11, gra11I l'IIY-

9115407, and the International Scientific Found , grant M.JH000. 
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Fig. I: (a)(b) Normalized level shifts !:!.E of the multiplet n = 10,m = 0 calculated 

for two field strengths 1 : dashed c_1,1rves - perturbative region, 1 = 2 · 10-10
; solid curves

non-perturbative region, 1 ~ 2 · 10-8 • (c) The oscillator strengths from the ground state 

to the perturbed manifold n = 10, m - 0 for the case (3 = 2, dashed lines - perturbative 

region, 1 = 2 • 10-10 ; solid lines - non-perturbative region, 1 = 2 · 10-8
• (d) Same as Fig. 

(c) but for fJ = ,/2. 
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Fig. 2: <The, wave functions, "PL(R, x = -cos0), of, the hyd_rogen atom multiplet, n = 
'.. .·. . . . 

10, m = 0, perturbed by the potential (I) for 1 = 2 • 10-8 : (a) diamagi,ietic case (/3 = 0) 

and (b) instanta~eous van der Waals interaction (/3 = \/'2). 
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Me.n:e)l<HK B.C. E4..:95-67 
ATOM BOJWPOAa B rroJie Baii Aep Baanhca: 

· HerrepTyp6au,HOHHhle 3cpcpeKThl . · · 

C rroMOID;bID HerrepTyp6au,HOHHOro MeTOAa rno~aJihHOH arrrrpoKCHMau,HH Ha 
IIOAIIPOCTpaHCTBeHHOH ceTKe HCCJieAOBaH crreKTP aTOMa BOAOPOAa, B03Mym;eH
HOI"O . o6o6m;eHHblM B3aHMOAeH.CTBHeM BaH Aep BaaJihCa h. V(x; Y, z) = 
· 2 · 2 2 2 ' . . . . ,,. . . · .. • . · . . · . 
= y(x + y + /3 Z ). YcTaHOBJieHO cym;ecTBeHHOe OTKJIOHemie OTTeOpHH B03-
Mym;eHHH H HapyrneHHe, B crreu,HaJihHhlX TOqKax f3 • = 112: 1 H 2 AHHaM,HqecKoft 

. . ' I , , , 

CHMMeTpHH, aHaJIHTHqecKoro crreKTpa CHCTeMbl 'AJI51 Harrp51)KeHHOCTeH IIOJI51 
H :== v'8y::::: 10-3 a.e. =:: io6G H3 o6JiaCTH yn4 « J(n'::::: 10): . · · . · · 

. Pa6oTa Bbl~OJIHetta B Jia6opa~opHH 51AepHbIX rrp~6JieM Ol151l1. 
> • ~ • , ' ' a 

Tipenp11HT Q6i,e~11Ht:HHoro _11Hcrnry;a ll~epHb!X 11cCJ1e~onaH1111. ,[(y6Ha, · 1995 

Melezhik V.S. . 
Non-Perturbatibe Behaviour of Hydrogen.Atom : · 
in Van derWaals l;ield 

E4~9.S:-67 

. The spectr(lm of the hydrogen atom perturbed by the generalized van der 

Waals interaction h. V(x, y, .z) = y(.i + y2 .+ {32z2) is analyzed with a non
perturbative method of globalapproximation on a subspace grid. Considerable 
deviation from the perturbation formulas and violation of the analytic spectrum, 
which the system exhibits in special cases of the dynamical symmetry [3·:= .l/2, 
land 2, have bee~ foundalreadiforthe field strength,<J-l =:' v'8y.::::: 10-3 ~.u . 

/ 106G, in .the region yn4 « 'l(n =:: 10). . 

The investigation has been performed at the Laporatory of Nuclear 
Problems, JINR .. 
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