


In the nuclear themy [1], the interaction between two magnetic moments (i3 and i3 of
nucleons is described by the long-ra.nge tensor potential
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As'it was shown in (2], the ‘magnetic-moment interaction (1 ) for proton proton scattermg
is negligible comparing to'the interaction of the magnetlc moment of one proton with
-the Coulomb - field "of another (Lhe so-called Schwinger scattering [3]) at low energies.
Since then the interaction (1) is usually not included into the pp and np phase-shift
analyses [4]. The role of this interaction in nn scattering has been investigated neither
theoretically nor experimentally [1,5]. "The point is that the direct measurement of nn
scattering characteristics remains an open problem for many years [1,6]. Recently in [7],
a possible in-beam experiment on the direct measurement of nn-scattering length has
been discussed. This discussion stimulated our theoretxcal study of nn scattering at low
energies. Evidently, in the case of two neutrons, Schwmger scattermg is absent. But; the
interplay of interaction (1) and a pure nuclear interaction may generate a local minimum
in the total cross section of the spin-triplet nn scattering [8]. The ,main aim of this letter .
is to prove that this minimum should exist. : V
‘We analyze the behavior of the scattering characteristics at low energies in-the three

cases corresponding to various assumptions about the total potential V. of nn interaction.
In the first case V = V* | where V* is the usual short-range:nucleon-nucleon: potential
containing center, spin-orbit and tensor terms. In the second case V. = V™, and V™ is
defined by (1). It means, that we artificially switch off a pure nuclear interaction. Finally,
V =V™ = V™4 V? Thus, we include both the potentials V* and V™. This seems to
be a more realistic assumption about the nn interaction at low energles The magnetic
tensor potential (1) vanishes in the spin- smglet nn states as the tensor term of a pure
nuclear potential does. Therefore, we study only the spm triplet nn scattermg

We use the natural system of units in which i = M = ¢’= 1 and the total energy E is equal
to the squared scattering momentum k. For the phase shifts §,; and mixing parameter
¢; we use the definition given in [9]. Note that the total momentum j of the spin- -triplet
nn state is conserved, while, due to the tensor interaction, the angular momentum [ is a
good quantum number for j = 0 and odd j, and { is not conserved for even j > 2. In the
first’ casel-l,;*Oorl-J ='1,2,3... and in the other casel~]:i:l

To analyze the low energy behamor of scattering parameters, we apply the varlable

phase approach [10] In this approach the phiase shifts §;;(k) and mixing parameter €;(k)
are'defined as the limits; when r'— 06, of the corresponding phase functions §;, (r k) and -
&(r; k) whxch vanxsh at r 0'and. obey the followmg equations: '

6,5,,]- = —k7 sec‘2§_,-( Vig (cos* chf - siﬁ“1 e_,Qf) _ ’, ; : (2)
- V”: sin 26_, (sin 26_,(P,, Q,,)/4 + cos c_,PlQp - sm € P, Q,)) o
2 Oe; = ( VI " (cos e_,Ple + sin CJQ,Q,:) - 2 sin 25_, Z Vin ,,,P,,,Q,,,) .
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Here Pl = cos§; g J;——sm 61,_, ny, Q; =sinéy; ]1+COS 6,_, iy, a.nd V1 i are the potentlal matrlx
elements if [ is conserved, then { = I’ and ¢; = 0, in.the opposite case I, ' = =71, 1#

»-‘._
IRERT &
oy

L

| e imcTeRA



possess a local minimum at this energy if the nn states with j < 2 give the main contri-
bution to this cross section. Let us verify that this condition is fulfilled.

In the theory of polarization and triple-scattering for two-nucleon systems the scat-
tering is described by a matrix M (see [9}). The matrix elements M, ,+ are infinite series
containing the a-matrix elements (see Table IIl in [9]). The elements a,; for j < 0 and
aj for j <0 are deﬁned to be zero and in all the other cases

aq; = cos 26,(exp 22511 - l) a; = isin 2(, exp(z(§,+1 it 6i15)), (12)

where, also by definition, ¢; = 0 when [ is conserved. In any case (a = s,m,ms) the
scattering parameters vanish in the low-energy limit by the corresponding laws (4)-(8).
Hence, the low-energy behavior of the « —matrlx elements (12) is descrrbed by the first
terms of their Taylor series: : b ,
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where the scattenng parameters are replaced by their leading terms. ;

To find the*leading terms of the nuclear matrix M* we use (6) and (13) and in. the
infinite series for’ its elements M3 ;1, we omit all the terms vanishing more rapidly than
O(E). These terms are of the order of E? and are lmtlated by the nn states with j > 2.
In the above approxunatlon e

"My, \/_2_exp(—ch)E(A
CMp, x> 3E(A

where PP(z) are associated’ Legendre polynomials of the scattermg angle 8 = arccos z.
Using (14) we establlsh the low energy behavior of the total nuclear cross section:

. 2 N
‘ (E) =4rE" Y (25 + 1)(
v o =0,
In the case a = m we apply (5) and (13), and in the infinite seriés for the magnetic
matrix elements an' we neglect all the terms vanlshlng more rapidly than. O(bk) Thus
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we obtain the'Born approxxmatlon M”‘ for the series Mz .
It should be noted that the serres M;"ﬂ, wrth n=n'=.0,1 are exactly equal to ﬁmte

sums of their ﬁrst terms correspondlng tol=1 because all the other terms,vanish. Hence,

these series contain only the contributions from the nn states with j < 2. The series M
is infinite but rapidly converging. It contains small contrlbutlon from all the nn states
with 7 > 2, and it is a tabulated series.

These facts allow us to obtaln the followmg expllclt representatlons

M, = (V153)° = ~VBbexplig) PA(z) |
MT, =h~bP1 (z), Mo,o =2bP(z), M’{'_l = exp(—2ip)bP(z). (16)
By using them we find the Born approximation dé™ =.2b? and 6™ = 87b2 for the

magnetic differential cross section do™ and magnetic total cross section o™, respectively.
This approximation shows that in the low-energy 11m1t da should be 1sotrop1cal and o™
cannot vanlsh i contrast with o2, '

LAL)Pl (), My, ~ (3/f %) expliv) E(A], — AL ,)PA(z),
)Pl(a:) Mio = 2B(A}o + 241)A(z), My, =0, (14)

AL OB, E—o . - (1)

o find the magnetic-nuclear matrix M™* we use (4)-(6), (8) and.(13). In the infinite
series for the elements M7, we neglect all the terms vanishing rapidly than O(bk), and
we also omit all the terms generated by V¢ and vanishing more rapidly than O(E). As a
result, we derive the simple approximate formulae

M, o~ M

nnt =

n,n'. + Mn n ' (17)

with the terms (14) and (16). The formulae (14)-(17) allow us to obtain the low-energy
approximation for the total magnetic-nuclear cross section:

~o™(E) = 6™(E) + (4/3) bE(2A1,0—3A1‘1+A;l?)+a’(E) (18),

and to conclude that the contribution from the nn states with j > 2 to this cross section
is small and is of an order of o(bk). :

Let us analyze the structure of the sum (18). Its first term is the constant 8b% The
second term is a negative and linear function of E describing the interplay of V* and
V™. And finally, the last term’is the squared function of E. Due to this structure of the
sum (18), there are three energy regions. If the energy is small enough (E < E'ower), then
o™ (E) ~ ¢™. Hence, due to the potential V™, the total cross section 6™(E) has a non-
zero limit 8mb% as E — 0. In the third region, where the energy is so large (£ > EvPrer)
that 0™*(E) =~ o°(E), one can neglect V™. In this region ¢™*(E) is a growing function
of E. Clearly, the total cross section havmg the above-described behavior should possess
a local minimum in the intermediate region E*“" < E < E*PP*". This effect is caused
by the interplay of the short- and long-range potentials V* and V™. Therefore, we call
it the neutron Ramzauer effect by analogy with the atomic Ramzauer effect [15]. The
latter is well-known in atomic physics [16] and is 1nterpreted as the result of interference
of a long-range electric¢ polarization potential Qer 1 and a short-range potential opposite
in sign. The analytic connection between the parameter o, and the posmon a local cross
section minimum has been first found in [17].

To derive that connection in our case, we find a zero of the first derivative of the
function (18). As a result we express the posmon of the local minimum of a""(E)

CED, ~ (~b/2)(245, - 347, + Al /Z(2J+1 C(19)

in terms of the known constant b and coeﬁiments A3 Substltutmg their values (7)

into (19) we find ‘ET, ~ 20KeV.

To check our qualitative conclusions about the role of the interaction' (1), we have
carried out a lot’of éalculations. Here we mention the most 1nterest1ng of them, because
a more detailed discussion will be given in.our forthcoming paper.

For all j = 0,1,..10 we compared the magnetic scatterinig parameters calculated by
solving egs. (2) with their Born'approximation (3). For any E < 10 MeV the relative
accuracy of ‘this approx1mat10n is about 1074, Therefore, the approxrmate expresswns
(5),(8),(16) and (17) are also correct within the same relative accuracy.

We defined the bounds E{5**" and E}*"*"as the maximal and minimal values of the
energy for which the relations ] J,J(k)/dl”;‘(k) —1|< 0.1 and, respectively, | 8i(k) /67 (k)
1 |<£0.1 hold. Using this definition and the scattering parameters calculated by solving
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egs. (2), we obtained the following estimates: E[**" ~ 2 KeV and. ETPT ~ 0.3 MeV,
ifl=1and j = 0,1,2; while EI‘"”” ~ 0.7 MeV and El“pp" ~ T MeV if Il = 3 and
7 = 2. This d1screpancy is evident phy51cally and mathematically. In fact, the centrifugal
barrier (I 4+ 1)r=? screens the short-range potential V* more effectively than the long-
range potential V™ and, moreover, in the first case, the power of this screening increases
with growing /. Mathematically, this fact is explained by formulae (4)-(6). Owing them,
67;(k) is linear in k for all I and j, while 67 (k) decreases by the k*+! law. Therefore, the
energy region, where 5’"(k) dominate over 6’ (k) is expanded when i increases. In other
words, E[7% > Efper iU >, and an analogous relation is valid for the upper bounds.
Then we showed numerically that the approximations (6), (10), (11) and (14) arc
" correct with & relative accuracy about 1072, if I =0,1, = 0,1,2 and E < 7 MeV.
Here we do not present the curves for the phase shifts 67, withj=0,1and a = s, m, ms
because we have made this in [8]. ST
. Now we sketch our scheme for:calculation .of the cross sections. First we found the
nuclear and magnetic nuclear parameters and the corresponding matrices a® by. numerical
integrating of egs. (2) and using.formulae (12). Then we decomposed the infinite series
for the M® matrix elements as. . : G ‘

Me,= MG <2)+ M, (G >2), . @0

where the first and second terms stand for the ﬁn1te subsums of these series contamlng
the a® matrix elements (12) only with the index 7 <2 and, respectlvcly, ji=>3

To calculate o, we approximated M7 by M; n,(] < 2), ie. we neglected V* in all
the nn states with’ J =3 Note that this is the standard low- energy approx1mat10n [4 12]
and, accordmg to (15), its accuracy is of the order of O(E“) ' ‘

As we have shown ‘before, the Born approx1mat10n is valid in the case @ = m. T llcre-
fore, we calculated the matrix M™, the terms of its decomposition (20) and thc ‘magnetic
cross section within this approx1mat10n In partlcular we obtained the aux1l1ary formulao

Ml N> 2) (=b/3) Ps(z), M;’:_l(j > 2) = b exp(—2ip) (P(z ) — Pf(:c)) ,

W > 2) = (~V2/9) b explig) P(a) s MZo( > 2) =0, n = 0,1 (21)

Then we used them to find the matrix M™* within the following approximation

It means, that we neglected V?® in the nn states with 7 > 2, but we taken into’ account
V™ in all these states within the Born approximation. To find the first terms of the
sums (22), we used the calculated matrix elements of} with j. <.2. . As for the second
terms, we calculated them by expressions (21). And finally, we found do™ and then o™,

In Fig.1 we plotted three curves representing the total cross sections ¢° , @ = 8,MM,s,
calculated by the above-mentioned scheme. These curves coincide with those calculatcd
by approximate formulae (15) and (18) These curves show,thatmagnetw-nuclear cross
section o™ coincides w1th magnetic cross:section 6™ = 8wb® at E .= 0, posscsses a
minimuin at £ .~ 20 KeV and tends to nuclear cross section o* w1th growmg E in the
third region, where E > E“P?’" ~ 0.3 MeV.
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Fig. 1. The total nuclear. ¢°, magnctic ™ and magnetic-nuclear 0™ cross sections of

the triplet neutron-neutron scattering.

In conclusion, we summarize our main results. We have shown that the magnetic
moment interaction (1) has to be taken into account in the region of low enefgles (F <
0.3 McV) because this interaction is responsible for the zeros of the magnetic-nuclear
scattering parameters and the neutron Ramzauer cffect. We have obtained the simple
and explicit expressions (10) and (19) for these zeros and the position-of the minimum of
the magnetic-nuclear total cross section. We have derived: the explicit formulae (8) and
(18) ensuring a correct extrapolation of the nn scattering parameters and the total cross
section to this region from the lowest experimentally availablc energy.
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' _’Pupyshev V.V, Solovtsova 0.P. A P
“ Ramzauer Effect in Trrplet Neutron Neutron Scattermg

' 1nteractlons the total cross sectlon of trlplet neutron-neutron scatterrng should, i
. "possess a non zero lrmrt at E

As we show due to mterplay of pure nuclear and magnetlc moment

'— O and a local m1n1mum at E = 20 keV
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