


1 Introduction

There are many quantum mechanical systems that are described by axially symmetrical
potentials. Such a system as atoms in a constant magnetic field, the Zeeman effect, was
one of the earliest problems studied in quantum mechanics [1]. Although many numerical
and analytical investigations of this system have been reported in the literature [2], there
is still today considerable interest in its detailed properties, especially in strong magnetic
fields. The main motivation comes from astrophysics [3], where very strong magnetic fields
are needed to understand the physics of neutron star surfaces and white dwarf stars.

The energies and eigenfunctions of deformed nuclei [4] and the electronic shell structure
effects in metallic clusters [5] are descnbed by the Schrddinger equation with axially
symmetrical potentials.

Most quantum systems described by the Schrodinger equation with an axially. sym-
metrical potential cannot be solved analytically. Thus, the solution of the Schrédinger
equation with sufficiently arbitrary potentials of this type represents the main mathemat-
ical problem. Many approximate analytical and numerical methods have been worked.
out. Great progress in the development of computer techniques and effective algorithms
for a numerical solution of differential equations enables us to obtain numerical solutions
for the energy spectrum and wave functions with quite a high accuracy although practical
calculations are usually very laborious and require powerful computers. The main purpose
of these investigations is in the majority the construction of highly accurate numerical.
solutions of the Schrédinger equation for the hydrogen atom in a uniform magnetic field
as well as the energies and eigenfunctions of deformed nuclei and the electronic shell
structure effects in metallic clusters.

Nevertheless, the development of analytical methods is very important because only
analytical methods permit us to investigate qualitative features of quantum physical sys-
tems and indicate effective ways for improvement of numerical algorithms.

In this paper, the method of oscillator representation [6] will be extended to calculate
the energies of the ground and excited states of the hydrogen atom in a uniform magnetic
field of arbitrary strength. We shall see that this method gives very good results in the
lowest approximation for the whole region of the magnetic field.

This paper is organized as follows. In section 2, the method of oscillator representation
for the axially symmetric potential is formulated. In section 3, the energies of the ground
and excited states of the hydrogen atom in a uniform magnetic field are calculated.

2 The Oscillator Representation for the axially sym-
metrical potentlals

Formulation of the problem. Let us consider the Hamiltonian with an axially sym-
metrical potential

H= 2M + V(r,cos8) : (2.1)
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The Schrodinger equation looks like:

[_LM(?%; + "3872 + ; 22) Ve coso)] () = EV(F). (2.2)

Taking into account the azimuthal symmetry of the problem we introduce the magnetlc
qua.ntum number m so that the wave function can be represented .
eiqu

V() = E‘I’m(

r,cos D).
Eq.(2;2).gets the form

({220 L (2 o
oM [\dr2 " rdr 407 a0 T sin®e
+V(r,cos€)}\l';n(r,eoso)=E,’,,\Ilm(r,c050). e (2.3)

Our aim is to® ca.lculate the energy spectrum F,; and to find the wave functlons V,.(r, cos )
" by using the osc111ator representation method.

" The wave function ¥ (r, cos 9) depends on two variables: the radius r = v/72 and the
angle 0. We consider these variables  and 6 in equation (2. 3) as 1ndependent variables.
In order:to get’ the hermitian Hamiltonian in (2.3) over the variable 0 let us mu1t1ply the
equatlon by sin’ 0 and 1ntroduce the new vanable ,

u=In|[t Q
= an2

sdthet ony‘e:getsm ‘ : - .

o J J . N g
<2 _ _ ;
stn [ [d02 + cotHdO] (sm@do) = T

The herinitian'representatien for the Schrédinger equation (2.3) has the form

1 (e ray 1@
2cosh®u \dr?  rdr 2r? du2 mn

o (V(r, tanh w) - Em)} (1, tanh ) = 0

‘I

cosh?u

or i3+ = "o i

1 d? 2d viv+l) 1 d* 2 )/(V+15
{‘ 2‘cosh'2u (F—i—;dr—- r? )—27<W—m + coshzu)

co?}fz " (V(r,tanh(u)) — Em)} ¥, (r,tanhu) =0 - (2.4)

.where a new parameter v is introduced. . -
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The next step is to modify the variable r in equation (2.4) and the wave function
V.. (r,tanh u) so as to get a modified Schrédinger equation having the solution with the
Gaussian asymptotic behaviour (see the details in refs. ([6], [7]). These substitutions are

r=Q°*, \Ilm(r,\ta.nh u) = Q- 0,.(Q,u),

where the parameters p and v can be connected with the behaviour of the wave function
at large and short distances to approximate the Gaussian asymptotics. The Schrédinger
equation takes the form

1 d2 d—1 d
["m(ﬁ@*‘@“'ﬂ -
2 42 viv :
_%2— (W h "12 + C(OS;; 111)) + W(Q,U,Em) q)"‘(Q’u) =0 ’

d=2+p(1+2v),
where the potential W(Q,u, £) equals

MP2Q2p—2

cosh?u

& d-1 d
(i o) =

can be identified with the radial part of the Laplacian Ay in the space R? so that we
can introduce @; as a vector in this space and look for the solution ®,(Q,u) of the
Schrodinger equation (2.5) depending on (? only, i.e. for the ground state in the space
R¢. Thus, the Hamiltonian can be written as

W(Q,u, E) = V(Q,tanhu) = En] . (2.6)

The operator

’ 1
H= —————P - P? 2
2cosh?u + 2Q2 ( wtm
where Q € R? and u € R%.
Our problem is formulated in:the followmg way. We have the Hamiltonian H =
H(E.,.), and we have to solve the Schrodmger equatlon

H(E)®n(Q)1) = €(En)&n(Q,u), s (2.8)

i.e. we have to find the ground state energy e(E., ) According to (2.4), the desired cnergy
E,, is determined by the equation

viv+1)

cosh®u

)‘+ W(Q, u, En). (2.7)

e(Bn)=0. S » (2.9)

Hamiltonian’s in the correct form. The correct form of a Hamiltonian is defined
as follows. Let the Hamiltonian H be given and the Schrodinger equation

HY =¥



can not be solved analytically. Let us introduce an'auxiliary Hamiltonian H(¢) depending
on a set of parameters £. This Hamiltonian should be chosen in such a way that, first,
it-could be close as much as possible to the initial Hamiltonian H and, second the
Schrodinger equation

H(E)Y(¢) = e(§)¥(¢) (2.10)

could be solved analytically, i.e. the wave function ¥(¢) could be.found in an explicit
form. Now let us do the variational estimation of the initial total Hamiltonian over the
wave function ¥(¢)

co = min (¥(¢)HU(€)). (2.11)

This minimization gives us the energy o in the lowest approximation, the values of
parameters f = § and the wave function in the zeroth approximation \Ilo = U(&). Let
us represent the initial Hamiltonian in the form

H = Ho + H[ + €0, ’ (212)
Ho H(éo) — €(bo) =: H(o) =,
H[ = H—H(£0)+E(fo)—60 = ]]"‘H(f@) I

where
Ho\l/() - 0 )

and the normal product of an operator F' with respect to the Hamiltonian Hy is defined
as

(Fi=F— (\pomo). | (2.13)

In what follows we shall call the representation (2.12) the correct form of the Hamiltonian
H with respect to the Hamiltonian Hyg.

If the Hamiltonian in the zeroth approximation equals the pure oscillator Hamiltonian
in the space R?, i.e.

1 d .
Hy =§(P2+92Q) 5,-Q=Q(a;'aj) , 1=1,...,d
then the correct form is equivalent‘ to the oscillator representation ( see [6] ).

The ground state energy € can be calculated by the perturbation method over the
interaction Hamiltonian Hy and turns out to be

E=¢€p+eEr+E2+.. (lIIoHI——H1\Ilo) ey (2.14)

because

"Ho¥o=0 and ‘¢ = (¥H¥)=0. ©(2.15)

The accuracy of this approximation can be evaluated as

€2

€o

5~ (2.16)

The Hamlltoman (2.7) in the correct form First of all we rewrxte the Hamilto-
nian (2.7) in the form

L b2 2o2p2 P’ 2 2 ”(”"'1)‘)
= — —dfl ~— P - 2.17
H 2nq(PQ+QQ d )+2nu L - = ‘ (2.17)
d
+ [ (@,u, Em )—'—Qz'i'——“'n
1, 1 1IN 2P u(u-{-l)) (1 1)

¢ - o —_—_——— _— 1P — == —].
T + 2PQ (coshzu KQ>+ 2 ( Wt ~cosh’u ) \Q® K.

This Hamiltonian contains five free parameters v, p, Q, kg, and &,.
Let us choose

H, = Ei—q (P +9%Q*—d0) + % (P,f + m2 ~ f’c(c)"s}j; 11‘)) , (2.18)
so that - o
_ _ Pr(tanhu) (Q i ex' 1o
lI,’O - QM(Q’u) _ \/C_mZV—) (w) p{ 0Q }1 i (219)
Cn(v) = / du(P'"(tanhu))z—/ d:::\/l—:::2 (P"‘(:c)) ,
(o v0) = [ du [ #Q2u(@un@0) =1

The oscillator canonical variables (Pg, Q) can be written in the form

Q=Zglata),  R=y3o (220)
[ai; a;-] = 6:.1 ) ‘ (1’] =112ad) .

so that
1 (02 dn) = L (ate;) .
2KQ Q KQ f et )

The operators a; and a;" are called the annihilation and’ creation operators. The
ground or vacuum oscillator state ’

i0) = (g)‘“exp{-%nq?} | |



satisfies the conditions

©0) =1, &l0)=0, (=12.d).

The functlon P”‘(z) is the solid spherrcal harmomc and it satisfies the equatlon ,

( LA (_"Jil_)) PP (tanh ) =0, | (221)

du cosh?

where m=0,%1, :i:2 . are the ammuthal quantum numbers and vis a parameter Wthh
can take any values. Accordrng to (2.11) the parameter v can be determined by the
minimization of the energy in the zeroth approximation. The' basic properties of this

function are given in the Appendix.
The positive para,meters kg and K, are defined by the condition that the interaction

Hamiltonian doés not contain the quadratic terms with : PQ and : P?:. We have

N 0y
1 1 1 1 1 ) AR
1 — - = —_—— —_— \I’ ‘I’ = y 2.22
cosh?u cosh®’u kg KgQ ( %l cosh?u 0 Cn(v) ( )
n ' o : du My 2 I n m \2
AP () = /_wm(f’y (tanhu))” = /_1 dez™ (P (z))",
1 1 1 1 1 Q
T TR z-(% “’°)—m’

The representatron of the functions A(")(u) and Cm (1/) are given in the Appendix.
The parameters 1/, p, § are determined by the condrtlon

Eo( m) = mrn (‘I’()H‘I’o)
v,

MPZQZp—z Lo e 5 d ) W
—_— —Epl - — —| Vo 2.23
cosh®(u) V(Q, tanh u) } QKQQ + 29 0 (2.23)

—‘“,1",3 [, EjT) ey {W (;,Q) " / QG V(9,0 - B+ gn}

= min ('I’o

v,p,2

= mig [A(m,v,p,Q) — E,B(m,v,p, Q)] ,
v,0,

where

1

B(m,u,p,ﬂ) - - C m(:‘t))

2 P df2tp-2 -t
” -/dtt e L
= T(d/2)
0

/ CROLY @ {n 7 dtt/I‘(d/Q) [V (@) _Em] +§n}
] N

ST - 1 . p2 o td/2+p—2 -t : t. . ‘_1_ 18
Amsip, ) = [ s (P { =N v <\£>+4Q}

A ot

The energy E,, is determined by equation (2.9). Formulas (2.9) and (2,23) leads to

. A(m,v,p,Q)
Em = e B(m,v,p, Q) (2:24)
Really, the following chain of equalities are valid:
£o(E) = r{lm( («) - EB(e)),
0 0
BT.J_A(Q)V-— Ega—JB(Q) = 0,
(@) — EB(a) =0,
0 Ala) 0 B
90, (@) ~ By 3, B =0
0 Ae)
05 B(a)
o Ale)
E=
{o) B(a)’
The interaction Hamlltoman has the form
‘ ' 1 dQ 1
_ . .02 poteisd -
Hi-= .[W(Q,U,E ) Q] (PQ+ 2) " cosh®u )
2
4 2 2 V(V + 1)) 1
—: | P ——— )= .
+ 2 ( wtm cosh?u /- Q? (2.25)

where the normal product is defined by (2.13).

3 The Zeeman effect

The Schrédinger equation for an electron in combined Coulomb and magnetic fields makes
the theoretical description of even such a simple system as a hydrogen atom in a uniform
magnetic field quite difficult when the two field strengths are comparable. The investi-
gation of the hydrogen atom in strong magnetic fields has wide applications in various
domains of physics, such as astrophysws, plasma physics, surface physics and solid-state
physics. In the past decade,’a variety of methods has been proposed to calculate accu-
rately the binding energies and eigenfunctions of the ground and excited state in the case
when the magnetic field strengths are comparable or greater than the Coulomb field (sec
for example,[12]-{19]).

During the last years, several new approaches were worked out to treat the complete
region changmg of a magnetic field. The main purpose of these investigations consists, in
the majority, in the construction of hrghly accurate numerical solutions of the Schrédinger
equation for the hydrogen atom in a uniform nagnetic field. Résner et al. [12] tabulated
the most extensive energies for the ground and low excited states by solving a group
of coupled differential equations. They used up to 24 coupled orbitals in the transition



region between low and high fields. Similar tables of energies were also presented by
Ivanov [13] by using the finite-difference method. A finite-element treatment was carried
out by Kaschiev et al. [14] and Shertzer [15]. Rech and Gallas [16] investigated the
ground-state energies by using the five-parameter variational method. Le-Guillou and
Zinn-Justin [17] gave accurate energy values in low and transition regions for the ground
state by using the weak—field expansion method. Chen and Goldman [18} obtained very
accurate relativistic and nonrelativistic results by combining finite basis expansion and
the variational method. Jinhua Xi et al. [19] tabulated the energies of the ground and
low excited state of the hydrogen atom in a uniform magnetic field of arbitrary strengths.
These results have been obtained by using B-spline basis sets.

In this section, the method of oscillator representa.tron will be applied to calculate
the energy values of the ground and excited states of ‘the hydrogen atom in a uniform
magnetic field of arbitrary strength.

The Hamiltonian of the hydrogen atom in an external magnetic field for spin down
states is [1] ( in the Rydberg atomic units):

H= (P Ay -+ (B9)= (3.1)

| 1 1 o 1
= =P 24 _B2? + ) + ~B(L, —
37— 5 B ) B 1),
where the vector potential A = %[E, 7] and the magnetic field B has been oriented along
the z-axis; L, is the z-component of the orbital angular momentum operator and'S, = 1/2.
The Schrodinger equa.tion for the Hamiltonian (3.1) becomes

[2P2 -+ ;r -sin?(0) - B* + B(L. —,1)] () = EV(7) , (3.2)

where f is the strength parameter 8 = %B :
Our problem is to calculate the energy values E,, of the ground and excited states of

the hydrogen atom in a uniform magnetic field for arbitrary strength parameters B.
Taking into account (2.4-7) and after some transformations the modified Hamiltonian,

according to (2.17), has the form

cosh?u

2k ;
Lpa ;L)" (p2 m? ”(”“)).(L‘_,L)
2 cosh2 KQ : .~ cosh®u Q@ ks
2 2p—-2 1 220 QZ
Q2 (o Lorlpgn)_ e o 4]
cosh®u @ 2cosh’u/) 2kq 2ch

—2+p(2u+1)

CH = SL(piet@i- .) 2: (P24mz;”(V'Jrl$> (33)

Accordmg to (2.23), the ground state energy of the Hamiltonian (3.3) 'inrthé:zeroth
approximations is : b .

‘é.ﬁ(gij?‘ = mm/ om )(P"'( 7)) ‘ s o (3.4)

(i o (3" 5w (3 )

~ {d ADw) 2 ADW)T(d/2 4 p/2= 1)
= DTG e ) @R '
LU T(d/2+p-1) ARDw)

Q-1 T T(d/2) Cnlw)
i (A,‘S’(u) A‘%)) r(d/z+2p—1>}

22201 C Cuv)s I'(d/2) ’

where the energy parameter : o
= ﬂ(m = 1) - ‘ -(3.5)

is introduced and m denotes the magnetic quantum number.
According to (2.9), the energy eo(Un) equals zero so that the equation

e(Up) =0 -(3.6)

defines the parameter U, as a function of the strength parameter 8. Then, the energy of
the hydrogen atom is determined by ' R

= B(m—1)=Un R : 37
After some simplifications of (3.4) we obtain ‘ ' . ' » '
) Almyrp @) o  @BTE2 421
Un(B) = Tm)[B(m I/,p,Q)] (‘J‘Va&‘)‘_{ TER+p-1) . (38)
v B AR TRy nﬂ” I(d2+1)
T U T 490 T@2+p=—1) ' 22 T@2+,-1)
_ o [s ey g A"’(u> T(p(25+))
TG0 |2 TS5 ) S A(O)(u) r(2+p<05+u>>
where S is deﬁned by the equatlon ' v . o o
T4 (AP TeEsEe) o
5= T@+p05+0) °7 (1 A9y ) TE+p05+0)

This equation (3.8) defines the energy parameter Uy, as a function of the strength param-
eters f.

In this paper, we have calculated the numerical results only for the ground and low
excited state, i.e. for the (1s) and (Ip) with m = 0. The wave functions in the lowest
approximation are defined by (2.19) and the reflection parity with respect to the x-y
plane is carried by the function P}*(cos(6)). In the Appendix, the basic relations for the



solid spherical harmonics P*(cos(#)) are given, and formula (A.4) shows that for fixed m
and'parity, in the lowest energy levels, the value (~1)* is equal to the parity of the state
(see Table 1). The details of calculation of the functions AW (v) and C,.(v) are given in
the Appendix.The numerical results are shown in Tables 2 and 3.

Table 1. The lowest energy levels for fixed m and parity. The designation is for the
hydrogenic energy level appropriate in the limit of zero magnetic field.

‘[m [ Parityﬁ ] Designation ]

0 ‘even. |0 |[1ls my,=0
0 Jodd 1{2p my=0
+1 | odd 112p my==1
41 | even 213d my=+1
+2leven, |2:/3d my=+2
+2 | odd 3|14 my=42

Table 2.Binding energy (in a.u.) of the hydrogen ground state.(1s) in a uniform
magnetic field.

i B -”7) ]u TS _ LU(O) JE(()O) \ Rosner[lZ I .]inhua. [19] ]

0.0 2.0 0.0 2.0 .5 .50 .5000 .5000
0.0001 |} 2.0 0.0 2.0 5o .5001 §.5001 .5001
0.001 | 2.0 0.0 2.0 5 .501 .501 .501
0.01 20 10.0.. .]2.0004 - -].4999 .5099 .1 .5099 . .5099
0.1 2.0 - 0002 2.03815 49038 . | .59038 | .590380 .590381

0.5 1.952 -.01268 2.39839, | .33111 .83111 | .831169 | .831169
1.0 - 1.870 | -.0307 | 2.71097 20222-° . | 1.0222 | 1.022214 1.0222138
5.0 1.5 . |-.0749/ | 3.536811. |-3.2523 | 1.7477 | 1.747797 | 1.7477969
10.0 1.42 |-.09915 | 4.458418 [-7.7846 2.2154 | 2.21539 2.21539
50.0 | 1.0 .|-.14036 | 6.55383 -46.2146 | 3.7854 | 3.78905 3.78985
100.0 1 1.0 ]-.15838 | 9.1584676 | -95.27746 | 4.7254 | 4.72655 4.72656
200.0 | 1.0 -1737 | 12.838846 | -194.147 | 5.853 | 5.85115 5.86118
500.0 || 1.0 -.18984 | 20.13583 | -492.338 | 7.662 | 7.66205 7.6645
1000.0 {j 1.0 -.19926. | 28.3555 -990.6934 | 9.3066 | 9.30448 9.315
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Table 3. Binding energy (in a.u.) of the hydrogen 2p ( m = 0) state in a uniform
magnetic field.

Lﬂ p v 157 2/ 21 Im and Slaracc[20] Jinhua [19} '
0.0 2.0 1.0 1.0 <125 - 0 1.25 ; 25
0.0001-f| 2.0 1.0 1.0 25 .2502 25019988
0.001 2.0 1.0 1.001 .249985 .251985 : .251988
0.01 2.0 1.0 1.0047 - .2488 .2688 ' .268812
0.05 2.0 1.0 1.0925 2247 3247 .3048 .32482
0.1 2.0 1.07 1.243 .17016 37016 .370368
0.5 2.0 1.0816 | 2.20621 -.4800 .5200 5114 .520013
1.0 1.986 | 1.09 2.9277 -1.405 -10.5950 | .5900 5954219
5.0 1.9266 | 1.095 | 5.7384 -9.235 765 71652994
50.0 1.856 | 1.095 | 16.07247 | -99.073 927 9274 ..92723
100.0 1.67 1.0065 | 17.41846 | -199.045 | .955 9548 ".95305
200.0 1.56 .94566 | 21.132726 | -399.03 970 97072
500.0 1.485 |.90104 ] 30.15155 | -999.015 |.985 9840
1000. 1.400 | .8403 [ 38.063951 { ~1999.009 | .991 49912 .990
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Appendix
Let us consider equation (2.21) -
& S v+ 1) PR o
RS, - _lypm = : .
(du’ m* + oiu ) (tanhu) =0, (A‘ 1)

which is defined in the interval (—oo < u < o). Let us introduce the new variable
B = tanh(u) ,
and after some mmphﬁcatmns the equation (A 1) looks like. ;
: d s :
2 m

One can see that P,I"(:::) is the solid spherical~har1rionic; m = 0,%1,42,... are the az-
imuthal quantum numbers and v is a parameter which can take any vatues. The solid
spherical harmonic satisfies the following recurrent relations {21]:

T

dm i ° .‘.
Pl(z) = (-1)"(1 =)™ q—Py(z), (A.3)

»
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1
2v+1

which are valid for P7* = P or PL" =Qm.
For the calculations AS::)(V) and C,,(v) we used the representation:

=P} (z) = (v =m+D)PR (2) + (v + m)PTL ()]

_ S 2%+1  sin(a(v—4) T(v+m+1) T(k—m+1)
F (I)=k§;ﬂu+k+l 7(v— k) I‘(u—m+1) I'(k+m+1) B ( )’

1

/dzP,:"(:c)P,’,"(:c) - 2n2+ . ?E;‘ tm ii; o (A4
We have
+1 ‘ B ’ ‘ , .
AD() = / dz - (P:"(::)::”P:‘(z)) . o | (A.5)
_ f: 2k+1  Z+1  sin(a(v —k)) sin(z(v - j))
- k=0u+k+1 v4j+1 (v—k) (v —7j)

Fv—m+1) Ik+m+1) TGH+m+1)

1
2 ] i
' (I‘(u+m+ 1)) ) ['(k—m+1) _ I'(j—m+1) x/d:cP,Z"(z)z"Pﬁ(:;) -
Let us define the even and odd wave functions with respect to the x-y plane, with m = 0:

EPYz) = Si“g")i[ LN — J‘ng(z) 4

= v—23 v+25+1
v >0;

0 _ sm(7ru) v .
OP(z) = Z[V_QJH | P

|u]>1

Taking into account these formulas, from (A.5) we get forn =0 and n = 2

sin(rr) ) * & v v 22
© ) = . - ATy
£AP0) = ( - )g[u_zj Hml} e MY
2 o™ 2 '
©, , _ {sin(7v) v v 2
04 (”)—( Ty ) J21[1/—2]+1 u+2]} 45 -1
EAP() = sin(7v) zi v v : 7 (A.8)
“0‘ VV - TV = V—2j v+27+1 ’

{(éj+1)(2j+2) 2 < v v )

4+ +3) 4+5 \v—-2-2 v+ 43 /

(25 +1)2 45 2 v v
+ [(4j+1)(4j+3)+(4j+1)(4j-1)]‘>4j+1'(u—2j_u+2j+1)
27(27 - 1) 2 v v |
+ (4j+1)(4j—1)'4j—3'(u~2j+2_u+2j—1>}’
2 sin(7v) ) * & v v 1*
OA;\)(V) = ( v );[u—2j+lmv+2j] V(Afg)
2% +1) 2 ( v )
@+0)A5—1) 4543 \v—=2—-1 vi25+2
4 @=1 )2 v
* [(4j+1)(4j—1)+,(4j—3)(4j—1)] -1 (u—2j+1 v+2j)
(27 —2)(25 — 1) 2 v v
T @G I@ - 4 =5 <u—21+3 u+21—2>}
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