


Let Hy and E be a free Hamiltonian and the total energy of a three-particle system
with two-body interactions V;, where i = 1,2,3. In Schrodinger theory [1], the wave
function ¥ of this system obeys the equation

(Ho~E)¥= (-3 %)U RS
: k=1 ‘ ;

and well-defined physical boundary conditions: In Faddeev theory [2], this problem is

reformulated [3]:. ¥ is represented as the sum
v=3 v o (@)

of the Faddeev components ¥, obeying the set of three (i.= 1,2,3) coupled equations
(Ho—E)¥;=-Vi¥=-V. Y ¥ (3
: k=1 ,
and the corresponding physical boundary conditions [4]. Then it is proved [3] that the
Faddeev problem thus formulated is uniquely solvable and equivalent to the original
Schrodinger problem.
| In the Schrédinger eq. (1), unknown function ¥ is the total Faddeev sum (2), whereas
in the Faddeev egs. (3), unknown fuqctions are the terms ¥; of this sum. In general, the
sum of three nonzero functions may be identical zero. Therefore, if the set of eqgs. (3) is
not completed by any boundary conditions, it may have a npntriyial solution (¥; # 0)
for which the sum (2) is identical zero (¥ = 0). Unphysical solutions of this kind are
called [5] the spurious solutions of eqs. (3). We denote the spurious solutions by S;. This

set of the functions, being inserted into eqs. (3), turns simultaneously both their right

and left sides to zero:

&
|
ta
i
|
(=}

(4)

1L B ROSAE




Therefore, the spurious solutions-carfy no information about two-body interactions, and
all these solutions correspond to the trivial solution (¥ = 0) of the Schrédinger eq. (1).

"Hence, the spurious solutions do not correspond to any physical three-pvarlticle state.

Nonetheless, the spurious solutions are of special mathematical interest. The fact.

‘of: the existence of the spurious solutions has beeﬁ emphasized by a lot of\a.uthorg (see
reviews [5],{6] and original papers [7]-[13]). The completeness of physical and spurious
solutions and 'spectral properties of the Faddeev differential equations have been studied
in [7] and [8]. However, the spurious solutions are known in an explicit form ;)nly in
particular cases. Namely, for a system of three identical bosons interacting via

. S-wave potentials and having the total ‘angular momertum equal to zero [é],[lO],[13] or
unlty [11],{12].: In general, the criterion of ex1stence of the spurxous solutxons and a simple

method for classification and analytical construction of these solutxons are not yet at

-hand. -

The main aim of this paper is to present the criterion and method of this sort for a’

.- system of three different particles interacting via spherically symmetric potentia:ls.‘ ‘

We first briefly describe notation and present some formulae known in Fa.ddee\}
theory (3], [4] and in the standard hyperharmonics approach [14], [15]

Let (2}, 7;) be three (i = 1,2, 3) sets of the usual reduced Yacobi vectors [3] in the theée-
particle space R® = RE @'R? and define the corresponding hyperspherlcal coordinates [16]
(r, %) by r = (22 + y)/? and ;= (z,-,y,-,(p,-) , where r is the hyperradius, & sta.nds for
fhé two spherical angles [17] of some vector &, and ¢; = arctan(y/z:).

By assumption, the potentials V; are the functions of the corresponding distalnces T;.
Hence, the total energy E, the tvotal angular momentum [ (T= T,,.+f,,,.), its third compolncnt
m, and parity ¢ = £1 with respect to the inversion (%;,7;) — (—i, ) are well-defined
quantum numbers. Therefore, we alre looking for th(‘e spurious solutions in the class A* of

the functions defined in RS, having continuous second-order derivatives with respect to all

75

their arguments (r,§);) and possessing the set € = (E,l,m, o) of four conserved quantum
numbers. For A‘-class-a complete and .orthogonal basis on the unit sphere S° in R® is
formed by the well—deﬁned subset [16] of the standard hyperharmonics [18].

To present all our formula.e in a more compact form we combine the indexes I;;, and

l,, into double mdex a = {1} a.nd write the hyperha.rmomcs of that subset as
YA (@) = Ny (sing) (cos gi)'ss PO (cos 9000) V™ (4,5) - (6)

Here, Ni, is the known [14] norm fa.ctor, L = Iy, + l; + 2n with n = 0,1,... is the
hypermomentum, 4™ is the standard bispherical harmonics [17], and ﬁna.lly, P,f" H 4

the Jacobi polynomial [19]. To ensure the conservation of parity o hyperha.rmonlcs (6)

‘should have the indexes L and o obeying the following conditions: the sum 1. + ly', and

L are even (odd) numbers for o = +1(=1). Further we imply this restriction.’
The following properties of the hyperharmonics will be the kéy formulae for our étudy.

First, hyperharmonics (6) are eigenfunctions,
LYio = UL+4 YT, ()

of the squared hypermomentum or grand orbital operator L2, contained into the kinetic

energy operator [14]

Ho(r, ) = —r°8,(r™%8,) + v 2LA(Q) . . . v (8)

ir

Second, hypefﬁérrﬁofliés (6), written down in the different (z 74 k)urepresenta.tions (% |

and (§ | , are conriected by unitary transformation [20]

: o

(YD) = Y@ =Y (ald e Yol - (9)

Herea.fter we imply that i = 1,2,3 and the indexes a = {I,,, ly'} and o' = {I,, yk} take

all the va.lues allowed at given ! and L.



Transformation. (9) conserves the quantum number I,m;c and L and contains the

Raynal-Revai coefficients:[20]. They are defined as the overlap integrals: -

(@l o Vo)) = (lelye | Logy by I (0s) =

e Yne)) = [ @) vine). o)

Therefore, these coeﬁiaents are real functlons of the correspondmg kmemahcal angles [15]

[

‘ ' - \1/2 )
Yr,i = (—1)P arctan < my(ma + ma + ma)) , (11)
: Mk e ,
’v.vhere‘m; are the particle masses, p.= 1 for k,i =2,11,33,2 and otherwise p = —1.

. We now proceed to a study of the spurious solutions.
, In Eaddeey‘ theory, each component ¥; and the equation, deﬁnjng it in the set of
egs. (3), is written down in the corresponding representation {r, Q,I For this reason,

conditions (4) and (5) 1mply that for any 1=1, 2,3

(HO(Trﬂi)_E)Si(THQi):O’ T (12)

Do (nu Sy =0, L)

k=1

‘We are seeking for the spurious solution as a series onto basis (6): R
N i

(r Q] S:) -ZZZ Siralr) YER(04) i (14)

Inserting (14) into (12) and using’ (7) and (8), we project the obtained equations onto
basxs (6) a.nd then introduce a new variable z = VvE Er. As a result for each unknown
hyperradlal component S; 1,q(2) of series (14) we obtain the Bessel equatlon [19] with the

index v = = L+2. Thxs equation has the regular solution Jp,»(z) only for z > 0, i.e. only

if E> 0. All its regular solutions read

Si;L,a = D;l"a JL+2(\/E-T‘) , o R ' ‘(15)

L 3 - -
where D, is an arbitrary numerical factor.

s empty (B

To determine these factors we substitute series (14) with the found hyperradial com-
ponents (15) in egs. (13). We then project the equations obtained onto basis (6) and take
into account (9) and (10). Asa resnlt,‘for each L we ‘arrive at !ineér and homogeneous
set of the desired equations

DE 4+ Y (alahip Diw=0. (16)
ktiy o .
Here, 1 = 1,2,3 and o and o take all the values possible at prescribed [ and L. That
is why the matrix Ml‘ of egs. (16) has a finite dimension equal to triple number of
hyperharmonics (6) with the same [ and L. According to theory of matrix [21], egs. (16)
have NL (N 'E'dim/Ml’ —rank ML) linearly independent solutions D" = D,-ll’(',"
(n=1,..,N") if and only if |
' detMl =0, (17)

and a general solution of egs. (16) is a linear combination
: » ;
= d Dk, - (19)
n=1 '

of these solutions with arbitrary numerical coefﬁciens dt.

Let Bbea multltude of the values of L for which condltlon (17) holds. If this multitude
= 0), i.e. detM? #£0 for any L, then there are no nonzero functlons (14)
satisfying eqs. (13). In this trivial case, condition (5) is not fulfilled and the Fadd(:ev
eqgs. (3). have no the spurious solutions, even though E > 0. Therefore, we assume that
both the necessary and sufficient condltlons (E > 0 and B # 0) of the ex1stcnce of the
spunous solutions are fulfilled. Note that the first condltlon (E>0)is known for a long
time [5], [6], while the second condition ‘(B # (0) is our original and malin result. The
next fésultg is ouf classification of the spnrioué solutions. By using (14), (l ), and (18),

we classify the spurious solutions and present them in an exp‘licit form.



So, for each L C B there are NT linea.rly independent spurious solutions (14),

t

Shn = - Jm(\/”r) Z DEr YUY, (19)

corresponding to the solutions D" (n.= 1,...,N%Z) of egs. (16) and possessing a good
quantum number L in addition to the set . All the spurious solutions (14), corresponding
to a general solution (18) of eqgs. (16} and possessing good quantum numbers L C B and

¢, are represented as
St = r=2 J o (VEr) ZD YL’Z‘(Q) . (20)

 Finally, a.ny.spurious solution_(14) with the set € of Well-deﬁned‘quantum numbers can
be represented as a linear combination
Si=Y CkSHr,q) . ' (21)
LcB. : |
of the particular spurious solutions (20) and some numerical coefficients CL .
For completeness we prove that all the spurious solutions possess one more good
quztntum number. |

Let S¢ and U* be linear subspaces of the space A¢, and let the hyperangular basises

of §¢ and U° on S*® in R® be formed by hyperharmonics (6) with L C B and L ¢ B,

respectively. The projectors on §° and Y* then read

Pz Y 1V L= YR ()

LcB « LgB a °

%Hﬂ (Ypm(@Q) ). (22)

Evidently, S¢is orthogona.l to U* in respect to the integration on S° over the set of the
hyperangles Q.. As tra.nsformatlons (9 are unitary, representa.tlon (22 are invariant in
reference to t. Taking into account this fact, we act on the spurious solutions (21 by

projectors (22) and arrive then at a desrred result:

P‘Si=p55i7 p.7=11 PuSl=0 (23)

N e

el o gt Tl e
e, S .

By virtue of (23), all the spurious solutions (21) are eigenfunctions of thé operator P,.
Moreover, all of them correspond to the same eigenvalue p, = 1 and belong to the subspace
S¢. Hence, in the subspace U*, egs. (3) have no sburious solutions. According to the
terminology of the paper (8], we call §¢ and U the spaces of spurious and physical
solutions of egs. (3), respectively. It should be emphasized that the orthogonality of these
spaces has been proved in [8] in another way.

To exemplify our results we present some simplest spurious solutions. Note that
there are only two cases, namely, [, = 0 and | = 1,L = 2, when the index a of
hyperharmonics (6) can take only ohe value: ‘o = {0,0} and o = {1, 1}, respectively.

In these cases, there is only one nonzero Raynal-Revai coefﬁclent: {a | ahcln:) = 1.

For this reason, relations (9) degenerate in the equalities

YVo@) =Yim (), LL=0; I=1L=2, (29)

and all the elements of the matrices M® and ’lV[Z ‘of the corresporxding eqs. (16) are equal
to ‘unity'. Therefore, dim ML = 3 and rankME = 1if [, = 0 or | ="1(, L=2 In these
both cases a general solution (18) of eqs. (16) has the following form: Dé’.a and D%, are
arbitrary numbers, l‘lherea.s Df,= ‘

DL —Dé’a By formula (20), we find the Faddeev

components

§F =17 Jua(VEr) (D (82— 8i2) + Dia (62— 8i2) ) YiT(%)  (25)

of particular spurious solution with well-defined qua.ntum oumbers Lm,L=0,0=1and .
a=1{0,0}orl=1,m=0,+1,0 =1, L =2 and a = {1,1}.: The found solutions (25)
do not depend on particle masses and vanish when all three particles are identical bosons
or fermions. Let us prove the latter statement. °

For any state of three identical bosons »(fermions) the corrloonents‘ U; of a physical
solution of egs. (3) obey also the conditions (3] ensruring a complete symmetry (antisym-

metry) of the wave function ¥ in respect to the interchanging of particles in any pair.
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Therefore, the components of the spurious solution should also satisfy the same conditions:
51(51,171) = isl(_flag.l)'v 57(527172) = 51(527!72)7 53(531!73) = 51(53)!73) ) (26)

where the sign‘-}-(‘—-) corresponds to boson (fermion) case. Substituting (25) in (26) and
taking into account (24) give:DE, = 0 for any ¢ = 1,2,3. Hence, only trivial (S,-. =0)
spurious solutions (25) satlsfy conditions (26).

In basis (6), central potentials can be renresented as operator series

=5 v @ o @

Ai=0

AlE =ZZ IY

LL! ’!’-

)) VEF ()Y@ |, a= () (28)
Operators (28) have the following prOJectlng propertles
(9 |v*-|y ; _5A,,,, Z el yL“; (), a_{z,,, I}. (29)

Therefore, the potential_ operator VM conserves the ang_ular momentum J; of two partleles
in the pair i. These potentials are often used in low-energy nuclear physics [22] “VVhen
X; = 0,1,2 they are called S, P and D- wave potentials, respectively: Formulae (27) and
(29) provide a possibility to consider the case of A-wave potentials as a particular ,\c"aee of
central potentials. To this end, in all the formulae (6 ) (7) and (14)-(22) we should forbid
the indexes o and o to take any values except {)\ I} and {}, lyk}

. To reproduce the known spurious solutions by using our method we consider the case
of S-wave potentials. In these case I;; = 0 and Iy, =1 are conserved as ~Well as the set €.
For any ! and L the indexes @ and o' in egs. (6) and (14)-(22) can take only one value:

a=a = {0,1}. Therefore, the dimension of the matrix ML of egs. (16) is equal to three.

All nondiagonal elements of this matrix can be found by the known formulae {23]

(1+1/2,1/2) N
P (— cos 29x,i)
(L-1)/2 ’
Mk: = (0 l l 0 I)l L(7k,l) = (_ Cos7k,i)l P(l+1/2 1/2)( 1) . (30)
2 < ) - (L-1)/2

Since dim M = 3; condition (17) is simplified and is reduced to the following equations:
detM¥ = 1= (ML) = (MEy" = (M) +2 ks M M =0 (31

Let I =0 and L = 2. Then a = a' = {0,0}. Using (30) and (31), we find that for
any values of partlcle masses M= = cos 2—71:.. ) rank M?=2, and det M? = 0. Using the

relatlons Tz 3,—732 > 0 and Yag =T — —721 — m; for the k1nemat1cal angles (11), we

solve eqs. (16) Substltutlng the found solution

 DE=sin (L(van +ma)6ia = (1) L (s big+ 721 6i3)) (32)
into (20) results in"the corresponding particular spurious solution
Sk = P (VEn) YRS -

o sin (L (72 +."71;3) 8i -,( 1) L('n 35.2 + Y21 5l3)) . (33)

This solution possess‘ éood duantum numbers L1, = =0,0=1, and L=2 and depends
on partlcle masses via the k1nemat1ca1 angles o L

,, Let IR L =1 Then in all formulae a= a = {0, 1} Applymg egs. (30) and (31), w
show that for any partlcle masses M,“ = = oS rank Mm! ‘='2 and detMl = 0 We
then ﬁnd the SOlllthIl of egs. (16) and the coxrespondmg partlcular spunous solutlon (20)
These solutlons are glven by (32) and (33) w1th LL=10=-1, and a = {0, 1}

Let I and L be arb1trary and pa.rt1cle masses be 1dentrcal Then a=ao = {0 I} and

by deﬁnltlon (11) | Tri I_ 7r/3 for any k and :. Therefore, all nondxagonal elements (30)

of the matrlx ML are equal to each other, and COIldlthIl (31) is srmphfyed Namely for

each ﬁxed l 1t is reduced to the equatlon deﬁnlng L. We wr1te thls equatlon as

!
(=2 Pl P () = P&“,;,z "?’(1/2)- N )
When /=0 or # =1 the value L = 2 or L = 1 satisfyes eq. (34) and the corresponding

spurious solutions (33) take the following form:

SF = (1" (v3/2) 172 Jppo(VEr) Y () . (35)
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These functions satisfy. conditions (26) for three identical bosons and reproduce the known
spurious solutions {9]-[12].

Similarly we mvestlgated the case of P- ws.ve potentials. As we found, for [ =0, L =2,
a= {1 1} orfor ,L=1,a={l, 0} the solutron of egs. (16) and the correspondmg spu-
rious solution (20) are represented by (32) and (33), respectrvely. In the both consrdered

cases, the spurious solution ‘(33) obeys conditions (26) for a system of three identical

PR t

fermions.

Exact solutions of the Faddeev eqgs. (3) are known only for harmonic-oscillator poten-
tials [9] and for the S-wave inverse square potenti_a.ls [11], [24). Equations (4) and.(5)
contain no potentia.ls, and, therefore, the spurious solutions can be easily found analyti-
cally. These explicit solutions, for example, fdnctions (25) a.nd\ (33), can be then used as

the reference solutions in testing the algorithms for numerical study of egs. (3).

" A’ method proposed in this paper is ba.sed on the well- developed hyperha.rmonlcs

approach. Therefore, this method can be ea.sxly generalrzed for study of the spurrous .

solutions in more realistic cases when pa.rtlcles possess spin and 1sospm For such a. gen-

[

eralrzatlon it is necessa.ry to use the correspondmg hyperha.rmomcs [14] descrrbmg these
degrees of freedom a.nd repeat then a.ll the constructrons described above. Usrné'the four-
body hyperha.rmonrcs ‘basis [14], [15] [25] one can also generallze our method for study
of four body spurrous solutions. One of them ha.s been recently found in [13] L

In conclusron the main result of thrs pa.per ma.y by formulated as follows

Theorem. In A‘ class the spurrous solutrons of eqs (3) exist 1f and only if E > 0 a.nd
B#0. All the spurruos solutlons are represented as the sums (21) conta.mmg a.rbrtra.ry

coefficients CL and the coefficients D,-I"a‘ obeyrng eqs. (16).

A
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The Faddeev dlfferentlal equatlons for a system of three dlfferent partlcles .
mteractmg via - central : two-body potentlals .are: mvest1gated ‘within" the

hyperharmomcs approach A s1mple method for class1f1catlon and constructlon B

of these solutlons is proposed
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