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• The topological nature of the space of complex systems, characterized 
by the interaction of fast (intrinsic) degrees of freedom _with slow ( collec­
tive) degrees of freedom, gives rise to monopole gauge potenti~ls and, as 
consequences, to such interesting phenomena as' noni~tegrable' geomet:. . 
ric phase [1, 3] discovered by Berry [1], the molecular Aharonov.:Bohm 
effect [4] and chaos for the collective dynamics [5]. The conditions for 

. the existence of such phenomena very often occur if real or avoided level 
crossings take place. Here we investigate the role of the level crossing for 
collective motion in the presence of fast dynamics of separate particles 
in a system in the framework of the adiabatic representation method. It 
enables one to take into account· the mutual influence of siowly varying 
collective fields and rapidly varying intrinsic fields. 

In the adiabatic approach, solution of the whole scattering problem 
is reduced to two effective scattering problems in the si:mces of a lower 
dimension, then the original one M =Bx M. The N-dimensional inverse 
scattering problem in the adiabatic representation is formulated on the 
basis of consistent formulation of the both multichannel inverse prob­
lem for the gauge system of equations describing "slow" dynamics of the 
complex system and the parametric problem for ,;fast" dynamics [6] -
[9]. Based on the multichannel and one-channel technique of Bargmann 
potentials for a system of coupled equations and the parametrically de­
pendent ~quation, the method of analytic modeling of effective interac­
tions in complicated quantum systems with some degrees of freedom and 
finding appropriate solutions has been developed in [7] - [9]. 

Suppose that the state jw(t) > of the system' evolves according to the 
Schrodinger equation 

in djw(t) > = H(t)lw(t) > . 
dt 

If <Pn(x(t); y) are solutions to the equation 

H(x(t))l<Pn(x(t); y) >= £n(x(t))l<Pn(x(t); y) > (2) 

and form a complete orthonormal set {l</>n(x(t), y) > }, with elements 
depending on x = x(t) parametrically; then 1¥ can be given [10] by the 
expansion 

•' . 

jw(t, x(t), y) >= ~ cn(t)exp(-kit £n(x(t'_))dt') l<l>n(x(t); y) > . (3) 



Upon substituting this expansion (3) into the equation (1) with an ac­
count of orthogonality< nlm >= Onm \/x of the eigenfunctions l<Pn(t) >= · 
In( t) > of H we arrive at the following system of linear differential equa­
tions for the expansion coefficients en ( t) 

in dc~y) = -£n(t)cn(t) + {-in L <min> Cm(t) (4) 
m 

+ L < mlHln > Cm(t) }exp[-{ it (£n(t') - Em(t'))dt']. 
m 0 

With an_account of (2) the system of equations for cn(t) may be written 
in the form 

·' . t . 

en(t) = LBnm(x(t))exp[-k 1 (£n(t')- £m(t'))dt']em(t). (5) 
m · 0 . 

Here, the matrix elements of exchange interaction 

Bnm(x(t)) =< nlm >= Anm(x). x(t), 

are generated by basis functions In> of "instantarteous" Hamiltonian (2) 
where 

Anm(x) =< n(x)l "vx lm(x) >. (6) 

. Differentiating eq.(2) with respect to t for n =/- m one can find 

<min>=< ml.Hin> /(£n - Em)-

In the adiabatic approximation, when the admixture of other states to a 
given state n is small, evaluation of nondiagonal elements of the relation 
(5) leads to the following condition 

<ml.Hin> 
(£n - £m)2 ~ 1. 

Then the relation ( 5) yields 

Cn(t) = Cn(O)exp[- lt < nln > dt']. 

Berry [1] showed, for a cyclic adiabatic evolution, the phase 

8 = -i 1T < nln > dt' 

/i~:t1·;; :r 1,~Its:;/Ii 
· · Y:ri:n1..~ 11.' /'-~ \,l? ":~ "--fi·) 
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(7) 

., 
,), 

is independent on the choice of the state ln(t) > and therefore it reflects a 
geometrical property of the parameter space of which H(x(t)) is function._ 

In the vicinity of level crossings, as can be easily seen, the adiabatic 
approximation (7) is invalid. In these cases one usually assumes diabatic 
Landau-Zener dynamics. In papers [5],[11] the mutual influence of collec­
tive and intrinsic degrees of freedom is investigated and it is shown that 
the transition region between the diabatic and adiabatic pictures of the 
interaction exists and it is impossible·to pass smoothly between adiabatic 
and diabatic dynamics. 
, We study the problem of the level crossing on the ba~ic of exactly 

solvable models within the adiabatic approach. Using the results of [7] -
[9] we shall write down an algebraic scheme of the solution of the para­
metric inverse problem in the adiabatic representation and construct a 
lot of potentials V(x, y) for which solutionsl<f>(x; y) > to the parametric 
Schrodinger Eq.(2) in a closed analytic form can be found. Thereafter, for 
a given functional dependence of spectral characteristics {£n(x),S(x, k)} 
on dynamic variables x, we can trace the behavior of matrix elements of 
the operator of induced connection (6) when the levels move towards the 
crossing in both approaches: the consistent adiabatic one and in the case 
of the system evolving according to (1), (2). 

In the consistent adiabatic approach, the parametric dependence of 
potential curves £;(x) on "slow" variables should be determined by solving 
the inverse problem for a system of gauge equations 

[-(v' ® I - iA(x))2 + V(x) ® I - P 2]F(x) = 0, P = diag(pn), (8) 

generated by the procedure of adiabatic expansion of the wave function 

l-ip(X) >= In>< nl-ip >= L j <Pn(x; y)F~(x) · (9) 
n 

of the total Hamiltonian H over eigen states of the self-adjoint parametric 
Hamiltonian hf 

h1(x)l<Pn(x;·y) >= En(x)lcbn(x; y) >, h1(x) = -~y + V(x,y). (10) 

The matrix elements 

Anm(x) =< <Pn(x; -)liv'xl<Pm(x; .) >, (11) 

are components of the connection operator A on the Hilbert fibre bundle 
1i(B, Fx, 1r) realizing the coupling between channels in contrast with the 
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ordinary coupled channel method. The matrix components 

Vnm(x) =< <Pn(x; .)jh1(x)l<Pm(x; .) >= En(x)c5nm (12) 

are the diagonal elements of effective scalar potential coinciding with the 
energetic levels En(x) of the "fast" Hamiltonian (2) or (10). The connec­
tion operator A represents an effective gauge field in the "slow" system of 
equations and generates the unitary bilocal operator 
U(x, x 0 ) = P exp i J A(x')dx' acting from :Fx. to :Fx. Upon such gauge 

X 

transformation, the effective scalar and vector potentials V(x) and A(x) 
are transformed as 

V'(x) = U(x)V(x)U-1(x), A'(x) = U(x)A(x)U-1(x) - iU-1(x)'1xU. 

Now, using the unitary gauge transformation, one can annihilate A and 
reduce the system of equations (8) to the system of ordinary equations for 
the new coefficients F' = UF coupled by-means of the effective potential 
matrix V'(x) 

[-'72 + V'(x) - P 2]F'(x, .P) = 0. (13) 

Now one .can apply the methods of the ordinary multichannel inverse 
scattering problem because the completeness is valid for the physical and 
regular solutions of the system (13). . 

At the beginning we reconstructthe potential matrix V'(x) and find 
the solutions F' from the set of scattering data S(P); {En, 1~} corre­
sponding to the system (13), using the multichannel Gel'fand-Levitan­
Marchenko equations. Now in order to find energy terms (12) E(x) and 
the matrix of diagonalization U(x) it is necessary to solve the algebraic 
eigenvalue problem 

V'(x)U(x) = U(x)E(x). . (14) 

In this method the potential curves E(x)Vx EB are found from the solu­
tion of the inverse scattering problem for the system of equations, instead 
of the solution of the direct eigenvalue problem for the reference equation 
with the parametric Hamiltonian (10). 

With the help of the technique of degenerate kernels we will present 
an example of a two-dimensional exactly solvable model via generalizing 
the Bargmann-potential technique to the parametric family of the in­
verse problems and the system of coupled equations. Let us reconstruct 
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reflectionless potential matrices with respect to slow variables. At the 
reconstruction of such potentials in the kernel Q(x, x') only the sum over 
bound states remains · 

N 

Qij(x, x') = L exp(-K7xhf,; exp(-Kjx). (15) 
A 

From the matrix analog of the inversion main equations 

K(x,x') +Q(x;x') + 100 
K(x,x")Q(x",x')dx" = 0, (16) 

o d • 
V(x) = V (x) - 2 dx B.. (x, x), (17) 

0 100 0 

</>(k, x) =</> (k, x) + x K(x, x'~ </J (k, x')dx', (18) 

it is easily obtained the explicit form for the elements of the potential 
matrix and the solutions [12] 

½'.i(x) = 2 d~ L exp(-<xhr P;;"}(xh; exp(-Kjx), (19) 
VA 

F;f(k, x) = exp(±ikjX)8jj' _ 1ili' exp(-KjX) fx
00 

exp(-(Kp ± ikp).1:')dx' 
1 + I:~(,?/2t.:i)exp(-2Kix) 

(20) 

where 

m v A 
~ ~ lj'lj' ( ( V A) ) 

PvA = UvA + L V .A exp - Kj' + "'i' :r . 
j' Kj' + Kj' 

Now one can obtain E(x), U(x), and c5(x) from diagonalizing procC'dure 
(14) of the potential matrix V'. Let us consider two chann<'l <'Xactly 
solvable model: the channel indices take only two vahlC's i,j = 1, 2. The 
diagonalization matrix U( x) is 

U(x) = ( cos o(x)/2 sin c5(x)/2·) . 
-sin 15(.r)/2 cos 8(.r)/2 (21) 
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Here 

8(x)/2 = j A12(x')dx'. 

X 

From the relation (14) follow 

( 
£1cos2 8/2 + £2sin2 8/2 
(£1 - £2)cos 8/2 sin 8/2 

As a result, we obtain 

(£1 - £2)cos 8/2 sin 8/2) = ( V{1 
£1sin2 8/2 + £2cos2 8/2 V21 

2V21(x) 
tg 8(x) = V{

1
(x) - V22(x) OT 

2V21(x) 
sin 8(x) = £1(x) - £2(x)' 

) 1 [ , ( ) , ( ) VMx) ] £1 2( x = -2 V11 x + V22 x ± . 
8
( ) . ' sin x 

V{2) 
V22 . 

(22) 

(23) 

This is the simple and fruitfu} model for investigating the level crossing 
problem using analytical expressions (19) and (21 ). 

Really, let us consider the transparent potential matrix with one bound 
state v = 1 and one threshold; E1 = -KJ + Ej,J = 1, 2, E1 =-0.5, 

E1 = 0, E2 = 0.25, ,} = 1, ,J = 0.001. The elements of the potential ma­
trix V:i arid the corresponding terms £i(x) are presented in Fig.1, Fig.2. 
The vector potential elements A12 = -A21 and argument 8(x) are shown 
in Fig. 3,4, accordingly. One can see that the matrix elements A are 
singular at the points of the level crossing. 
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Fig.1.Elements of the potential matrix. 
Fig. 2. Energetic levels . . 
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Fig. 3. Components of the vector potential.· 
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The behaivior of 8(x) is very interesting. By the first level crossing 
8(x2) - 8(x1) changes 21r and the function changes its sign 

( 
Fi(x2) ) __ ( F1(x1) ) 
F2(x2) - F2(x1) · (24) 

The change of the function sign is topological effect, arising in the simple 
case of the two-channel system in the one-dimensional space of slow vari­
ables x E B. As a result of the second crossing, 21r is once more added to 
8 and the function sign is reconstructed. Therefore in spite of the evident 
appearance of topological phat>e at the level crossings it is not detected 
in our closed physical system. 

The multidimensional potential V(x) can be reconstructed and func­
ti~ns of the moving vector cp(x, y) found by means of the parametric in­
_;erse problem for (10) in Marchenko or Gelfand-Levitan approaches with 
the scattering data { s(x, k), ,~(x), En(x)} or spectral data {p(x, k), N 2(X), 
£(x)}. The peculiarity of the nonstandard parametric inverse problem is 
that the spectral data, on which potentials are restored, are dependent 
on "slow" coordinate variables x. The rational Jost functions 
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. 0 k - ia(x) 
f(x; k) =f (k) II k + i{3(x) (25) 

will be reply the Bargmann type potentials (for details see [9]). 
Reflectionless (transparent) potentials along the fast variable are de­

scribed by the one-dimensional inverse problem along the whole axis with 
the zero-th reflection coefficient, sref = 0. The transmission coefficient 
str with the absolute value equal to unity is a· rational function. Then 
Q(x; Y, y') 

Q(x; Y, y') = 2-j00 

sref(~;k)exp[ik(y+y')]dk 
271" -00 

m 

+ 'L 'Y~(x) exp[-t.n(x)(y + y')], 
n 

will contain only the contribution of states of the discrete spectrum 

·m 

(26) 

Q(x; y, y') = L 'Y~(x) exp[-Kn(x)(y + y;)]. (27) 
n 

Analogously, for K(x; y, y') we have 

m 

K(x; y, y') = - L 'Y~(x)f(it.n(x), y) exp[---'t.n(x)y']. (28) 
n 

Symmetrical transparent potentials and according wave functions are 
completeiy defined by the· energetic levels [13] due to the fact that the 
normalized functions can be determined by the energetic. levels 

,~(x) = iResstr(k)fk=ir.,.(x) = 2t.~(x) II I Km(x) + Kn(x) I 
m:pn Km(x) - Kn(x) · 

(29) 

The normalizations, in more general case of nonsymmetricaL transparent 
potential, are defined by the ordinary normalizations M; and the matrix 
of transformation U(x) 

oo m 

1;;-2
(x) = J lf(it.n(x), Y)l 2dy = LUnj(x)MT2Ujn(x). (29a) 

0 J 

8 

For the Jost solutions at k = i"'n(x) we get from the main equations 
of the parametric inverse problem the following system of the algebraic 
equations 

¢(it.n(x), y) = L exp(-t.1(x)y)P1-;/(x; y) 
j 

(30) 

with the matrix of the coefficients P.;n(x; y) parametrically depending on 
x: 

P. ·( . ) _ 8 . 'Y~(x) exp[-(t.n(x) + t.1(x))y] 
nJ X, Y - nJ + ( ) + . ·( ) · Kn X K,J X 

Upon substituting f(it.n(x), y) into K(x; y, y') (28) and using relations of 
the inverse problem [9], we get 

. . d2 
V(x; y) = -2 dy2 lndet IIPn1(x; Y)II, (31) 

f±(x; k, y) = exp(±iky) (32) 

L 2 _ 1 cxp[(-,.,,1(x) ± ik)y] + 7n(x) exp[-t,,n(x)y]Pn1· (x; y) ( ) .k . 
K·X=fl' aj . J 

Now using the potential curves and their normalizations determined upon 
solving the inverse problem (16) - (18) for the slow system of equations 
and diagonalization procedure (14) we can reproduce the modPl mul­
tidimensional potential in an explicit form and get the corresponding 
solutions. In particular, in the considered case of two potential cun-es 
we substitute relations (23) and (29) into (31) and (32) and obtain two­
dimensional exact models in the closed analytic form. · 

The matrix clements (6) or (11) of the induced connection A can be 
computed in terms of the analytical eigenfunctions of Eqs.(2) or (10) for 
a given functional dependence of scattering data {£11 (:r), 1_~(.r), 
S( x, k)} on the slow coordinate variables :r. After that the transition 
amplitudes c(t) can be defined from (4). Consickr the case of two crossing 
terms definGd as follows £1 = 2/ch2(x/2), £2 = 1/ch.2(:1:/3). The behavior 
of matrix elements A12 = .:._A21 is picturC'd on the fig.6. They are singular 
in the points of level crossing. For' the comparison we present situation 
without level crossing (fig.5): £1 = 2/ch.2 (.1:/2), £2 = l/ch2 (;r/3) + 0.5. 
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~UIS. fn':u~::r:o~~=r~~ A wtthout level crossing. 
Flg.8. The matrtx elements 
of the Induced connection A with level crossing. 

The method of investigating the level crossing problem with the use of 
analytical expressions in the bamework of the adiabatic approach is sug­
gested. Level crossings induce nontrivial connections an~, consequently, 
monopole gauge potentials, which can produce an important effect on 
the behavior of physical systems. By the analyzing of the simple two­
channel exactly solvable models it was shown that the system acquires 
the topological phases at level crossings which take pl~ce even in the 
one-dimei1sional slow moving cases but it is not manifested at two level 
crossigs., 

Acknowledgments. This work was supported by the Internation'al 
Science Foundation (Grant No.NK8000). 

References 

[1] M. Berry, Proc.R.Soc.Lond., A 392 (1984) 45. 

[2] B.Simon, Phys.Rev.Lett., 51 (1983) 1983. 

[3] Y.A. Aharonov, J. Anandan, Phys.Rev.Lett., 58 (1987) 1593. 

[4] C.A. Mead, Phys.Rev.Lett., 59 (1987) 161; Rev.Mod.Phys., 64 (1992) 
51. 

[5] A. Bulgac, Phys.Rev.Lett. 67 (1991) 965; 
D. Kuznezov, Phys. Lett. B 319 (1993) 381. 

10 

[6] V.M. Dubovik, B.L. Markovski, A.A. Suzko, S.I. Vinitsky, Phys.Lett. 
A142 (1989) 133. 

[7] S.I. Vinitsky, A.A. Suzko, Sov.J.Nucl.Phys. 52 (1990) 686 . 

[8] A.A. Suzko, J.Nucl.Phys. 55 (1992) 2446; J.Nucl.Phys., 56 (1993) . 
189. 

[9] A.A. Suzko, Phys.Part.Nucl., 24, No.4, (1993) 485; 
, Proc. Int.Con£. in Lecture Notes in Physics, " Quantum Inversion 
Theory and Applications", (Ed. H.V.von Geramb), 1993. Vol. 427, 
Springer-Verlag, Heidelberg, P.67-106. 

· [10] See, for example, J.-T. Hwang, Ph. Pechukas, J.Chem.Phys., 67 
(1977) 4640. 

[11] D. Kuznezov, A. Bulgac, Annals of Phys. 214 (1992) 180; 
D. Kuznezov, Phys.Rev.Lett. 72 (1994) 1990. · 

[12] B.N. Zakhariev B.N. and A.A. Suzko,, Direct and inverse prob­
lems. (Potentials in quantum scattering) (Springer-Verlag. Berlin Hei­
delberg/New York, 1990, 223p. 2-nd ed.) 

[13] A.A. Suzko, E.P. Velicheva, J.Nucl.Phys. 59, No.7 (1996). 

[14] A.A. Suzko, E.P. Velichcva, "Proc. Int. Con£. on Few-Body Sys­
. terns". Spain, Juni, 1995; Phys.Part.Nucl. 27, No.4 (1996). 

Received by Publishing Department 
on December 27, 1995. 

11 




