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1 Nuclear many-body problem 

We consider a general scheme or' the nuclear many-body problem. The Hamiltonian of 
interacting nucleons in a nucleus has a general form . 

H = I:T(l,2)ata2 - I: G(l,2;2',1')atafa2,a11 ; (1) . 
1,2 1,2,2',1' 

here a1 and at are the nucleon absorption and creation operators. The equation of motion 
for the density function 

(2) 

has the following form: 
.dp(l,2) I[ + H]I ~-d-t- =< a1 a2, > (3) 

and contains the distribution function < Jat at a5asl >. The average value is taken over 
an arbitrary state I >. There is an exact relation 

< Jatafa21 ,a1•1 >= I:{< Jata1,Jn >< nlafa2•1 > -
n 

- < Jata2,Jn >< nJafa1•1 > + < Jatafln >< nJa2,a1,(>}. (4) 

According to the Hart~ee-Fock-Bogoliubov approximation 

< latafa2•a1•I >=< Jata1•I >< Jafa2•I > -

- < Jata2•l >< Jafa11 > + < latafi >< Ja2•a1•I > • (5) 

It has been demonstrated in 1 that there is a representation where the density function 
has the diagonal form 

p(l,2) = p(l)81,2 (6) 

and the function < at at > has the canonical form. In the mean field representation, 
the density function is diagonal for the ground state of the doubly closed shell or well- . 
deformed nuclei. The mean field and interaction leading to superfluid pairing correlations 
are singled out from a genera!' form of effectiv~ interactions in nuclei. This is the model 
of independent quasi particles 2

• 

, As has been shown in 3, a nuclear vibration is caused by the non-diagonal parts ofthe 
functions p(l, 2) and < at at >. In the mean field representation, the general equations 



are reduced to the RPA equations. It has been shown in 4 that the basic equations of the 
theory of finite systems 5 are identical to the ,equations obtained in 3

. 

All nuclear states are very complex. The wave functions of the ground and low­
lying states have the simplest form in the mean field representation. If one uses the 
representation where the density function is diagonal for the fixed highly excited star,e, 
the wave function of this state has a very simple form but the wave functions of other sta1 es 
are very complex. It is very difficult to describe low-lying states in this representation. 

There are several microscopic methods of describing nuclear excitations beyond the 
RPA. It is nuclear field theory 6•7 where one sums up the diagrams containing the collective 
and two-quasiparticle configurations. Calculations of giant resonances were performed 
in 8 and other papers with taking the ph (particle-hoie) and 2p - 2h configurations into 
account. The quasiparticle-phonon nuclear model (QPNM) 9

•
10 is used for a microscopic 

description of low-spin, small-amplitude vibrational states in spherical nuclei not far frC:.rn 
the closed shells and in well-deformed nuclei. Many~phonon terms ha;e been taken into 
account in the wave functions of excited states in a numb.er of studies 11

•
12

. 

It is possible to state that none of the physical problems can be solved mathematically 
rigorously. Only simple models are integrable. The validity of the model is confirmed by 
the description of the relevant experimental data and the predictions. The Hartree-Fock­
Bogoliubov approximation is very good; nevertheless it is an approximation in which very 
many terms in eq.( 4) are not taken into account. Therefore, it appears that one should 
not be too worried about the self-consistency of the mean field and effective interactions. 
A very important step in nuclear theory is connected with an· approximate, but not exact, 
treatment of the conservation law and with an approximate exclusion of spurious stat,)s. 
The mathematical basis for methods employing the violation of certain conservation laws 
was developed by Bogoliubov by using the concept of "quasiaverages". 

2 Changing of nuclear structure with excitation en­
ergy 

We describe low-lying states and giant resonances in terms of nuclear wave functions in 
the following form: 

Wn = {Lb1Qi + Lb1,2Q'iQi + L b1,2,3QiQiQj +···}\Vo. (7) 
1 1,2 1,2,3 . 

Here, Qt denote the phonon creation operator, IW defines the contribution of the relevant 
components to the normalization of (7) and \ll0 is the wave function of the ground sta1;e. 
A two-quasiparticle state is treated as a specific case of a one-phonon state when the 
root of the RPA secular equation is ;ery close to the relevant pole. The approximation 
consists in cutting off the series (7). In the QPNM, the expansion is restricted to two- or 
three-phonon terms. · 

According to the experim~ntal information, the wave functions of low-lying stat es 
have a single dominating one~quasiparticle or one'-phonon component. A reasonably 
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good description of the low-lying states has been obtained with the dominant componrnt 
alone. According to the calculation 13 of well-deformed nuclei in the rare-earth region 
within the QPNM, the contribution of the two-phon,on components to the normalization 
of the wave functions of the states below 2.3MeV is smaller than 10%. The ]('' = i+ 
double gamma vibrational states in 164 Dy,166 Er and 168Er arc the except.ion. Most first 
/{" = 4+' states arc hcxadccapolc ones 14 • The centroid energy of the isovcc1or giant 
dipole resonance, isoscalar and isovcctor qu~drupole and octupolc resonances, Gamo,1·-­
Teller and other resonances are caused by the one-phonon components of their wave 
functions. 

The quasiparticlc-phonon interaction is responsible for the fragmentation of one-­
phonon states and for their mixing. The role of the quasiparticle-phonon interaction 
increases with the excitation energy. A reasonably good description of the fragmcn1 a­
t ion of onc-quasiparticlc and one-phonon states within the QPNM has been obtained in 
13,15-18 

There are many experimental data on the double--quadrupolc vibrational states in 
spherical nuclei. Information on doublc-octupole vibrational 'States, is very scare. The 
double GDR has been observed in 19• The experimental information on two- phonon 
states in well-deformed nuclei is limited by ]{" = 4+ double-gamma yibrational st.ales in 
164 Dy and 166

•
168 Er 20

•
21

. It is possible to state that most experimental data on the nuckar 
structure is an information on the one-quasiparticlc and one-phonon components of tlw 
wave functions of excited states. The next step is an experimental study of,fragmPntat.ion 
of two- and three-phonon states and quasiparticle © phonon and quasiparticlP ~ two 
phonon states. 

3 Order and chaos and order-to-chaos transition 1n 
terms of nuclear wave functions 

Studies concerning the nearest-neighbour spacing distribution in nuclei usually iden1 ifi~d 
chaos via the agreement with the Gaussian Orthogonal Ensemble statistics 22 . The nuc!C"ar 
wave functions of excited stat.cs with energies larger than 3 MeV h?'ve many componc11ts 
with isospin To and To+ 1 containing few and many quasi particles or/ and phonon .. ~ havi 11g 
also different /{ quantum numbers and so on. The wave functions arc something lik1· a 
superpositio~ of several interacting ensembles. Therefore, it is necessary to s1 ud~· 1 lw 
order-to-chaos transition in terms of the properties of the nuclear wave functions 2:1. The• 
treatment of the order and ordcr-to--chaos transitions in terms of the wa\'<' funcf ions 
depends on the representation. We used the mean -field representation. 

In the mean-field representation, the wave function of an excited' sta1P has th<' form 
(7). At high excitation energies, the wave function (7) has very many quasipar1iclC' ~ 
phonon components. Due to the Pauli principle, the phorion operators arc destroy<'d by 
many-quasiparticle operators in the wave function. The 'experiment.al data 2'1 011 fi<st 
E3, transitions be,tween excited stat.cs have shown that phonons survivc•d among man~· 
quasi particle_ configurations. 
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It has been stated in 23 that there is order in the large and chaos in the small few- or 
many-quasi particle@ phonon components of the nuclear wave functions. A quasi particle-­
phonon interaction is responsible for the fragmentation of quasi particle IS, phonon sta1 es 
and, therefore, for the order-to-chao~ transition. It is necessary to stress that the full frng­
mentation of one-quasiparticle states cannot be considered as a transition to chaos. The 
many-quasiparticle configurations can give a large contribution to their wave functiom. 

The experimental data on the fragmentation of one-quasiparticle and one-phonon 
states do not allo~ one to establish the excitation-energy limit for the ord~r-to-chaos 
transition. The study of the fragmentation of two- and three-phonon state and quasipar­
ticle @ phonon and quasiparticle @ two-phonon states is the next step in investigating 
an order-to-chaos transition 25

• The fragmentation of three-quasi particle states can be 
investigated in the one-nucleon transfer reaction on doubly odd targets. The fragmc·n­
tation of five-quasiparticle states can be studied on the long-lived isomer 178m 2 HJ with 
/{" = 16+ 26_ 

There are many experimental data on high spin isomers. Their wave functions con­
tain many-quasiparticle and many-quasiparticle @ phonon configurations. These levels 
demonstrate a regularity in the nuclear mean field up to an excitation energy of 10 MeV. 
The detailed experimental study of the gamma-ray de-excitation levels above the ywst 
line gives information on the fragmentation of many-quasi particle and many-quasipartide 
@ phonon states. These strong and weak transitions allow one to establish at what en,!r­
gies the onset of chaos takes place 27• 

4 Order against chaos in nuclei 

Fluctuation properties, generic to: all· systems that show chaos, are independent of the 
specific properties of the system. Therefore; one does not need to study chaotic excited 
states. It is highly important to find nuclear-structure regularities at intermediate and 
high excitation energies. 

To study the order-to-chaos transition, it is desirable to find a method of experimental 
observation of relatively large many-phonon configurations in nuclear wave functions. 
According to the calculation 28 within the QPNM, there are fast El and Ml transitions 
between excited states with th~ energy around 2.5 MeV. Fast El and Ml transitions 
take place if the wave function of the initial state has _a relatively large two-phonon 
term consisting of the octupole phonon with /{" = o- or 1- or quadrupole'phonon with 
/{" = 1 + and another phonon, which is the same as the phonon of the final state wave 
function. Decay rates per second of these transitions are 102 - 104 times as large as the 
transition rates to the ground state and 103 

- 106 times larger than transitions between 
relevant one-phonon states. It is possible to expect that the fast 2.5 MeV El and Ml 
transitions between large many-phonon components of the wave functions of the initial 
and final states differing by the octupole (I{" = o- or 1 -) or quadrupole (I{" = 1 +) 
phonon should be observed independently of the excitation energy in deformed nuclei. 
Such fast El and Ml transitions do not exist in spherical nuclei. · 
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The strong 2.5 Me V peak has been observed in the first-generation of gamma-ray spec­
tra in the two-step cascades following thermal-neutron capture 29 an:d in the 163 Dy(3 He, a) 
reaction at several excited energies 30 . These experimental data indicate relatively large 
many-phonon components in the wave functions in the excitation region up to 8 McV 
in well-deformed nuclei. Therefore, one may expect that the order takes place up to 
excitation energies where the 2.5 MeV peak exists. 

It is reasonable to introduce a new approach in the study of the nuclear-structure 
regularities against chaos at intermediate and high excitation energies. Instead of mea­
suring and describing the energy and wave function of each individual state, one should 
investigate the strength distribution of few- and many-quasiparticle and one- and many­
phonon states. This means that order in nuclei and order-to-chaos transition should be 
studied in terms of strength functions. · 

The experimental investigation of the strength distribution of the single-particle stat es 
in spherical nuclei allowed one to understand their properties while the single-particle 
state moves away from the Fermi level. The strength distribution of one-phonon stat es 
characterises the widths of GR and double GDR. The strength distribution of many­
quasiparticle and many-phonon states reflects the regularity of the nuclear structure at 
intermediate and high excitation energies. 

If the many-quasiparticle and many-phonon components of the wave functions are 
taken into account, a new region of regularity of nuclear states at higher excitation energies 
against chaos appears. 
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