


1 Introduction

The vibrating potential model (VPM) has been used in nuclear physics
for a long time (see, for example, [1-9]). This model has an advantage to
provide a self-consistent description of collective excitations without time
consuming calculations. In the VPM, the residual separable forces and
their strength constants are consistent with the form of the single-particle
potential including all its deformation distortions. This is very important
for the description of collective excitations in deformed and, especially,.
in superdeformed nuclel.

Up to now, numerical calculations within the VPM were mainly lim-
ited to the case of the harmonic-oscillator single-particle potential with a
quadrupole deformation. In these studies, the doubly-stretched-coordinate
to(:hhique was often used to transform the model equations to the form
corresponding to the spherical system (see, c.g. [7-9]). However, this
technique has not been developed for nuclei with other deformations,
¢.g., for the cases when both quadrupole and hexadecapole deformations
are important. A more general version of the VPM has recently been
proposcd in [10-12] on the basis of the multipole expansion of a single-
particle potential and ground state density. This version can be applied to
systems (atomic nuclei and metal clusters) with any kind of static defor-
mation (spherical systems are also covered) and with any single-particle-
potentials (harmonic oscillator, Woods-Saxon, etc.). In this work, we
present the VPM equations for atomic nuclei. In addition, the isovec-
tor interaction will be taken into account and the generalized strength

function method {SFM) will be incorporated into the VPM scheme. The
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SFM allows us to avoid solving of the VPM equations for every state.
thus drastically simplifying the calculations. The model will be applicd
to the description of E2 and E3 isoscalar GR in "Dy, "8y and G
with normal deformation and superdeformation (3, = 0.6). Nuclei '8,
and ! Gd are chosen to check the VPM description of GR at normal de-
formation while the nucleus ¥ Dy is taken to clucidate whether E2 and
E3 GR survive at superdcformation (a superdeformed rotational bamd

was observed in 2Dy in [13]).

2 Main equations

A brief sketch of the VPM will first be presented. Following [6,10-12], we
consider the simplest case of the irrotational and divergence free collec-
tive mode corresponding to the external field f,(F) = r’\YA’L(Q). Here,
YI\‘L(Q) = Y,() +d- Y;L(Q) where ¥),(€2) is the spherical harmonic
and the coefficient d = £1 assures the hermiticity of the Hamiltonian.
Requiring variations of the single-particle potential and density to be
consistent (nuclear self-consistency), one can develop the VPM equations
of the same form as the schematic RPA with separable forces [6,10-12].

Then, the Hamiltonian is written as

Ap Ap T r ]
H=H -1/23 3 (5" + 77530000, (1)
Ap Tt
where
Q) = TViN) - T ) (2)



and
P = 5 [l @RE - i
= -3 [ @O Il e (3)
The dispersion equation is
s R = XED? = (1= s X0 (1= i Xu) =0 (4
where
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Egs. (2)-(3) determine the self-consistent residual forces and the in-
verse strength constant of these forces in the isoscalar case. It is seen that
in the VPM the residual forces (2) are consistent with the form of the
single-particle potential VO(T)(F) and the nuclear self-consistency provides
the expression for the strength constant ng # In (1), Hp includes the cen-
tral potential V F), the spin-orbital interaction and pairing; & ,()A * and
fc(l)\'“) are the strength constants of the isoscalar and isovector residual
forces; T is equal to -1 and +1 for neutron and proton systems, respec-
tively. In (2) and (3), n (T} (7) = 3.4 | | k > |? is a neutron (proton) ground
state density with | k& > being a wave function of a single-particle state k.
In (5), €xpr = €x+€p, €¢ is the one-quasiparticle energy, gy = ugvp +up vk,
w; and v; are the Bogoliubov transformation coefficients, wy, is the root
of equation {4). Since this paper is mainly devoted to the description
of isoscalar GR, the isovector forces are treated in a simplified man-
ner, i.e., without the self-consistency. They are taken of the same form

as the isoscalar forces, and their strength constants are calculated as
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n(l'\“ )= ,\rc(())'” ) where the coefficient a is adjusted so as to reproduce the
experimental excitation energy of the isovector EA GR. Following the
experimental systematics for isovector GR, win? = 120 — 130477 MeV
and w)i? = 1954~ 13 MeV, one gets @y = —1.3 and oy = —3.0.

Using the multipole expansion for the single-particle potential Vjy(r) =
S Zm_fr (MY (Q) and ground state density ng(r) = > Zm R (1)
Y2 () (hereafter index 7 is omitted for the sake of simplicity), one gets

for the operator (2) [10-12]:

Qaua(T) = ZYLM(Q > Q) (6)

Im
where
rmd )\(2)\ — 1) LAf
QﬁL!( ) (2A+1) m(cfm)\,u ( ) C.!'m,\ ;1)
i dv;'m 2 . —-
[MﬁL)I dr it iﬂ‘/*'r)(u:)rme’”A % {7)

Here, Cf;n“ﬁ is the Clebsch-Gordan coefficient, M,\u = AHJ—B),“, M,\r)r =
I+ Ay + (I+1) By and

-1
l

o1 -1 A—-1 L y
Ba = 12— 1 CHo - 9)
ALt A l 1 {—10X-10 (

Expressions (6)-{7) show that the coupling of the Ap excitation with

F4+1 X L o
Az = V(I + 120+ 3) N : “Cio-10s (8)

the spherical (I = 0) and deformed ({ = 2,4,6,...) parts of the single-
particle potential leads to the appearance in the residual forces of the
famnily of branches with the moments | A—{ |< L < A+! and parity (—1)*.

It is seen that duc to the self-consistency, the residual interaction includes
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all the deformation distortions of the single-particle potential. In the
simplest casc of the harmonic oscillator potential, the radial dependence

of the operator {7) has a widely used form »*.

For other single-particle
potentials (Woods-Saxon, etc.}, the nuclear self-consistency results in a
more complicated radial dependence (see exp. (7)).

In Fig.1, the radial dependence of the main components of quadru-

pole and octupole residual forces in deformed and superdeformed ™ 8m

;nnd )

is presented. This dependence is determined by the operator (\;,(

The caleulations have been performed with the Woods-Saxon potential
[14] at the normal deformation (3; = 0.29 and 34 = 0.06) and superdefor-
mation (9 == 0.6 and 34 = 0). Figure 1 shows that, for both A = 2 and 3
collective modes, the deformation distortions (arising due to the nuclear
self-consistency) and the spherical part of the residual forces are of the
same order of magnitude. It is especially the case for the superdeforma-
tion. This means that the nuclear self-consistency is very important for
the description of FA excitations in deformed and, especially, superde-
formed nuclei.

The calculations for GR imn deformed nuclei are known to be time
consuming. At the same time, experimnental data provide only averaged
characteristics of GR, and thus we do not need a detailed deseription of
every one-phonon state. In this case, the SFM is very useful [15]. This
method allows us to obtain the averaged information about GR directly

from the strength function, i.e., without solving the VPM eqguations for



every state. According to [15], the strength function has the form

b Edprow) = Y wl" B(ENL g7 = wi)p(w — w) (10)
4
with the weight function plw — wy) = ﬁmﬁ)—z Here,

B(EAp, gr — wy) 1s the reduced probability of the EAy transition from
the ground state to the one-phonon state f. The quantity A is an aver-
aging parameter.

Using the technigue proposed in [15], we have obtained for the strength

function (10) the general expression

b EX,w) = Im( Y"“”) (11)
Yau(z) r=wHiA[f2
2 m (__1)7ﬂ+1 1
82 i L e o A ey v
where
~ y’ P Au Ap) (A
Y,\',J(z) — (ng)(z))z(hg #) + & 41",( i) ( .U)X)(m)(z))
Ap A )u Ajt
(X/(\ﬂ)(z)) { J)+K(l #) — 45! i) ( J)X);)(z))
1 X o o (—
+ 2§ — E FEB (XL ), (12)
Vauls) = (1= s X0, (20)(1 — s X5(2)
2"”(X§,:J< 2) - Xf\;t)(zn% (13)
- (r Pk > Pkk'“kkﬂk'
Xoulz) = LAL(’( =2y Z e (14)
T kk'CT

The function X)W(z) has the same form as exp. {3) with changing w),
At - . . .
by the complex value z. In (14), p4 is the single-particle matrix element

for the EAp transition. Expression (11} is valid for m = 0,1,2 and 3.
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The first term in (11) is the contribution of the residual interaction. If
the isovector interaction is neglected, this term has a simple form with
Yiu(z) = nf))'“)(){'m(z))? and Yy,(z) =1-— n(())'“)XA#(z). The second term

in (11) represents the unperturbed strength function.

3 Results and discussion

The strength functions b{FX,w) = bi{FA,w) for A = 2 and 3 excitations
are presented for '%2Dy, 1%*8m and '"®Gd in Figs. 2-6. The cases of
normal deformation and superdeformation arc considered. The normal
deformations are taken from ref. [14] (8 = 0.29 and B4 = 0.06) for
184Sm and %¥Gd and from ref. [16] (By = 0.14 and B4y = 0.02) for 92Dy,
For all the nuclei the superdeformation is taken to be equal to G5y = 0.6
(B840 = 0}. The neutron and proton pairing gaps are chosen to be A, = 1.0
MeV and A, = 0.9 MeV at normal deformation and A, = A, = 0.3 MeV
at superdeformation [16]. A large single-particle basis is used. We take
into account 123 neutron and 136 proton states in the energy range from
-50 MeV to +40 MeV and more than 6500 and 8600 two-quasiparticle
configurations for A = 2 and 3 excitations, respectively. The energy-
weighted sum rule S) = 3, w, B{(EAu, gr — w;) exhausts 80 ~ 100% of
the model-independent estimation Sf\e) = Q:F—EY:IA@A + 122 <P 25 1n
Figs. 2-6, the strength functions are given starting with 2 MeV since
the VPM does not provide an appropriate description of the low-lying
collective states. The reason for the shortcoming is that pairing and
spin-orbital interactions, that are very important for low-lying states, are

not included into the self-consistent procedure.
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Figs.2-4 show that the unperturbed E2 strength is mainly concentrated
in a wide energy region with a centroid at 15 MeV (the unperturbed E2
GR). This bump corresponds to the AN = 2 transitions (N is a principal
shell quantum number) with the energy about 2w where hwy = 41-4- 1/
MeV is the energy distance between neighbour shells. The unperturbed
E3 strength is mainly concentrated at 8 MeV (the low-energy E3 GR)
and 23 MeV (the familiar E3 GR), which corresponds to the AN =
1 and 3 transitions with the energies 1hwy and 3hiwy, tespectively. It
should be noted that the unperturbed E2 and E3 GR are distinct at
both normal deformation and superdeformation. As is seen below, the
residual interaction changes considerably this picture, especially for the
E3 GR.

Now let us consider this case, i.e. the E2 and E3 GR calculated with
the residual interaction. As compared with {12], the present calculations
have two important advantages. First, the isovector interaction is taken

into account. As is seen from Figs.2-4, this interaction shifts part of the
strength from the right shoulder of the GR to higher energics and thus
removes the artificial widening of the isoscalar GR. So, the isovector in-
teraction 1s important for a correct. description of not only isovector but
also isoscalar GR. The second advantage is that the present calenlations
usc the microscopic ground state density no(F) = 3°,_, || k > |? instead
of the simplified expression ng(7) = ny/[1+ ezplr — R(8, ¢)/a]] calculated
in [12] with the parameters of the Woods-Saxon potential [14]. As a re-
sult, the theoretical energies of E2 and E3 GR, being much overestimated

(for 2 and 3.5 MeV, respectively) in [12], are in much better agreement



with experimental data in the present calculations. Indeed. in *'Sm we
have obtained w*=? = 12.5 MeV and w*=% = 21 MeV as compared with
the experimental values wp? = 12.36 MeV [4] and w;? = 19.6 MeV (the
latter was obtained from the experimental svstematics for the isoscalar
E3 GR, wg\;? = 1054717 MeV). For '8Gd, the agreement with exper-
imental systematies for the isoscalar E2 and E3 GR is still better: the
calculations give w*™? = 11.9 MeV and w*=* = 20 MeV as compared with
the experimental values w}=? = 11.9 MeV (the experimental svstematics

cxyp
w}=? = 64473 MeV) and w)2? = 19.4 MV,

Figs. 2-4 show that the isoscalar E2 and E3 GR are well distinct
at normal deformation. The superdeformation increases noticeably their
fragmentation. The E2 GR, being stronger than the E3 GR. remains to
he rather distincet at superdeformation (more in Y 8m and " Gd and less
in %2 Dy). As for the E3 GR, this resonance becomes rather vagne, It
practically disappears in 2Dy, In this connection, one has to note that
the conclusion [12] (based on the preliminary simplified calenlations).
on the E2 and E3 GR being indistinet at superdeforination, should be
softened: it concerns mainly E3 GR in some particular nuclei.

The result that superdeforiation can noticeably destroy the E2 and
E3 GR seemns to be realistic. It should be mentioned, nevertheless, that
this result has been obtained under somne approximations. First of all. the
rotation and corresponding cffects {an alignment, cte.) were not taken
into account. Also, as has been mentioned above, we have derived the
residual interaction starting with the external field fi,(7) = ¥ (Q)

which corresponds to the clectric field in the long-wave limit. 1.e. to



experimental probes, like photons and electrons. It is not clear. if the
present results are valid for hadronic probes, like protons and alpha-
particles. As is seen from Figs.2-4, the unperturbed E2 and E3 GR are
rather well pronounced even at superdeformation. In principle, we cannot
cast aside the chance that hadronic probes will not lead to so dramatic
fragmentation of E2 and E3 GR as in the case of clectric probes.

Figs. 2-4 demonstrate also some other features of the E2 and E3 GR.
First. superdeformation leads to some increase in the energics of the E2
and E3 GR. Second, together with the E2 and E3 GR, the superdefor-
mation influences the low-energy E3 GR located at the energy 5-10 MeV.
This resonance is washed out less than the E2 GR but more than the E3
GR. Third, as was mentioned above, the calculated GR are more vague
in "Dy than in '"Sm and "8Gd. This could be connected with the
specific character of 2Dy where the number of neutrons is rather close
to the magic number. Fourth, the (:al.(:ulated isoscalar E2 and E3 GR
exhaust approximately 15 — 25% of the modecl-independent sum rule Sf\n) .
This contribution does not noticeably change if one passes from normal
deformation to superdeformation. At first sight, the contribution scerms
to be too small. But we should keep in mined that this is a contribution of
the zsoscaler GR to the sumn rule erbracing both isoscalar and isovector
modes.

In Figs.5-6, the strength functions for the K2 and E3 GR in Y% Dy are
presented for every projection u. The cases of normal deformation and
superdeformation are compared. It is seen that a large fragmentation

of these resonances at superdeformation is caused by two reasons: (i) in-
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"Table 1: Contributions (in %) of u-projections of E2 and E3 excitations in ¥2Dy to the
model sum rule Sy {for the whole energy region 0-60 MeV)
Fug = 0.14 Bog — 0.60

pIA=2[A=3|A=2]2=2
0 21 17 23 19

1) 42 32 43 35
20 37 28 34 28
3 - 23 - 18

crease in their deformation splitting and (ii) a considerable fragmentation
of the GR projections themselves. Just the second reason seems to be
mainly responsible for washing out the E2 and E3 GR in superdeformed
nuclei.

In Table 1, the contributions of p-projections of E2 and E3 excitations
to the model sum rule S, are presented for 1®Dy. These contributions
were calculated for the whole energy interval 0-60 MeV. It is seen that the
superdeformation does not change much the results. For both deforma-
tions and both resonances, the main contributions are from projections
with u # 0. This is similar to the case of spherical nuclei where projec-
tions with ¢ # 0 {embracing both +pu cases} give exactly twice as large
contributions as the p = 0 projection. For the GR regions, the ratios

between p-contributions are nearly the same.
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4 Conclusions

The extended version of the VPM is presented. Using the multipole ex-
pansion for the single-particle potential and ground state density and
incorporating the strength function method into the VPM, this version
'provides the description of EA isoscalar GR in nuclei of any shape with-
out time consuming calculations., The model proposed is rather general,
does not need any adjusting parameters and can be effectively used for
studying GR in different kinds of nuclei (deformed and superdeformned
nuclei, , drip-line nuclet, etc.).

The importance of the nuclear self-consistency for deformed and sn-
perdeformed nuclei was demonstrated. The results dbtained for E2 and
E3 GR in deformed '*Sm and '%¥Gd are in good agreement with the
available experimental data and systematics.

For the first time, the recalistic calculations of the E2 and E3 GR in
superdeformed nuclei have been performed. It was shown that at superde-
formation the isoscalar E2 and E3 GR become much more fragmented
and in some cases (the E3 GR in %2 Dy) practically disappear. Since we
used the external field of the electric type, the results obtained concern

the probes like photons and electrons.
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Fig.1. The radial dependence of the operator (,)‘A”f,d(r) for Ay = 20
(top) and Ay = 30 (bottom) in deforimed and superdeformed S, The
main spherical component (! = 0.L = 2) and deformation distortions

(l=2,L=0,24) arc depicted by solid and dashed curves. respectively.
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curve) the residual interaction are presented. The averaging parameter

A s equal to 0.3 MeV.
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Fig.6. The same as in Fig.6 for E3 excitations.

18



REFERENCES
1. Rowe D J 1970 Nuclear Collective Motion (Methuen. London)

2. Bohr A and B.R. Mottelson B R 1975 Nuclear Structure v.2
(Benjamin, New-York)

3. Hamamoto 1 1972 Phys. Scr. 6 266

4. Kishimoto T. Moss J ML Youngblood D H. Bronson J D, Rozsa C AL
Brown D R and Bacher A D (1973) Phys. Rev. Let. 35 552

5. Suzuki T and Rowe D J (1977} Nucl. Phys. A289 161

6. Lipparimi E and Stringari S (1981) Nuel Phys. A 371 130

-1

Sakamoto H and Kishimoto T (1989) Nuel. Phys. A501 205

o

Aberg S {1985) Phys. Lett. B157 9

e

Mizutory S, Nakatsukasa T. Arita K, Shimizu Y R and Matsuvanagi

K (1993) Nuel Phys. A557 125

10. Nesterenko V O3 (1993) Preprint JINR E4-93-338. Dubna

11. Nesterenko V O, Kleinig W and Shirikova N Yu (1994) fzo. Akad. Nouk.
ser.fiz. 58 16

12. Nesterenko V O and Kleinig W (1993) Phys. Ser.. in press

13. Twin P J et al (1986) Phys. Reo, Lett. 5T 811

14. Garcev F A et al (1973) Part. Nuel 4 357

15. Malov L A, Nesterenko VO and Soloviev V' G (1977) Teor, Mat,
Fiz. 32 134

16. Hamamoto I and Nazarewics W (1992) Phys. Let. B297 25

Received by Publishing Department
on April 27, 1995.

19



