


‘The topological nature of the space of complex systems, characterized
by the interaction of fast (1ntr1ns1c) degrees of freedom with'slow (collec—
tive) degrees of freedom, gives rise to monopole gauge potentlals and, as
consequences, to such interesting phenomena as nonmtegrable geomet— .
ric phase [1, 3] discovered by Berry [1], the molecular Aharonov-Bohm
~ effect [4] and chaos for the collective dynamics [5]. The conditions for

the existence of such phenomena very often occur if real or avoided level

crossings take place. Here we investigate the role of the level crossing for
collective motion in the presence of fast dynamics of separate particles
in a system in the framework of the adiabatic representation method. It
enables one to take into account the mutual influence of slowly Varymg
collective fields and rapidly varying intrinsic fields. ~

In the adiabatic approach, solution of the whole scattering problem
is reduced to two effective scattering problems in the spaces of a'lower
dimension, then the original one M = B x M. The N-dimensional inverse
scattering problem in the adiabatic representation is formulated -on the
basis of consistent formulation of the both multichannel inverse prob-
lem for the gauge system of equations describing ”slow” dynamics of the
complex system and theé parametric problem for "fast” dynamics [6] .-
[9]. Based on the multichannel and one-channel technique of Bargmann
potentials for a system of coupled equations and the parametrically de-
pendent equation, the method of analytic modeling of effective interac-
tions in complicated quantum systems with some degrees of freedom-and
finding appropriate solutions has been developed in [7] - [9].

Suppose that the state |¥(t) > of the system evolves accordmg to the
Schrédinger. equation : :

zﬂ% _HOIE) > . | ,(i)
If ¢,(z(t); y) are solutions to the equation ,
H(x(2)lgn(x(2); 9) >= Ea(x(2))]$a(x(2); ) > @

and form a complete orthonormal set {|¢n(x(t),y) >}, with elements
depending on z = z(t) parametrically; then ¥ can be given [10] by the
expansion

B x(0:3) >= 3 eeap(~3 [ EEN) x5 > ©)
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Upon substituting this expansion (3) into the equation (1) with an ac-

count of orthogonality < n|m >= &,,, V x of the eigenfunctions |¢,(t) >=
|n(t) > of H we arrive at the following system of linear differential equa-
tions for the expansion coefficients c,(2)

zhdigit—) = —&(t)ea(t) + {——ih Z < mlfl > cm(?) (4)

+ Z < m|H|n > cm(t)}ea:p[——/ Ea(t') — Em(t))dt'].

‘With an\account of (2) the system of equations for c,(t) may be written
in the form

ea(t) = ZBnm(x(t )ewp[—— / (Ea(t') — m(t))dt]cm(t) )
| Here the matrlx elements of exchange interaction |

Bun(x(t)) =< n|m >= A,,m(x) x(t)

are generated by basis functions [n > of "instantaneous” Hamiltonian (2)
where

Amn(¥) =<n(@)| Vxlm0) >, (©

Differentiating eq.(2) with respect to ¢ for n # m one can find
<mln >=< m{H|n > [(En — Em).
In the adiabatic approximation, when the admixture of other states to a

‘given state n is small, evaluation of nondiagonal elements of the relatlon
(5) leads to the following condition ‘

< m|H|n >
(&n = Em)?
* Then the relation (5) yields B

<1 (T

ca(t) = cn(0)exp[— /(: < n|n > dt'].

Berry [1] showed, for a cyclic adiabatic evolution, the phase

T
6=—i/ < n|n > dt’
0

is independent on the choice of the state |n(t) > and therefore it reflects a
geometrical property of the parameter space of which H(x(t)) is function.

In the vicinity of level crossings, as can be easily seen, the adiabatic
approximation (7) is invalid. In these cases one usually assumes diabatic
Landau-Zener dynamics. In papers [5],[11] the mutual influence of collec-

tive and intrinsic degrees of freedom is investigated and it is shown that

the transition region between the diabatic and adiabatic pictures of the
interaction exists and it is 1mp0551b1e to pass smoothly between adlabatlc
and diabatic dynamics.

. We study the problem of the level crossing on the basic of exactly
solvable models within the adiabatic approach. Using the results of [7] —
[9] we shall write down an algebraic scheme of the solution of the para-
metric iniverse problem in the adiabatic representation and construct a
lot of potentials V(z,y) for which solutions|@(z;y) > to the parametric
Schrodinger Eq.(2) in a closed analytic form can be found. Thereafter, for
a given functional dependence of spectral characteristics {€,(z), S(z, k)}
on dynamic variables z, we can trace the behavior of matrix elements of

‘the operator of induced connection (6) when the levels move towards the

crossing in both approaches: the consistent adiabatic one and in the case
of the system evolving according to (1), (2).

In the cons1stent adiabatic approach, the parametnc dependence of
potential curves &;(x) on »slow” variables should be determined by solving
the inverse problemn for a system of gauge equations ‘

(VT —iA(x))2+ V(x)®1~ PYF(x) = 0, P = diag(ps), e

generated by the procedure of adiabatic expe.nsion of the wave function
WX =< ol >= [asnBe O

of the total Hamiltonian H over eigen states of the self-adjoint parametric
Hamiltonian hf

Wl6nxi3) >= Ex0l6nxiy) >, W) =~y 4 Vixy). (10
The matrix elements v ' ' R
Apm(x) =< ¢a(x;.) i Vx|dm(x;.) >, ' (11)

are components of the connection operator A on the Hilbert fibre bundle
H(B, F,,m) realizing the coupling between channels in contrast with the
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ordinary coupled channel method. The matrix components
Vam(%) =< ¢(3; A (x)|¢m(X; ) >= En(%)6nm (12)

are the diagonal elements of effective scalar potential coinciding with the
energetic levels €,(z) of the "fast” Hamiltonian (2) or (10). The connec-
tion operator A represents an effective gauge field in the ”slow” system of
equations  and  generates the unitary  bilocal operator
U(x,X,) = Pexpi [ A(x')dx' acting from F, to Fy. Upon such gauge

X
transformation, the effective scalar and vector potentials V(x) and A(x)
are transformed as :

VI(x) = U)WV @)U (x), A'(x) = U) AU (x) — U (x)V U

Now, using the unitary gauge transformation, one can annihilate 4 and
reduce the system of equations (8) to the system of ordinary equations for
the new coefficients ' = UF coupled by -means of the effective potential
matrix V'(x) : ' o

VR4V - PIF(x,P)=0. (13)

Now one .can apply the methods of the ordinary multichannel inverse
scattering problem because the completeness is valid for the physical and
regular solutions of the system (13). o

~ At the beginning we reconstruct the potential matrix V' (z) and find
the solutions F” from the set of scattering data S(P);{E4, %} corre-
sponding to the system (13), using the multichannel Gel’fand-Levitan—
Marchenko equations. Now in order to find energy terms (12) £(z) and
the matrix of diagonalization U/ (z) it is necessary to solve the algebraic
eigenvalue problem

V(@)(z) = U(z)€ (). (19

In this method the potential curves £(z)Vz € B are found from the solu-
tion of the inverse scattering problem for the system of equations, instead
of the solution of the direct eigenvalue problem for the reference equation
with the parametric Hamiltonian (10). ‘

With the help of the technique of degenerate kernels we will present
an example of a two-dimensional exactly solvable model via generalizing
the Bargmann-potential technique to the parametric family of the in-
verse problems and the system of coupled equations.: Let us reconstruct
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reflectionless potential matrices with respect to slow variables. At the
reconstruction of such potentials in the kernel Q(z, z') only the sum over

“bound states remains

N

Qij(z,z') = Z exp(—n?x)'y}"yf exp(—n}x). _ (15)
)

From the matrix analog of the inversion main equations

K(z,z") + Q(z;2") + /00 K(z,2")Q(z",2")dz" =0, - (16)
o d .

V(z) = V(z)- 2-&;[& (z,z), (17)

¢k, x) :g?) (k,z) + /00 IK(z, xl? ;,) (k, x’)d_’[;’,' , | ‘(18)

Vit is easiiy obtained the ekplicit form for the elements of the potential

matrix and the solutions [12]

dz

d vy e |
V,'J(z) =92 Z exp(—Kix)y; PW\1 (x)'y;\ exp(—n?z), (19)
. vA

vy exp(—k;x) [, exp(=(kj % iky)a')dz!
1+ Z;"('y?/Zni) exp(—2k;z)

F(k,z) = exp(£ik; X)6;; —

i
(20)
where

Rr
e

m ;
P,y =6+ Z ;ﬁcxp(—-(ﬁ;ﬂ + K£3)7).
F 7'

- Now one can obtain £(z), U(x), and é(z) from diagonalizing procedure

(14) of the potential matrix V'. Let us consider two channel exactly
solvable model: the channel indices take only two values 7, j = 1,2. The
diagonalization matrix U(z) is

_ [ cos 6(T)/2 sin 6(z)/2-
Uz) = (—sin 8(x)/2 cos 5(T)/2) ’ (21)

[



Here
6(z)/2 = /Am(.’lf’)d.’lf
From the relation (14) follow

E1cos? §/2 + Eysin? §/2 (€1 — Ey)cos §/2 sin 6/2 (Vi Vi,
(&1 — E)cos 6/2 sin §/2  Ersin? §[2+ Excos? 6/2 ) ~ \ V4, Vi, )°

" As a result, we obtain

tg 6(:::) vﬁ%a or sin é(z) = %%Z(—@, (22)
£14(e) = 3 IVAE) + Vilo) & 51 2] 29

This is the simple and fruitfut model for investigating the level crossing
problem using analytical expressions (19) and (21).

‘Really, let us consider the transparent potentlal matrix with one bound
state v = 1 and one threshold; E; = —n +¢€,7 = 1,2,F; =-05,
€1=0,eg = 0.25 , 7 = 1,73 = 0.001. The elements of the potentlal ma-
trix V; ard the corresponding terms &£;(z) are presented in Fig.1, Fig.2.
The vector potential elements Ay = —Ajy; and argument §(z) are shown
in Fig. 3,4, accordingly. One can see that the matrix elements A are
singular at the points of the level crossing.
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The behaivior of é(x) is very interesting. By the first level crossing
6(zq) — 6(x1) changes 27 and the function changes its sign

F1 (IL‘Q) _ Fl (1121) '

(hen)=-(Ae): | (24)
The change of the function sign is topological effect, arising in the simple
case of the two-channel system in the one-dimensional space of slow vari-
ables z € B. As a result of the second crossing, 27 is once more added to
6 and the function sign is reconstructed. Therefore in spite of the evident
appearance of topological phase at the level crossings lt is not detected
in our closed physical system.

The multidimensional potential V(x) can be reconstructed and func-
tions of the moving vector ¢(z,y) found by means of the parametric in-
verse problem for (10) in Marchenko or Gelfand-Levitan approaches with
the scattering data {s(z, k), 72(z), Ea(x)} or spectral data {p(z, k), NY(X),
&(z)}. The peculiarity of the nonstandard parametric inverse problem is

~ that the spectral data, on which potentials are restored, are dependent

”slow” coordinate variables z. The rational Jost functions



—ia(x)
| F(a; k) ka @ (25)
will be reply the Bargmann type potentials (for details see [9]).
Reflectionless (transparent) potentials along the fast variable are de-
~ scribed by the one-dimensional inverse problem along the whole axis with
the zero-th reflection coefficient, S/ = 0. The transmission coefficient
ST with the absolute value equal to unity is a ‘rational function. Then

Q(z;y,9)

Qziy,y) = 51; /_ 57 (o Ry explik(y + o )k (26)

+ Y @) exploma (@) -+ o),
will contain only the contribution of states of the discrefe spectrum
Q) = 3@ el + ) (2)
Analogously, for K(x Y,y ’)'we have' | | ) -
K(zy,9) = Z%,(w)f(mn(m) y) exp[=kn(z)y]. (28)

Symmetncal transparent potentials and accordlng wave functlons are
completely defined by the’ energetic levels [13] due to the fact that the
normalized functions can be determined by the energetic levels

km(z) + Ka(z)
km(Z) — Ka(z)

7A(8) = iRe5S (K) tmin ) = 252 ) I | (29)

The normalizations, in more general case of nonsymmetrical transparent
potential, are defined by the ordinary normalizations M? and the matrix
of transformation U(z)

7@ = [ Ifina(a),y de—Zun, M Ua(z).  (20a)

For the Jost solutions at k = ix,(z) we get from the main equations
of the parametric inverse problem the following system of the algebraic
equations

é(ikn(z),y) Zexp (—&;j(z) J) (x,y) (30)

with the matrix of the coefficients Pj,(z;y) parametrically depending on

z:
7n(@) expl—(%n(z) + K;(2))y]

kn(Z) + K;(z)

Upon substituting f(m,,(:L) y) into K'(z;y,y') (28) and using relations of

the inverse problem [9], we get

Pn](mv y) = 6nj +

. . 2 ’

Vi) = 2 mdeliPell, 0 @)

fe(z;k,y) = exp(tiky) _ (32)
+ 37 22(a) expl—ra(a )yl P (x; y) SRLCRI) £ R)y]

Now using the potentlal curves and their normalizations determined upon
solving the inverse problem (16) - (18) for the slow system of equations
and diagonalization procedure (14) we can reproduce the model mul-
tidimensional potential in an explicit form and get the corrospondmg
solutions. In particular, in the considered case of two potential curves
we substitute relations (23) and (29) into (31) and (32) and obtain two-
dimensional exact models in the closed analytic form. -

- The matrix clements (6) or (11) of the induced connection A can be
computed in terms of the analytical cigenfunctions of Eqs. (2) or (10) for
a given functional dependence of scattering data {£,(z), uz( r),

S(z,k)} on the slow coordinate variables . After that the transition
amplitudes c(t) can be defined from (4). Consider the case of two crossing
terms defined as follows & = 2/ch (t/2),& = 1/ch*(x/3). The behavior

~ of matrix elements A12 = —AH is pictured on the fig.6. They are singular

in the points of level crossing. Forthe comparison we present situation

‘without level crossing (fig.5): &£ = 2/ch?(x/2), & = 1/ch? (x/3) 4+ 0.5.
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Fig. . The mamx elements Fig.8. The matrix elements
ot’ the Induced connection A without level crossing. of the Induced connection A with levet crossing.

The method of investigating the level crossing problem with the use of
analytical expressions in the fsamework of the adiabatic approach is sug-
gested. Level crossings induce nontrivial connections and, consequently,
monopole gauge potentials, which can produce an important effect on
the behavior-of physical systems. By the analyzing of the simple two-
channel exactly solvable models it was shown that the system acquires
the topological phases at level crossings which take place even in the
one-dimensional slow moving cases but it is not manifested at two level
crossigs. , k
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