


1 Introduction

Due to a remarkable progress in experimental techniques, the new family of
small Fermi systems (SFS) (metal clusters, fullerenes, helium clusters and
quantum dots) was discovered about ten years ago. As was established,
these Fermi systems have a striking similarity with atomic nuclei (see re-
views and conference proceedings [1-9]). The most remarkable feature of
new SFS is that they possess a mean field of the same kind as in atomic
nuclei which allows one to investigate SFS by nuclear theory methods. If
recent investigations of SF'S have mainly been limited to atoms and atomic
nuclei, our present possibilities have become much wider. We have really
obtained a good chance for studying both a common behavior of SFS and
a wonderful variety of their properties.

In the present paper, the particular properties of the new SFS as well as
the application of nuclear _physics methods to their description are briefly
reviewed. The properties of the new SFS and atomic nuclei are continually
compared. The main attention is paid to metal clusters (MC) or, more
precisely, to E'A giant resonances (GR) in this system. In See.2, the sketch
of basic propertics of MC as well as the perspectives of their investigation
are given. Sec. is devoted to the description of EX GR in MC. In Sec.3
the properties of fullerenes, helium clusters and quantum dots are outlined.
In Sec.4 the conclusions are presented.

2 First description of MC

MC are bound systems consisting of atoms of certain metals. We will con-
sider here MC composed from atoms of alkali metals (sodium, potassium
ete.). In alkali metals, valence electrons are weakly coupled with the ions
and thus are not strongly localized in space, like nucleons in atomic nuclei.
The mean path of valence electrons is of the same order of magnitude as
the size of MC. As a result, there are good conditions for forming in MC a
mean field of the same kind as in atomic nuclei. Valence electrons can be
considered as counterparts on nucleons in a nucleus. Just valence electrons
determine the quantum properties of MC.

It is convenient to regard a cluster as a system of valence electrons in
a field of positively charged ions. For alkali metals the ion lattice can,
to good accuracy, be replaced by a uniform distribution of the positive
charge over cluster’s volume (jellium approximation). The ionic jellium is
"frozen”, i.c. has no any intrinsic excitations. The jellium approximation
greatly simplifies an investigation of MC. It works best for sodium clusters
where the coupling of valence electrons with ions is especially weak.



Some basic characteristics of MC are presented below (in atomic units
of energy, 1 a.u.= 2Ry = 27.2 eV, and length, 1 au.= h%/me? = 0.5204 =
0.529 - 10~'m). The MC radius is given by R = rys- N1/3. Here, N is the
number of atoms in the cluster; ryg is the Wigner - Seits radius that is
connected with the bulk density nt by the expression nt = (4/3mr. )L
In what follows, we will mainly consider sodium clusters. For sodium,
rws = 3.93 a.u. and the radii of sodium clusters with N=20-200 are be-
tween 5.6 - 12.2 A. The ionization potential {the minimal cnergy to re-
move an electron from MC) of a sodium cluster 1s 3-4.5 V. Sodium atom
is monovalent. So, in sodium clusters N = N, where N, is the number of
valence electrons in the cluster.

Let us outlince the perspectives of the MC studies (see reviews [3,7] and
references therein).

1) MC with ¥V ~20000 and more have already been produced. Thus,
we have now a unique chance for studying all the way from a single atowm
(through clusters) to a bulk.

2) Small clusters are quantum systems while large MC are more clas-
sical ones. So, MC provide a possibility for studying the transition from
quantum to classical bebavior of SFS.

3) About 30 shells have been discovered in MC which is mmch more than
in nucleil and atoms. As a result, there are wide possibilities for investi-
gation of the physical nature of quantum shells, namely, of the connection
of quantuin shells with their classical counterparts - periodic orbits [10].
Besides shells, the supershells have been predicted [11] and then observed
experimentally [12] in MC. Supershells can exist only in sufficiently large
systems (N > 1000). It is clear that this effect is impossible'in atoms and
nuclei.

4) Like nuclei, MC with open shells have guadrupole deformation. The
experiments have revealed both prolate and oblate spheroidal shapes, as
well as v-deformation. There are theoretical predictions of hexadecapole
and octupole deformations in MC [13,14]. MC provide a unique chance for
studying shapes of Fermi systems with a large number of particles.

5) Like nuclel, positively charged MC exhibit a spontancous fission.
Using the clusters with the charge Z < +14, the critical value of Z2/N ~
1/8 has been empirically found {as compared with the value Z*/N ~ 49 in
nuclei).

6) The pairing in MC, as a possible origin of the experimentally detected
even-odd difference in the ionization potential {at temperature 100-500 K},
is now discussed (sec [15] and refs. therein). The discovery of pairing in
MC could have far-reaching consequences as a new manifestation of high-
temperature superconductivity.



7) MC are rather attractive for investigation of thermal effects. Since
in MC the mass of the ions is much larger than the mass of the valence
electrons, almost all thermal energy is contained in ions. As a result,
valence electrons can be considered as a subsystem embedded into the
thermal bath. Unlike nuclei, we have here the exact case of the canonical
ensemble.

&) The E1 GR has been observed experimentally in a variety of clusters:
small and large, spherical and deformed, neutral and charged. There are
also theoretical predictions for EQ, multipole EA{X > 1) and magnetic GR.
However, cxperimental data for these GRR are rather scarce and unreliable.
GR in MC are discussed in detail in Sec.3. ‘

9) MC of the mixed type, i.e., including atoms of different metals, can
exist. The study of mixed MC is quite interesting in connection with
possible practical applications {new alloys, etc.}).

10} Since MC resemble atomic nuclei, a lot of models and approaches
intensively used in nuclear theory can, after some meodification, be effec-
tively applied to studying MC. At the present time, the modified Nilsson
single-particle potential {for small clusters) {5,16] and Woods-Saxon po-
tential [11,13,14] (for both small and large clusters) are widely used. The
liquid-drop model is used for investigation of fission in MC. The equilib-
rium deformations are calculated by Strutinsky’s shell-correction method
[13,14]. It is interesting that this method is more suitable for MC than
for nuclei. The point is that, unlike nuclei, the Fermi level in MC is in
the middle of the potential wall {Fp...; = -3eV, Vj = -6eV). As a re-
sult, the influence of quasi-bound single-particle levels is weaker in MC
than in nuclel, which improves the accuracy of the shell-correction calcula-
tions. The BCS method as well as the particle-number-projection method
are used for investigation of possible pairing effects [15]. Different ap-
proaches are applied to the description of GR in MC: the sum-rule method
(SRM), the vibrating-potential model (VPM), various forms of the ran-
dom phase approximation (RPA) (including the full RPA, the local RPA
and the schematic RPA), different versions of the sclf-consistent models,
large-hasis shell model, interacting-boson model, fluid-dynamical models
and others (see refs. in [3,7]). This is practically the same set of models
which is used for studying GR in nuclei.

3 Giant resonances in MC

As compared with atomic nuclel, GR in MC have some important pecu-
liarities. :
1} GR represent practically a single type of collective motion which



has been observed 1u MC. In principle, deformed clusters can rotate. But
a very large value of the moment of inertia resnlts in very small values of
rotational cnergies which, being of the same order of magnitude as thermal
energy, are difficult to be observed.

23 Since the rotational bands are not observed in MC, the deformation
splitting of 1 GR is practically a single direct manifestalion of quadrupole
prolate and oblate deformation in clusters.

3) Like mn atoms, the spin-orbit nteraction in MO s negligible and
the spin and orbit collective modes are well decoupled. As o resule. the
investigation of orbital collective modes in MC 15 much casier than in naeler
This feature is important also for application of fluid-dynamical and self-
consistent models which. as u rule, do not take into acconnt spin deprees
of freedom.

1) In mnelel, the investigation of collective excitations is often compli-
cated by the 11(‘(,(1 to restore the translational and rotational invariances
violated by the model Hamiltontan. In MC. the mass of valence electrous is
much smaller than the mass of lons and, as result. the problem of restora-
tion of translational and rotational invariances is not so important.

3) Physical imterpretations of E1 GR in MC and nuclel are very similar
El GR in nucler is cansed by the out-of-phase translations of neutron and
proton subsystemns while E1 GR in MC'is a result of the translations of the
valence electron subsystem with respect to the tonic csul;%wtr-m In spite of
this similarity, the 1 GR energy in MC increases with N, in contrast with
the A=H4 dependence in miclei. Indeed, within the SRM, the energy of El
GR in MC s written as w = \r‘{ il - :?’N,"} where f‘h\-, = [ondrglin
is the number of valence electrons outside the rading R specified by the
1onic jellimm {the so called 7spill-out” electrous) and ng(r) is the deusity of
valence clectrons. The larger the "spill-out”™ effect, the smaller the enerpy
of the E1 GR. Since the number of the "spill-out™ electrons decreases wiih
N, we have the correspotding incerease in the Bl excitation energy. The

Tapill-out™ effect nlos o crucial role i the desceription of EL GR in MO
[2-5.7].

i) As has heen shown in [17], the fragmentation of the E1 GR in MC
depends strongly on the cluster’s charge. Being the strongest i negatively
charged clusters. the fragimentation is drastically reduced when passing to
nettral and then o positively charged clusters, This effect provides the
chance to investipate E1 GR under guite favorable conditions of minimal
fr;Lgm(ml::rLtimL

Let us consider the results of caleudations for E1 and E2 GR. obtained
withiz: the VPM. Being widely used in uuelear physics (see, Le., [18-22], this
model was modified for MC in [23] and then generalized to the description




of GR in clusters of any shape in [7,24.25]. The VP is the self-consistent
version of the schematic RPA with a separable residual interaction. The
self-consisteney condition between variations of the ground state density
and the single-particle potential provides the form of residual forees and the
analytical expression for their strength constants. Being the self-consistent
microscopical model, the VPAL nevertheless. does not need time couswning
calculations.

For the external field f,,(r) = r"‘YA“;J(Q) corresponding to irrotational
add divergency free collective motion (here. },\ﬂ:;(“) =4, +d )A,:(Q)‘
¥, (82) is a spherical harmonic and d = +1). the main VPM equations are
written as [7.23-25]

H=Hy- 1/25 &5 Q0 (MQr (7). (1)

Ap
o) = SV i)+ [ TUE) TS ) g (2)
g el 7= 7l ' i
(5N = = [ QuAG fadF) - g FMIF (3)

and

<< L’\Q\A >2 (e, +q,)
i (eetep)t —uf,
where the ground state density of the valence clectrous is caleulated as
no(F) = Te| [ A > % | kB > and ¢ are the single-particle eigenstate and
cigenenergy of the static single-particle hamiltonian Hy and & is the root
of equation {4). Egs. (1)-(4) deseribe the Hamiltonian. the residual forces.
the inverse strength constant of these forees and the dispersion equation,
respectively. If the Coulowb term in {2) s neglected. we have the VP
equations for isoscalar EA GR in atowmic nnclei {21.22.24]. So. the VPN s
suitable for studying EA GR in both MC and nnelet [24].

In Figs. 1-3 the results of the VPM caleulations for E1 and E2 GR 1
deformed sodium clusters (oblate Nay and prolate Nayg) are preseuted
[25]. The calcudations have been performed with the Woods-Saxon single-
particle potential

‘X")Ijl =2 (HE)A“})—I (4)

L.YU
1+ r‘.r‘p[(l‘ - R(Q)}/”“]

with R(§2) = Ry(14o+5} 2U(sz)+p’,. 2ol Ry = ro N and values of the
paramcters Uy = 6V, 1y = 2.254 [11] awd ag = 1.04 [23]. Following [26].
the parameters of quadrupolv du(l hexadecapole deforimation were taken
to be equal to Gy = —0.23 and g, = 0.02 for oblate Nag and 3y =040 and

Vo(r) = (3}
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Fig.1 The strength function s{£1 w) = (Fl.w) for E1 excitations iu
Nuyy [25]. The plots are given for each projection g = 0,1 and for the tolal
case (bottom). Solid and dashed lines represent the results obtained with

and witheut the residual interaction. respectively.
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B4 = 0.06 for prolate Nass. The results in Figs. 1-3 are presented in the
form of the strength function [25}

b BAp,w) = Y wi B(EAp, gr — wi ) plw - wi) (6)
7

with the weight factor p(w —wy) = EI;WW. Here, B{EAp.gr -+ wi)
is the reduced probability of the EXxy transition from the ground state
to the one-phonon state wy, A is the averaging parameter (to be equal to
0.05eV in the present calculations).

The results for E1 excitations are depicted in Figs.1 and 2. The strength
function b;( E1p,w) is given for two cases: with and without the residual in-
teraction. In the latter case, K,E;\'u) =0 and E1 excitations are determined by
particle-hole transitions of noninteracting valence electrons. Then, the El
resonance is localized in the region 0.8-1.8 eV that is muich lower than the
experimental values (experimental data {27] exhibit the two peak structure
with the energies 2.56 and 2.94 for Najg and 2.29 and 2.93 ¢V for Nay).
The energy 0.8-1.8 ¢V is a typical energy interval between neighbour shells.
This interval corresponds to E1 transitions with AN,, =1 where N, is the
principal shell quantum number. The self-consistent residual interaction
shifts the resonance towards the encrgy 2.6-3.3 ¢V which is in accordance
with the experimental values. As is seen from the Figs.1 and 2, the defor-
mation of clusters leads to the same picture as in atomic nuclel. Namely, in
prolate Nagg, the small peak corresponding to vibrations of electrons along
the z-axis of the spheroid has lower energy as compared with the large peak
corresponding to vibrations of electrons along the x- and y-axes. In oblate
Nayg, the opposite picture takes place. Due to the deformation splitting,
resonances in Najg and Nasg demonstrate the substantial Landau damp-
ing. The experimental deformation splitting is well reproduced although
this is mainly a merit of the single particle scheme. The analysis of the
structure of the main peaks shows that these peaks are composed from
many particle-hole excitations, i.e., have a collective nature.

Figs.l and 2 show that El excitations have pronounced high-encrgy
peaks which are well separated from the main E1 resonance. These peaks
exhaust a large amount, up to 30%, of the model-independent enecrgy-
weighted sum rule which somewhat overestimates the experimental valne
10-20%. In spite of this discrepancy, the existence of the high-energy peaks
seems to be reasonable. This is a peculiarity of MC that the long-range
Coulomb forces promote the interaction between remote electrons and thus
favour AN,, = 3,5, ... transitions and formation of the high-cnergy peaks.
The high-energy strength seems to be maximal in clusters of a moderate
size {from tens to several hundred of atoms). Small clusters have not
enough number of shells to provide noticeable high-cnergy strength. On
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Fig.4 The single-particle potential in Cyy [36].
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the other hand, in very large clusters the energy intervals between shells
are too small to result in any sizable AN, effects.

In Fig. 3, the strength functions by( E2p,w) for E2 excitations in Nagg
arc presented [25]. For the first time, the calculations were performed
by taking into account the fragmentation of the E2 strength. It is seen
that the unperturbed (particle-hole) E2 excitations are mainly formed by
E2(AN; = 2) transitions with the energy about 2 eV. The residual in-
teraction shifts the strength to the energy 3.5 eV. The important point is
that E2 GR is not much fragmented so that this GR has a good chance to
be measured in the (¢,e') reaction.

We see that, in spite of numerous interesting peculiarities mentioned in
the onset of this subsection, EA GR in MC and atomic nuclei are rather
similar. One can expect more differences for orbital MA GR. In MC,
the decoupling of orbital and spin degrees of freedom and possibility to get
considerable orbital moments in large clusters can lead to a new interesting
physics. The fluid-dynamical models derived in nuclear physics (see, e.g.
[7,28-32]) can be effectively used in this field.

4 Fullerenes, helium clusters and quantum dots

Let us briefly consider other members of the SFS family: fullerenes, 3He
and 4He clusters and quantum dots.

Fullerenes. About ten years ago a unique experimental technique
was developed to produce atomic clusters of virtually any element of the
Mendeleev’s table. The most surprising results were obtained for carbon.
It turned out that beginning from N=40 only clusters with an even num-
ber of atoms are stable. These carbon clusters have been named fullerences.
The cluster Cyy turned out to be especially stable, which allowed one to
consider N==60 as a magic number and to announce Cy, as a fourth state
of carbon together with diamond, soot and graphite. This cluster has the
exotic form of a football, i.e., of a sphere with the radius of 4A and with
the 34 hole inside. The geneml infermation about fullerenes can be found
in refs. 11,33-35].

The carbon atom has four valence electrons: three with strong ¢ bounds
and one with a weaker 7 bond. In Cg, the m-electrons form a subsystem of
60 interacting electrons. They determine such important properties of the
fullerene as ionization potential and conductivity. In analogy with MC, the
rest ionic subsystem of Cyy (including the 180 decply bound ¢ electrons)
can be considered in a good approximation as a uniformly charged jellium.
The external ionic potential and the interaction between z-electrons create
the self-consistent mean field for the 60 m-electrons. This mean field is

exhibited in Fig.4 {36}.
11



Collective translations of the n-electrons with respect to the ionic jellium
form E1 GR. This GR has recently been observed in crystalline Cey around
6-7 eV exhausting about 1/2 of the integrated 7 oscillator strength {37,38).
Besides the E1 GR formed by the 7-electrons, another broad resonance at
about 25 eV has been ohserved and interpreted as the E1 GR formed by
all the valence electrons (7 + o electrans). This resonance has alse been
observed at about 20 ¢V in photon ionization experiments on free Cyg [39].

Both the #n and 7 + ¢ E1 GR have been caleulated within different
approaches widely used in nuclear theory: SRM and RPA (sec, for example.
[36,40,41]). The results of the RPA calculations for the 7 E1 GR are
presented in Fig.h [36]. It is intcresting that these results practically do
not. depend on the thickness of the Cgy sphere. This means that the 7 E1
GR 15 mainly of the surface nature. It is worth noting also a large amount.
up to 33%, of the "spill-out” elecirons in Cyy [36]. .

Fullerenes attract much attention now. To a large extent, this is con
nected with possible new carbon-based technologies (fullerene-eseapsulated
atoms, doped fullerene cages, buckytubes, superconductors, mckyfibers,
ete.,[35]) and with the observation of the high-temperature superconduc-
tivity (18-28 K) in the metals obtained by dopting Cyy with alkali atoms
(see, ez, [42]).

Helium clusters. There are two kinds of helium clusters: (a) collee-
tions of SHe atoms | Le., of fermions, and {b) collections of *He atomws, i.c..
of bosons [1,6,43]. Helium atoms form a self-consistent field with the core-
sponding shell structure. For example, in 3He droplets the shell closures
agree with the haronic oscillator scheme up to N=168 [6,44]. Unlike MC
and fullerenes, the particles moving in a mean field of helium clusters are
not valence electrons but helium atoms. The experimental investigation of
helinm clusters is still in its infancy. The main trouble is that helinn clus-
ters are very weakly bound (for example, the binding energy is about 1.5
K (or 10~1 V) in 7He clusters and still less in *He clusters) which makes
their jonization and subscquent detecting very difficult. So, our present
knowledge of helinm clusters, including their shell structure, is based on
theoretical studies.

The mean field of helium clusters is obtained in close similarity with
the Hartree-Fock mean field calculated in atomic nuclei on the basis of the
Skyrme functional. For example, in [6,44] the sell-consistent mean field
of 3He clusters was obtained in the framework of the recently developed
cffective energy functional employing a realistic finite range mteraction
between helium atoms. In [45,46], the starting point for the mean fiekd
was the cffective IHe =3 He interaction proposed in [47]. This mean field

12
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together with the corresponding particle density is presented in Fig.6 [43].
[t is seen that the single-particle potential in helium clusters has very large
diffusencss. The surface effects in 3He clusters are so large that the clusters
need several thousand atoms in order to reduce, for example, the surface
contribution to the mass formula to about 10% [43].

The E1 GR is absent in helium clusters since this system consists of
particles of one sort. For caleulations of FA(A =0.2.3,...) GR, SRM and
RPA are again used [6.44-46,48]. In Fig.7, the results of calculations within
the SRM for E0 and E2-E10 GR in *He clusters are presented [45].

As compared with atemic mieclei, MC and fullerenes, the study of GR
in helinm clusters reveals at least fonr new possibilities: (i) the compari-
son of GR in quantum systems with fermion and boson statistics, (ii) the
peculiarities of GR in a one-component quantum system, {iii} the study of
GR in very large quantum systems {one can produce helinm clusters witl
the number of atoms N > 10°) and (iii1) the study of GR in systems with
strong surface effects.

Besides GR, there are other interesting branches of the helium-cluster
physics. First of all, investigation of the difference between 3He and 1He
clusters, caused by different quantum statistics. It is known, for example,
that "He clusters are always bound while 3He clusters need a mininum
number of atoms {about N=30) to give binding. Other intersting problem
is connected with possible superfluidicy in helium clusters.

Quantum dots. Modern experimental technique allows one Lo create
at a semiconductor interface (by periodic etching or gating) little quasi-
two-dimensional disks, typically ~ 10004 in diameter and confining 2-200
electrons (see, c.g., [8]). At sufficiently low temperatures, the mean free
path of these electrons is larger than the disk diameter. thus leading to
quantization of the system. These structures are called quantum dots.
Clearly, they can be considered as two-dimensional clusters [2].

(Quantumn dots exhibit E1 GR as translations of electrons with respect
to the disk. The essential feature of E1 GR in a quantum dot is that its
excitation energy does not depend on the mnaber of electrouns, i.e., is not,
influcnced by the electron-clectron interaction [49]. This rather surprising
feature is explained by the fact that the single-particle potential confining
electrons 1s of the harmnonic oscillator form in the r — y plane. It can be
shown that, if the Hamiltonian consists of the oscillator mean field and the
residual interaction (which depends only on the relative distance between
clectrons, the Conlomb interaction in our casc), then the system will absorh
light only at the oscillator frequency [50-52]. This rile has been general-
izedd in [31] for the presence of the maguetic ficld as well: the resonance
frequencies in the magneto-optical absorption spectrum of a gnantum dot

14



with parabolic confinement are independent of the electron-electron in-
teraction and are given by the single-electron transition frequencies. The
calculations for EY GR in [50-52] have been performed within the RPA.

5 Conclusions

The new family of SFS (mnetal clusters, fullerencs, 3He and *He clusters
and quantum dots) discovered about ten years ago increases much our
possibilities for investigation of both general and particular properties of
Fermi systems. Together with nuclel and atoms we have now a wide variety
of SFS: '

with stroug (nuclei) and Coulomb {atoms and new SFS) imteraction;

consisting of ferrnions and bosons (*He and 1He clusters);

two-dimensional {¢uantum dots} aud three-dimensional (other SFS);

with very large numbers of particles {MC and helium clusters);

with moderate (nuclei, MC) and strong {helium clusters) diffuseness
of the surface;

saturated {nuclei and MC) and with behavior of quantnm gas (atoms);

- of exotic form (80C};

one-component (helium clusters) and two-component (other SFS).

All these STS have a commeon property: the mmean path of their particles
is of the same order as the size of the system, which creates conditions fur
quantization of the system and forming the mean field like in atomic nuclei.
Except atoms, all these systems possess the saturation property (ncarly
constant density). This allows one to use for their study the powerful
potential of nuclear theoretical physics.

This talk is only a brief sketch of the properties of the new SFS with the
aim to present the first information and to attract attention to this really
exciting field. We believe that the appearance of the new family of the SFS
as well as the possibility to nse for their investigation the large experience
of unuclear physics provide very favourable conditions for investigation of
fundamental properties of Fermi systems and will lead to discoverics of
fundamental character. The discovery of supershells is the first example.

It should also be mentioned, that new SF'S are very promissing for prac-
‘tical applications. There arc interesting possibilities for aerosols, powder
technologies, catalysis, superconductivity, etc.. The nanometer size of the
new SFS is typical of the modern microelectronics.
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