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In the nuclear theory (l], the interaction between two magnetic moments µ1 and µ2 of 
nucleons is described.by the long-range tensor potential 

(1) 

As it ~as shown irt (2],' the magnetic-moment i~teraction (1) for prciton-proto~ scattering 
is negligible comparing to th.e .interaction of the magnetic moment 'of one proton with 
the Coulomb field. of another ( the so-called Schwinger scattering (3]) at low energies. 
Since then the interaction (1) is usually not included into the pp and np phase-shift 
analyses [4]. The role of this interaction in nn scattering has been investigated neither 
theoretically nor exp\;;imentally [1,5]. The point is 'that the direct measurement of nn 
scattering characteristics remains an open problem for many years (1,6]. Recently in (7], 
a possible in~beam experiment on the direct measurement of nn scattering length has 
been discussed. Thi~ discussion ·stim~lated our theoretical study of nn ~cattering at low 
energies. Evidently, in the case of two neutrons, Schwinger scattering is absent. But; the 
interplay of inte;action (1) and a pure nuclear interaction may generate a local minimum 
in the total cross section of the spin-triplet nn scattering [8]. The .. main ·aim of this letter . 
is to prove that this minimum should exist. 

We analyze t_he behavior of the scattering characteristics at low energies in the three 
cases corresponding to various assumptions about the total potential V of nn interaction. 
In the first case V = V' , where v•. is the usual short-range nucleon-nucleon potential 
containing center, spin-orbit and tensor terms. In the second case V = vm, and vm is 
defined by (1). It means, that. we artificially switch off a pure nuclear interaction. Finally, 
V = vms = vm + v•. Thus, we include both the potentials V• and vm. This seems to 
be a more realistic assumption about the nn interaction at low ene~gies. The magnetic 
tensor potential (1) vanishes in the spin-singlet nn states as the' tenso; term of a pure 
nuclear potential does. Therefore, we sfudy only the spin-triplet nit scattering. 
We use the natural system of units in ~hich n = M = c'== land the total ~nergy Eis equal 
to the squared scattering momentum k. For the phase shifts 81,j and. mixing parameter 
Ej we use the definition given in (9). Note that the total momentum j of the spin-triplet 
nn state is conserved, while, due to the· tensor interaction, the angular momentum l is a 
good quantum number for j = 0 and odd j, and l is not conserved for even j ~ 2. In the 
first case l = l,j = 0 or l ~ j = l, 2, 3 ... and in the other case l = j ± l. 

To analyze .the low' energy behavior of scattering parameters, ~e ·apply the variable 
phase ·approach ·(10). hi this app'roach, the phase shifts 81,j{ k) an·d mixing paraII:;eter ti( k) 
are defined as the limits, when r--+ oo, of the corresponding phase functions81,i(r; k) and, 
Ej(r; k) which vanish at r ·= 0 and ~bey the following equations: . 

,,_. ' ), ' . 

8rt51,i = -k-1 s~c 2ti ( ½,1 ( cos4 EjP/ - si~4 EjQD (2) 

½,i' sin,2ti(sin2i'j(Pj~ - Q;,)/4 + cos2 tjP1Q1'. -.~in2 tjP(,Q1)),. 

! ·arEj = -k-:1 
( ½,11 ( cos2 EjP1P11 + sin2 EjQ1Q,,) - r 1 sin 2Ej L 'Vi:•,l"P111Q111) 

, : i l"==J±t 

Here Pi = cos 81,j j1-s.in 81,j n1, Q1 = sin 81J-i1+cos 81,;in1, and ½,1' are the potential matrix 
elell'!ents; if l is conserved, then l = l' and Ej = 0, in. the opposite case l, l' ';" j ± l, l ,f. l'. 



possess a local minimum at this energy if the nn states with j :S 2 give the main contri­
bution to this cross section. Let us verify that this condition is fulfilled. 

In the theory of polarization and triple-scattering for two-nucleon systems the scat­
tering is described by a matrix M (see [9]). The matrix elements Mn,n' are infinite series 
containing the a-matrix elements (see Table III in [9]). The elements a1,j for j < 0 and 
ai for j :S O are defined to be zero and in all the ot,her cases 

a1,i = cos2Ej(exp2i«51,j -1), ai = isin2Ejexp(i(8i+1,i + Oj-i,J), (12) 

where, also by definition, Ej = 0 when l is conserved. In any case (a= s,m,ms) the 
scattering parameters vanish in the low-energy li~it by the corresponding laws (4)-(8). 
Hence, the low-energy behavior of the a 0 -matrix elements (12) is 'described by the first 
terms of their Taylor series: 

a1,i ~ 2io~i , a1 ~ 2iE1 , k -. 0 , (13) 

where the scattering paramet~rs are replaced by th~i~ leading terms. 
To find t'lie" leading terms of the nucle~r matrix M' yve use (6) and (13) and in the 

infinite serie; for "its .elements M~ n' we omit all the terms vanishing more rapidly than 
O(E). These term~ are of the ord~r of E 2 and are i~itiated by th~ nn states with j > 2. 
In the above approximation,· · · ,.. · · 

Mf O ~ v'2exp(-icp)E(Af 2 ·~ Af 0)P} (x) , M~ 1 ~ (3/V2) exp(i~ )E(Af 1 - Af 2)P}(x) , 
M(1 ~ 3E(A:_1 ·+ A:,2 )Pi(xL M~,o ~ 2E(Af,0°+ 2At2)f1(x), Mf,_1 = 

0

0, ' (14) 

where Pt(x) are associated Legendr"e p"olynomials of the scattering angle O = arcco~x. 
Using (14) we establish the lo~-energy behavior of the total nuclear cross section: 

' ' ' ' 
2 ' . 

a~(E) = ~1rE2 2)2j+ l)(A:J2 + O(E4
), E-> 0 (15) 

j=O 

In the case a = m w~' apply (5) and (13), and in the infinite series for .th~ magnetic 
matrix elements M;:' n' we neglect all the· terms vanishing more rapidly than O(bk). Thus 

we obtain the'Bor~ 
0

approximati,on M;::~. for the.series ~::'.n•· . 
. It should be noted _that th.~ s,eries M::'.n• with n = n'. = 0, 1 are exactly equal to finite 

sums of their first terms corresponding to l = 1 because all the other terms.vanish. Hence,· 
these series contain ~·nly the contributions from the rm states with j :S 2. The series Mi7:_

1 
is ·infinite but rapidly converging. It contains small contribution from all the_ nn states 
with j 2". 2, and it is a tabulated series. 

These facts allow us to obtain t_he following explicit representations: 
. . . 

M;".0 ,,;; (M;;-:i)* ,;,,-v'2bexp(i~)Pi1(x), 

M;".1 = -bPi(x), M;;-:0 = 2bPi(x), M;7'._1 = exp(-2i~)bP1(x). (16) 

By using them we -find the Born approximation diJm . =. 2b2, and 5-m · = 81rb2 for the 
mag~etic differential ·cross section dam and magnetic total cross section am, respectively. 
This approximatiop shows that in the low-energy limit dam shoJld.be· isotropical and am 
cannot vanish irt contrast with a•. · 

4 

1 
} 

,'.], 
.. 
/ 

/~ 

To find the magnetic-nuclear matrix Mm• we use (4)-(6), (8) and-(13). In the infinite 
series for the elements M:,~, we neglect all the terms vanishing rapidly than O(bk), and 
we also omit all the terms gen_erated by V' and vanishing more rapidly than O(E). As a 
result, we derive the simple approximate formulae 

M:~, ~ Msn n' + M;n, 
I I · I 

(i 7) 

with the terms (14) and (16). The formulae (14)-(17) allow us to obtain the low-energy 
approximation for the· total magnetic-nuclear cross section: 

I 

am'(E) ~ 5-m(E) + ( 41r /3) bE ( 2Af,o - 3At1 + At2) + a'(E) (18). 

and to conclude that the contribution from the nn states with j > 2 to this cross section 
is small and is of an order of o(bk). 

Let us analyze the structure of the sum (18). Its first term is the constant 81rb2. The 
second term is a negative and linear function of E describing the interplay of V' and 
vm. And finally, the last term· is the squared function of E. Due to this structure of the 
sum (18), there are three energy regions. If the energy is small enough (E :S E 10we•), then 
am•(E) ~ 5-m_ Hence, due to the potential vm, the total cross section am'(E) has a non­
zero limit 81rb2 as E -> 0. In the third region, where the energy is so large (E 2". E"pper) 
that am•(E) ~ a'(E), one can neglect ym. In this region am•(E) is a growing function 
of E. Cleady, the total cross section having the above-described behavior should possess 
a local minimum in the intermediate region E 10wer < E < E"PPe•. This effect is caused 
by the interplay of the short- and long-range potentials V' and vm. Therefore, we call 
it the neut'ron Ramzauer effect by analogy with the atomic Ramzauer effect [15]. The 
latter is well-.known in atomic physics [16] and is interpreted as the result of interference 
of a long-range electric polarization potential aer-4 and a short-range potential opposite 
in sign. The analytic corinection between the parameter ae and the position a local cross 
section minimum has beer{ first found in [17]. ' ' · · 

To derive that connection in our case, we find a zero of the first derivative of the 
function (18). As a result, we express the position of the local minimum of am•(E), 

2 

E;;:tn ~ (-b/2)(2Af,o -3Af,1 + At2)/I::(2j + l)(At;)
2

, (19) 
j:O 

in terms of the known constant b and coefficients Af.i. Substituting their values (7) 
into (19) we find -E;::fn ~ 20 KeV. 

To check our qualitative conclusions about the role of the interaction· (1), we have 
carried out a lot !of calculations. Here we mention the most interesting of them, because 
a more detailed discussion will be given in.our forthcoming paper. 

For all j = 0, 1, .. 10 we compared the magnetic scatteririg parameters calculated by 
solving eqs. (2) with their Born approximation (3). For any E :S 10 MeV the relative 
accuracy of this approximation is about 10-4 • Therefore, the approximate expressions 
(5),(8),(16) and (17) are also correct within the same relative accuracy. 

We defined the bounds •E{'.'}"er and E~fPer ·as the maximal and minimal values of_the 
energy for which the relations I oiJ(k)/oiJ'(k)-1 l:S 0.1 and, respectively, I 8i,i(k)/8Q'(k)­
l 1:S 0.1 hold. Using this definition and the scattering parameters calculated by solving 

5 



eqs. (2), we obtained the following estimates: Ef':rr ~ 2 KeV and E~7/" ~ 0.3 l\IeV, 
if l = l and j = 0, 1,2; while Ef':rr ~ 0.7 MeV and Etrr ~ 7 MeV, if l = 3 and 
j = 2. This discrepancy is evident physically and mathematically. In fact, the centrifugal 
barrier l(l + l)r-2 screens the short-range potential v• more effectively than the long­
range potential vm and, moreover, in the first case, the power of this screening increases 
with growing/. Mathematically, this fact is explained by formulae (4)-(6). Owing them, 
8G(k) is linear ink for all/ and j, while 81.;(k) decreases by the P1

1
+1 law. Therefore, tt,1~ 

energy region, where 8G(k) domin,ate over 81.;(k), is expanded when l increase?. In other 
words, E{('J',er > Ef'.'ler, if/' > /, and an analogous relation is valid for the upper bounds. 

Then we showed numerically that the approximations (6), (10), (11) and (14) arc 
· correct with a relative accuracy about 10-2

, if/= 0, 1, j = 0, 1, 2 and E < 7 MeV. 
Here we do not present the curves for the phase shifts 8't,i with j = 0, 1 and a= s, m, ms 

because we have made this in (8]. 
Now we sketch our scheme for-calculation of the cross sections. First we found the 

nuclear and magnetic nuclear parameters and the corresponding matrices aa by.numerical 
integrating of eqs. (2) and using.formulae (12). Then we decomposed the infinite series 
for the Ma matrix elements as 

M~,n' = M~,n,(j ~.2) + M~,n,(j > 2), (20) 

where the first' and second terms stand for the finite subsums of these series ·containing 
the aa matrix elements (12) only with the index j < 2 and, iespecti~~ly, j ~ 3. 

To calculate u•, we approximated M~ n,\;y M~'::°, (j ~ 2), i.e. we neglected V' in °all 
the nn states with j ~ 3. Not~ that this i~ the sta~dard low-energy approximation (4,12] 
and, according to (15), its accuracy is of the order of O(E4 ). 

As we have shown 'before, the Born approximation is valid in the case. a = m. There­
fore, we calculated the matrix Mm, the terms of its decomposition (20) and the magnetic 
cross section within this approximatiori. In pa~ticular, we obtained the auxiliary form{1lae: 

M~1(j > 2) == ( ~b/3) A(x) ', M~_1(j > 2) = b exp(-2icp) (P/(x) - P;(x)) , 

. M;;:1(j > 2} = (-../2/9) b ~xp(icp) PJ(x); M::'.0 (j > 2) = 0, n = 0, 1. (21) 

Then we used them to find the matrix Mm• within the following approximation 

M:;'~, ~ M;:'~,(j ~ 2) + M;:'n,(j > 2). 
I I - I 

(22) 

It means, that we neglected v• in the nn states with j > 2, but we·taken into account 
vm in all these states within the Born approximation. To find the first terms of the 
sums (22), we used the calculated matrix elements a'(:/ with j, ~ 2. • As for the second 
terms, we calculated them by expressions (21). And finally, we found dum• and then um•_ 

In Fig.I we plotted three curves representing the total cross sections ua, a = s, m, s, 
calculated by the above-mentioned scheme. These curves coincide with those calculated 
by approximate formulae (15) and (18). These curves show that magnetic~nuclear cross 
section um• coincides' ,~ith magnetic cross section um = 81rb2 at E = 0, possesses a 
minimum at E -~ 20 KeV, and tends to nuclear cross section u~. with growing E in the 
third region, where E > gupper ~ o:3 MeV. . 
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Fig. 1. The. total nuclear u•, magnetic um and magnetic-nuclear um• cross sections of 
the triplet neutron-neutron scattering. 

In conclusion, we summarize our main results. We have shown that the magnetic 
moment interaction (1) has to be taken into account in the region of low enei'gies (E < 
0.3 MeV) because this interaction is responsible for the zeros of the magi1et.ic-11uc!Par 
scattering parameters and the neutron Ramzauer ,effect. .We have obtained the simple 
and explicit expressions (10) and (19) for' tl1esc zeros and the pc~sit.i~n of the minimum of 
the magnetic-nuclear t.otal cross section. We have derived the ·explicit. formulae (8) and 
(18) ensuring a correct extrapolation of I.he nn scattering· parameters and I.he tot.al cross 
section to this. region from the lowest experiment.ally available energy. 

' . i '< 
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IlynhlmeB B.B., CoJIOBU,OBa o.n. , E4-95-121. 
3qxpeKT PaM3ay3pa B ,TPHilJieTHOM ueiiTpoH-HeiiTpoHHOM pacceSIHHH - ,·- .- .· . " , •' 

1

Mbl Il0Ka3aJIH, lJTO B' pe3yJihTaTe-B3aH_MO)leHCTBHSI smepuoro IlOTe_uu,mUia 
H IlOTeHIJ,HaJia MarHHTHbIX MOMeHTOB IlOJIHOe ceqeune TpHnJieTHOf'O paccesrnmr 
HeiiTpOHa Ha ljeiiTpOHe )lOJI)KHO HMeTh HeHyJieBOH npe)leJI .IlpH £cm = 0 H JIO-

KaJihHblH MHHHMYM npH Ecm == 20 K3B. 

P.a6orn BbIIlOJIHe:a B Jla6opaTOpHH TeopeTHtJeCKOH qJH3HKH HM:H.H.Eoro-
mo6oBa b 115!11. · · ·. · 

TTpenpHHT Q6,,e'AHHeHHOI'O HHCTHTyTa li'AepHbIX HCCJie'AOBaHHH. ,n:y6Ha, 1995 
. . 
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PtipyshevV.V., SolovtsovaO.P. E4-95..:121 
Ramzauer-Effect in Tripl_et Neutron-Neutron Scattering 
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As we show, due to interplay of pure nuclear and magnetic moment 
interactions, the total cross section of iripletneutron-neut~on scattering should 
possess a non-zero limit at Ecm = _O and_a local minimum at Ecm ::::.:_ 20 keV ... 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, HNR. · 
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