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Let Ho and E be a free Hamiltonian and the total energy of a three-particle system 

with two-body interactions V;, where i = 1, 2, 3. In Schrodinger theory [1), the wave 

function IV of this system obeys the equation 

3 

( Ho - E ) IV = ( - L Vi ) IV (1) 
k=l 

and well-defined physical boundary conditions; In Faddeev theory [2), this problem is 

reformulated [3): IV is represented as the sum 

(2) 

of the Faddeev compone~ts IV k. obeying the set of three ( i. = 1, 2, 3) coupled equations 

3 

( Ho - E) IV;= -V; 1l1 = -V; L IVk (3) 
k=l 

and the corresponding physical boundary conditions [4). Then it is proved [3) that the 

Faddeev problem thus formulated is uniquely solvable and equivalent to the original 

Schrodinger problem. 

In the Schrodinger eq. (1), unknown function IV is the total Faddeev sum (2), whereas 

in the Faddeev eqs. (3), unknown functions are the terms IV; of this sum. fa general, the 

sum of three nonzero functions may be identical zero. Therefore, if the set of eqs. (3) is 

_not completed by any boundary conditions, it may have a nontriyi_al solution (IV; =/ 0) 

for which the sum (2) is identical zero (IV = 0). Unphysical solutions of this kind are 

called [5) the spurious solutions of eqs. (3). We denote the spurious solutions by S; .. This 

set of the functions, being inserted into eqs. (3), turns simultaneously .both their right 

and left sides to zero: 

( H0 - E ) S; = 0 , 
3 

L sk = o. 
k=l 

(4) 

'(5) 



Therefore, the spurious solutions carry no information about two-body interactions, and 

all these solutions correspond to the trivial solution· (Ill = 0) of the Schriidinger eq. (1). 

· Hence, the spurious solutions do not correspond to any physical three-particle state. 

Nonetheless, the spurious solutions are of special mathematical interest .. The fact 

of the existence of the spurious solutions has been emphasized by a lot of_authors (see 

reviews [5],[6] and original papers [7]-[13]). The completeness of physical and spurious 

solutions and ·spectral properties of the Faddeev differential equations have been studied 

in [7] and [8]. However, the spurious solutions are known in an explicit form only in 

particular cases. Namely, for a system of three identical bosons interacting via 

S-wave potentials and having the total angular momentum equal to zero [9],[10],[13] or 

unity [11],[12].r In general, the criterion of existence of the spurious solutions and a simple 
', . 

method for classification and analytical construction of these solutions are not yet at 

hand. 

The main aim of this paper is to present the criterion and method of this sort for a 

system of three different particles interacting via spherically symmetric potentiak' 

We first briefly describe notation and present some formulae known in Faddeev 

theory [3], (4] and in the standard hyperharmonics approach (14], [15]. 

Let (:i;, y;) be three (i = 1, 2, 3) sets of the usual reduced Yacobi vectors [3] in the three­

particle'space R 6 = R}EBR} and define the corresponding hyperspherical coordinates [16] 

(r,f!;) by r = (x; + y?) 1l2 and f!; = (x;,y;,cp;), where r is the hype~radius, c stands for 

tp.e two spherical angles [17] of some vector c, and cp; = arctan(y;/x;). 

By assumption, the potentials V; are the functions of the corresponding distances x;. 

Hence, the total energy E, tp.e total angular momentum l (l = Z:,+~J, its third component 

m, and parity u = ±1 with respect to the inversion (x;, y;) -> (-x;, -fi;) are well-defined 

quantum numbers. Therefore, we are looking for the spurious solutions in the class A' of 

the functions defined in n6, having continuous second-order derivatives with respect to all 
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;,. 

t 

their arguments (r, f!;) and possessing the set f = (E, l, m, u) of four conserved quantum· 

numbers. For A'aclass•a complete and ,orthogonal basis on the unit sphere S5 in R 6 is 

formed by the well-defined subset (16] of the standard hyperharmonics [18]. 

To present all our forr_nulae in a more compact form "{e combinethe indexes l,,, and 

ly, into double index a = { l,,,, ly,} and write. the hyperharmonics of that subset as 

vl,;;.(n) _ N ( • )'• ( )'•· 0 {/y,+l/2,1,,+1/2)( 2 ) yl,m(• • ) 
I L,a "i = L,a Sill Y:,; ' cos cp; ' •n cos cp; C,. x;, Yi . (6) 

Here, NL,a is the known [14] norm fact?r, L = l,., + ly, + 2n with n = 0, 1, ... is the 

hypermomentum, y~m is the standard bispherical harmonics [17], and, finally, pJa,b) is 

the Jacobi polynomial [19]. T~ ensure the conservatioh of parity u hyperhar~onics (6) 

'should have the indexes L and a obeying the following conditions: the sum l,,i·+ ly, and 

Lare even (odd) numbers for u == +1(-1). Further we imply this restridtion.' 

The following properties of the hy,ierharmonics wlll be the k~y formulae fo; ~~r ~tudy. 

First, hyperharmonics (6) are eigenfunctions, 

L2 y:l,m = L(L + 4) y:1,m' · 
L,a L,cx , (7) 

of the squared hypermomentum cir grand orbital operator L2
, contained into the kinetic 

energy operator [14] 

Ha(r, f!;) = -r5 Br (r-58r) + r-2 L2(f!;) . (8) 

Secor{cl, hyperha;rrionics (6), written down in ihe different (i f:. k) representations (f!; I 

and (f!k I , are c~~uiected by unitary transformation (20] 

( f!; I Yi'.':) = Yi:';(f!;) = L ( a I a' )1,L Yi:';,(f!k). (9) 
a' 

Hereafter we imply that i = 1, 2, 3 and the indexes a = {lx, , ly.} and a' = {lx. , ly•} take 

all the values allowed at given l and L. 
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Transformation (9) conserves the quantum number l, m, u and L and contains the 

Raynal-Revai coefficients [20]. They are defined as the overlap integrals: 

( a I a' )1,L( 1k,;) -

( Y{:;:'(f!;) I Y{:;:',(f!k)) 

(/x,, ly, I lx., /Yk )1,L( 1k,i) = 

is, df!; (Y{:;:'(f!;))* Y{:;:',(f!k). (10) 

Therefore, these coefficients are real functions of th\! corresponding kinematical angles [15] 

_ ( l)P t (m;(m1 + m2 + m3)) 
112 

'"Yk,i = - arc an 
'.71i"lk 

(11) 

, where m; are the particle masses, P. = l for k, i = 2, 1; 1, 3; 3, 2 and other~ise p = -1. 

We now proceed to a study of the spurious solutions. 
', . ) ,.: : ' 

In faddeev theory, each component IP; and the equation, defining it in the set of 

eqs. (3), is written down in the corresponding representati,on (r, ~ti ,For this reason, 

conditions (4) and (5) imply that for an! i = 1,2,3 
"l 

( Ho(r, f!;) - E) S;(r, f!;) = 0, (12) 

3 

L (r;f!; I Sk(r;f!k)) = 0. (13) 
k=I 

We are seeking for the spurious solution as a series onto basis (6): ;:,., , 

( r, f!; IS;) = r- 2 L L S;,L,a(r) Y{:;:'(f!;). (14) 
L a 

Inserting (14) into (12) and using (7) and (8), we proje~t th~ ~btained equations onto 

ba!Jis (6) and then introduce a new variable z = ../Er. As a result, for.each unknown 
,: , • ,. , , : ; • _ ' • • 1 : ! ~ ", i ', ' ·, • 

hyperradial component S;,L,a(z) of .series (14) we obtain the Bessel equation [19] with the 
' " ; •·:, ' ·, ·:· ' ~ .; . 

index v = L + 2. This equation has the regular solution h+2(z) only for z > 0, i.e. only 

if E > 0. All its regular solutions _read 

S;,L,a = Df0 h+2(VEr), · (15) 

where Dt0 is an arbitrary numerical factor. 
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To determine these factors we substitute series (14) with the found hyperradial com­

ponents (15) in eqs. (13). We ther project the equations obtained onto basis (6) and take 

into account (9) and (10). As a result, for each L we arrive at linear and homogeneous 

set of the desired equations 

Dfa + L L ( a I a' )1,L Df,0 , = 0. (16) 

k#i7 a' 

Here, i = 1, 2, 3 and a and a' take all the values possible at prescribed l and L. That 

is why the matrix M~' of eqs. (16) has a finite dimension equal to triple number of 

hyperharmonics (6) with the ~ame land L. According to theory of matrix (21], eqs. (16) 

have NL ( NL = dim ML-· rank ML) linearly independent solutions on·= Dhn 
' ' 

(n = 1, ... ,NL) if and only if 

detML = O, (17) 

a?d a general solution of eqs. (16) is a linear combination 

NL 

DL ~dLD~ 
i,o ~~ n i,a · 

(18) 
n=l 

of these solutions with arbitrary numerical coefficiens d~. 

Let B be a multitude of the values of L for which condition ( 17) holds. If this multitude 

is e~pty (B = 0), i.e. detML =J 0 for any L, then there are no nonzero functjons (14) 

satisfying eqs. (13). In this trivial case, condition (5) is not fulfilled and the Fadde.ev 

eqs. (3) have no the spurious solutions., even though E > 0. Therefore, we assume that 

both the necessary and sufficient conditions (E > 0 and B =J 0) of the existence of the 

spurious solutions are fulfilled. Note, that the first condition (E > 0) is known for a long 

time [5], '[6], while the second condition (B =J 0) is our original and main result. The 

next r~sult is our classification of the spurious solutions. Uy using (14), (15), and (18), 

we classify the spurious solutions and present them in art explicit form. 

5 



So, for each LC B there are NL linearly independent spurious solutions (14), 

sL,n = · -2 J ( 1f ) "' DL,n yl,m(n•) , r L+2 V l!Jr ~ 1,0 L,o i , (19) 

" 
corresponding to the solutions on ( n = 1, ... ,NL) of eqs. (16) and possessing a good 

quantum number Lin addition to the set c All the spurious sc_ilutions (14), corresponding 

to a general solution (18) of eqs. (16) and possessing good quantum numbers L C B and 

t, are represented as 

sf= r-2 h+2(VEr) L Df"Yi;;;'(n;) · (20) 

" 
Finally, any spurious solution (14) with the set t of well-defined quantum numbers can 

be represented as a linear combination 

S; = L cL Sf(r, f!;) {21) 
LcB. 

of the particular spurious solutions (20) and some numerical coefficients CL . 

For completeness we prove that all the spurious solutions possess one more good 

quantum number. 

Let S' and U' be linear subspaces of the space A', and let the hyperangular basises 

of S' and U' on S 5 in 1?.6 be formed by hyperharmonics (6) with L C B and L cf. B,· 

respectively. The projectors on S' and U' then read 

P. =LL I Y{::'(f!;}) ( Y£::;'(f!;) I , P,, =LL I Y£::;'(f!;)) ( Y{::;'(n;) I - (22) 
LCB c, L,tB " 

Evidently, S' is orthogonal to U' in respect to the integration on S5 over the set of the 

hyperangles f!;. As transformations (9) are unitary, representation (22) are invariant in 

reference to i. Taking into account this fact, we act on the spurious solutions (21) by 

projectors (22) and arrive then at a desired result: 

P. S; = Ps S; , p. = 1 ; Pu S; = 0 . (23) 
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:) 

J 

. 
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By virtue of (23), all the spurious solutions (21) are eigenfunctions of the operator P,. 

Moreover, all of them correspond to the same eigenvalue p, = 1 and belong to the subspace 

S'. Hence, in the subspace U', eqs. (3) have no spurious solutions. According to the 

terminology of the paper [8], we call S' and U' the spaces of spurious and physical 

solutions of eqs. (3), respectively. It should be emphasized that the orthogonality of these 

spaces has been proved in [8] in another way. 

To exemplify our results we present some simplest spurious solutions. Note that 

there are only two cases, namely, l, L = 0 and l = 1, L = 2, when the index a of 

hyperharmonics (6) can take only one value: a= {0,0} and a= {1, 1}, respectively. 

In these cases, there is only one nonzero Raynal,Revai c~eflicient: ( a I a )t,L( 'i'k,i) = 1. 

For this reason, relations (9) degenerate in the equalities 

Yi;:;'(f!;) = Y{::;'(f!k), I, L = 0; l = 1, L = 2, (24) 

and all the elements of the matrices M 0 and M 2 of the corresponding eqs. (16) are equal 

to unity. Therefore, dim ML = 3 and rank ML= 1 if/, L = 0 or / = 1, L -~ 2. In these 

both cases a general solution (18) of eqs. (16) has the following form: Df,,, and Df,
0 

are 

arbitrary numbers, nhereas Df,0 = -Df,
0 

- Df0 • By formula (20), we find the Faddeev 

components 

Sf= r-2 h+2(\/Er) ( Df.0 (8;,2 - 8;,1) + Df,0 (8;,3 - 8;,1)) Yi'.:'(f!;) (25) 

of particular spurious solution with well-defined quantum numbers I, m, L = 0, u = 1 and 

a= {0,0} or/= 1, m = 0,±1, u = 1, L = 2 and a= {l,1}.' The found solutions (25) 

do not depend on particle masses and vanish when all three particles are identical bosons 

or fermions. Let us prove the latter statement. 

For any state of three identical bosons (fermions) the components W; of a physical 

solution of eqs. (3) obey also the conditions [3] ensuring a complete symmetry (antisym­

metry) of the wave function Ill in respect to the'interchanging of particles in any pair. 
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Therefore, the components of the spurious solution should also satisfy the same conditions: 

S1(X1,iii) = ±S1(-x1,111}, S2(x2,112) = S1(x2,112), S3(x3,y3) = S1(x3,y3), (26) 

where the sign +(:-) corresponds to boson (fermion) case. Substituting (25) in (26) and 

taking into account (24) give Df
0 

= 0 for any i = 1, 2, 3. Hence, only trivial ( S; = 0) 

spurious solutions (25) satisfy conditions (26). 

In basis (6), central potentials can be represented as operator series 

V;(x;) = f v>-•(i;) ' -~ 
(27) 

>.,=0 

.v;>-•(x;) =LL 1·YL,:'(!1;)) ½:/'(r) (Yi:';,(n;) I, a= {,\;,lyJ • 
L,L' lyi • 

(28) 

Operators (28) have the following proj~cting properties: 

( !1; I V;Ai I Yi:'.:,(!1;)) = 8>.,,1,, L ½1:/' Yi;:'(!1;) , a = {lx., ly.} · (29) 

L 

Therefore, the potential operator V;>., conserves the angular momentum >.; of two particles 
• ' ,'. •,' 1 

in the pair i. These potentials are often used in low-energy nuclear physics [22] .. When 

>.; = 0, 1, 2 they are called S, P and D- wave potentials, respectively; Formulae (27) and 

(29)·provide a possibility to consider the case of >.-wave potentials as a particular ~ase of 

central potentials. To this end, in all the formulae (6), (7) and (14)-(22) we should forbid 

the indexes a and· a' to take any values except { >., ly,} and { >., ly•}. 

To reproduce the known spurious solutions by using our method we consider the case 

of S-wave potentials. In these case Ix, = 0 and ly, = l are conserved as well as the set t. 

For any l and L the i~dexes a and a' in eqs. (6) and (14)-(22) can take only one value: 

a= a'= {0, l}. Therefore; the dimension of the matrix ML of eqs. (16) is equal to three. 

All nondiagonal elements of this matrix can be found by the known formulae [23] 

. (l+l/2, 1/2)( ) 
L · '_ · I p(L_:_1)/2 - COS 2,k,i 

Mk,i = (O,l I 0,1)1,L(,k,i) = (-cos,k,i) . (l+l/2,112) ) {30) 
p(L .... 1)/2 ( - l 

8 

Since dim .ML = 3; condition (17) is simplified and is reduced to the following equations: 

det ML= 1 - (Mf1 )2 - (Mf3 )
2 

- (Mf,2 )2 f 2 Mf1 M1~3 Mf.2 = 0. (31) 

Let l = 0 and L = 2. Then a = a' = {0, 0}. Using (30) and (31), we find that for 

any values of particle masses Mf i = cos 2,k,i , rank M 2 = 2 , and det M 2 = 0. Using the 
., I , ,, ' • •, 

relations ,2,1.,,,1,3, ')'3,2 > 0 and 13,2 = 1r - ,2,1 - ,1,3 for the kinematical angles ( 11 )., we 

solve eqs. (16). Substituting the found solution 

Pta· = sin ( L ( 1'2,1 + 1'1,i) 8;,1 - .(-l)L L ( 1'1,3 8;,2·+ ')'2,1 8;,3).) (32) 

into (20) results in 'the corresP.onding particular spurious solution 

Sf = r- 2 JL+~(vEr) Yi'_;:'(!1;) · 

sin ( i'( ,2,1 + 1'1,3) 8;,1 - ( -1 l L ( 1'1,3 8;,2 +· ,2,1 b';,3)) 
C 

(33) 

This solution possess good quantum numbers l, lx,, ly, = 0, u = I, and L = 2 and depends 
'· ;'',' : ,. ·' ' ,. 

on particle masses v_ia the kinematical angles. 

Let l,L = 1. Then in all formulae a= a'= {0,1}. Applying eqs. (30) and (31), we 
', 

show that for any particle masses Mf i =: -.cos ')'k i , rank M 1 = 2 , and det M 1 = 0. We 
• ,. , I ' I ~ • 0 ._ , • ' • ' , 

then find the solution of eqs. (16) and the corresponding particular spurious solution (20). 
' I ' • I ,• 

These sol1;1tions are given by (32) and (33) with l, L = 1, u = -1, and a = { 0, 1}. 

Let l and L be arbit_rary and particle masses be identical. Then a = c/ = {O, /} and, 
' ,, 

by definition (11), I ,k,i I= 1r /3 for any k and i. Therefore, all nondiagonal elements (30) . . ' . 

. of the matrix ML are equal to each other, and condition (31) is simplifyed. Namely, for 

each fixed / it .is reduced to the equation defining L. We write this equation as 

(-2)1-:-1 p(/+1/2' 1/2)(-1) = p(/+1/2' 1/2)(1/2) (L-1)/2 , (L-1)/2 . · , , (34) 

When l = 0 or / = 1 the value L = 2 or L = I satisfyes eq. (34) and the corresponding 

spurious solutions (33) take the following form: 

sf= (-l)L+I (V3/2) r- 2 h+2(vEr) Yi;;:'(!1;). 

9 
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!I 

These functions satisfy.conditions (26) for three identical bosons and reproduce the kpown 

spurious solutions [9]-[12). 

Similarly we investigated the case of P-wave potentials. As we found, for / = 0, L = 2, 

a = {l, 1} or f~r l, L = 1, a= {1, O} the solution of eqs. (16) and the corresponding. spu­

rious solution (20) are represented by (32) and (33), respectively. In the both considered 

cases, the spurious solution (33) obeys conditions (26) for a system of three identical 

fermions . 

Exact solutions of the Faddeev eqs. (3) are known only for harmonic-oscillator poten-

tials [9) and for the S-wave,inverse square potentials [11], [24]. Equations ( 4) and (5) 

contain no potentials, and, therefore, the spurious solutions can be easily found analyti­

cally. These explicit solutions, for example, functions (25) and, (33), can be then used as 

the reference solutions in testing the algorithms for numerical study of eqs. (3). 
., , . , , : · I , ,' ,'_- l • 

· A method proposed in this paper is based on the well-developed hyperharmonics 

approach. Therefore, this method can be easily generalized for study of the-~purious 

solutions in more realistic cases when particles possess spi~ and isospin. For su~h ~ gen-
·,, . ! ·. , : .· I r '\• ' j i;- ',' 0 

eralization it is necessary to use the corresponding hyperharmonics [14] describing these 
,, r:t 

degrees of freedom and repeat then all the constructions described above. Using the four-

body hyp.erharmo~ics basis [14], [15], [25] one ·can al~o generalize our· method for study 
I 

~f f~ur-body spurious solutions. One of them has been recently found in [13]. 

In conclusion th~ main result of this paper may by formulated as follows: 

Theorem. In A'-class the spurious solutions of eqs. (3) exist if and only if E > 0 and 
·,· 

B f 0. All the spuriuos solutions are represented as the sums (21) containing arbitrary 

coefficients CL and the coefficients Dfc, obeying eqs. (16). 

_\ 
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TiynhllneB B.B. 
KpuTepu:i-i cym;ecrBoBaHHSI JIO)KHhlX peIIIeHu:i-i ypaBHeHHH Cl>a;meeBa 

Jlo)KHhie peIIIeHH51 AH<pcpepeHu;ua.nhH_hlx ypaBHeHH:i-i Cl>aMeeBa AJISI c~cre­
Mhl Tpex pa3JIH11HhIX 11acruiJ,, B3aHMOAe:i-icTByroru;ux nocpeACTBOM u;eHTpa.nhHhIX 
napHhIX noTeHu;ua.nos, HCCJieAyIOTCSI B paMKax MeTOA<l rnneprapMOHHK. JloKa.:: 
3b1BaeTCSI KpHTepu:i-i cym;ecTBOB.aHHSI JIO)KHhIX peIIIeHHH. TI peAJiaraeTCSI npocTO:i-i 
cnoco6 AJISI HX KJiaccncpuKau;HH u nocTpoeHHSI B SIBHOM BffAe. 

Pa6oTa ,BhIIIOJIHeHa :s Jia6opaTOpHH TeopeTri11ecKo:i-i cpu3HKH HM.H.H.Eoro-
Jiro6oBa Ol1.Sll1. · · - · · 

, 

IIp~np1rn~ Q(n,eAHHeH·Horo HHCTHTyTa Sl~epttblX HCCJieAOBaHHH.·,uy6·Ha, 1995 
. . . . . . - . 
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