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1. INTRODUCTION 

The pairing correlation effect on nuclear properties 
is usually included by an approximate diagonalization 
of the constant matrix element pairing force and the 
single particle (s.p.) Hamiltonian, containing a phenome
nological potential and kinetic energy operator. Most 
of the effort to improve the description of the pairing 
correlation effect has been directed on improving the 
way of approximate diagonalization of such a Hamilto
nian. Somewhat different approach to the problem of 
the simple description of the pairing correlation was 
developed by the authors of the present paper in /I - s I . 
In the framework of this approach, which from now on 
will be referred to as VCP (volume conserving pairing), 
an attempt was made to improve the properties of the 
Hamiltonian itself by imposing some conditions, in 
particular the volume conservation condition. The VCP 
calculations have shown that pairing can be quite well 
accounted for without introducing any new phenomenolo
gical parameters apart from those of the s.p. potential. 
However, the arguments on the basis of which the VCP 
additional conditions were introduced met some criticism. 
A more general foundation of the method is, therefore, 
needed in order to s~e what kind of improvement is intro
duced by VCP in comparison to the standard pairing 
calculation. 

It is the purpose of this paper to show that VCP is an 
approximation of the full H-F-B method. It approximates 
the H-F-B calculation under the assumption, that the 
phenomenological potential reproduces well the shape 
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of the H-F-B average s.p. field and that the state-inde
pendent energy gap 1'1 can be used. In comparison with 
the usual calculation VCP includes corrections arising 
from the fact, that the phenomenological potential with 
constant parameters cannot approximate the H-F-B ave
rage s.p. field for finite changes of 1'1. 

The way in which the conditions connecting the para
meters of the phenomenological Hamiltonian can be 
obtained within the H-F-B method is discussed in the 
second paragraph. The third one deals with the problem 
of practical use of the conditions thus obtained. In the last 
paragraph some questions concerning the particle number 
projection are discussed. 

II. RELATION BETWEEN THE S.P. 
AND PAIRING PARAMETERS 

1. In practical pairing calculation the Hartree-Fock 
part of the more general H-F-B problem is assumed to 
be solved. The H-F-B average s.p. field can be written as 

Uvr/ = 2 <v,Jl\ V\v',Jl>n 11 , (1) 
Jl 

where V is the antisymmetrized two-body force, and 
n are the generalized occupation numbers, equal to the 
slluares of the pairing amplitudes: ~Jl = v;. The change 
of U caused by the variation of ii is: 

oU ,= 2 <v,Jl\V\v',Jl>o;;- • 
vv Jl Jl (2) 

The H-F-self-consistency of U means, in particular, 
that the change of the s.p. states v introduced by 
oU will give no linear contribution to the energy change 
at the H-F-B energy minimum. At the H-F-B minimum 
u can, therefore, be approximated by an n indepen
dent phenomenological potential uo. With the potential 
uo the BCS equations can be written and solved for 
l1 and the chemical potential .\ in the usual way. The 
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change of the s.p. energy is given in such a calculation 
by the familiar formula 

oE = o 12 ( 0 n l, 
Sop o !J !J !J 

where < ~ are the s.p. energies calculated with the po
tential U0

• It is easy to see, that the contribution of 
oU to the energy change is automatically included here. 
From (1) and (2) we have: 

2 au ii =I u oil 
!l wv v vv v (3) 

and the s .p. contribution to the energy change takes the 
form: 

~ - (l -oE = ...., T,, on,+ o -2 U,, n,) = s. p. v v v v 2 v v v v 

(4) 
- 2 (Tw+ Uw)o~v:: 8(2 f~;;-v) 

v v 

where T is the kinetic energy operator. Thus, by 
choosing a right shape of the potential uo and connecting 
its parameters ai to the experimental quantities one 
can hope to approach the self-consistent solution for 
l1 , .\ and connected quantities at the H-F-B minimum. 

The situation is different when the energy change for 
finite differences of il (or l1) is to be calculated. This 
is, in particular, the case when the energy gain due to the 
pairing correlation Btl= E (L'l = 0)- E(L'l) is the required 
quantity. It follows from (1) that E(L'l=O) and E(L'l) should 
be calculated with different s.p. potentials. The error 
introduced by calculating them with the same phenome
nological potential uo cannot be eliminated by a better 
choice of its shape or parameters. 

Another source ot an even more serious error is due 
to the fact, that the phenomenological potentials used in 
practical calculation can hardly pretend to reproduce the 
H-F self-consistency at the H-F-B minimum. When the 
energy change calculated with them is extrapolated to 
t1 = o, the use of (3) or (4) means, that all the potential 
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change 8U is included, and also that part of it, which 
would be compensated by kinetic energy change in the self-
consistent calculation. ' 

2. An obvious generalization of the standard BCS 
procedure, which would be free from the inaccuracies 
mentioned above, consists i~ approximating U with the 
phenomenological potential no, the parameters ai of 
which change with ~ . The dependence of ; i on ; should 
be consistent with the expressions (1) and (2). In order 
to solve the H-F-B problem simplified in this way, the 
energy minimum with respect to the pairing amplitude 
variations and the variations of the s.p. states t', caused 
by the change of U o with ~ should be found._ 

The relations between the parameters of uo, implied 
by the expression (1), can be obtained from (3) by 
writing 8U as 

auo 
oU =I(-~-) 8-; .• 

VII j a- I 
ai 

The equation (3) takes then the form: 

-auo 
II 
v i 

vv - - -
(---)oa.n =I U0 on da. I V V VII t' 

(5) 

I 

It follows from (1) and (2), that if U o splits into pairs 
which come from different components of the two-body 
force, the relation (5) can be written separately for 
each part and its parameters. 

It is interesting to examine the case of the harmonic 
oscillator potential, in which the relation (5) determines 
the ii -dependence of the single parameter, the oscillator 
strength w (the dependence should be the same for the 
widely used Nilsson potential, since the spin orbit force 
can be connected with dif{.erent component of the two
body interaction). Wehave: U~=t~<u;2v, where ;Jv=Nv+.; 
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Nv being the oscillator quantum number of the s.p. state 
v, and (5) can be written as 

1 -2 - 1 -2 -I-1i.r bwn =I -nwr on 
V 2 Vt' V V 2 VV V 

or 
o<;2>scs ow 

w -2 < r > BCS 

where <~2 >Bcs= I r2 iJ • Integrating this equation we get: 
V VI' V 

-2 
< r >BCS / w = ~.:onst. 

or 

. 2> n /- 2:> t 
" r B C S = ~-=- ' r 8 C S = cons • (6) 

which tells us, that the mean square radius of the nucleus 
should not be influenced by the pairing correlation. The 
condition (6) is just the condition which has been used in 
the VCP method. 

3. It is easy to see the effect, that the relation (6) 
may have on the pairing energy gain R,\. With the ii -
independent h.o. potential we would have the s.p. contribu
tion 

8E =~<J li-;: 2 n- I -;:-2 2v 2! =-{1• 8<;2> 
::J.p. 0 I' 1/V I' V > O VII I' 0 

where o<r 2 > is the difference of the mean square of the 
dimensionless radius for A =I o and A~" o states. With 
the n -dependent h.o. potential u 0 the s.p. expression 
must be written with the factor 3/4, ensuring that the 
potential energy is counted once: 

3 -2 2 3 - • -E =w ... -Ir 2v=w ... -l<r2:, ... 0 ·+8<r 2>!. 
s.p. ·~4v>OVII v f_\4 u= 

(7) 

From (6) we have: 

-2 o<~2> w~ <r >A 
=-----=1+ ----- (8) 

wo <r2>A=o <r2>~=o 

and thus 
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3 
E =w0 -1Cl+ s.p. 4 

-2 -2 l -o < r > )( < ;- 2> + o < r >) 
~=0 

<;-2>~=0 

=E 3 -~=O+ 2woo<r2>. (9) 

The kinetic energy correction included using the 
n -dependent potential tJo can, therefore, be as large 
as 1/2 of the s.p. contribution to the pairing energy gain, 
and it can significantly reduce B~. This can be impor
tant in the equilibrium deformation calculation, and can 
be of primary importance in the Corio lis -anti pairing 
calculation, where B ~ essentially determines the value 
of the spin, at which the transition to the A= Ophase 
takes place. It has been shown recently/6-7/ that in the 
usual BCS calculation the particle number projection, 
which enlarges B ~, whips out or pushes to high spins 
the point of the phase transition. It follows from (9) 
that in the standard BCS one actually works with too 
large values of B~. Thus, the conclusion of /6-7 I that the 
Coriolis-antipairing effect cannot be the basic mecha
nism responsible for the anomalies in rotational spectra 
cannot be considered really proved in this situation. 

III. PAIRING CALCULATION WITH THE 
~-DEPENDENT H.O. POTENTIAL 

At the value of w corresponding to the H-F-B mini
mum w = wcq, the pairing contribution to the energy 
expression can be calculated in the same way as in the 
case of the ~-independent potential and has, therefore, 
the familiar form: 

E . = -w ~ L u v , 
pau eq v>O !J v 

(10) 

where ~ is connected with the ratio of the pairing force 
strength G to w by the BCS equation: 
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·G 
A=--·Luv. 

u) V >0 V !I 
eq 

(11) 

In order to get the value of w eq we have to find the 
point, at which energy of the system, equal to the sum of 
the s.p. contribution (7) and the pairing contribution (10), 

- 3 ~ -2. 2 ~ I E = wl- _..., rr,v2vv-~ "'- uvv
1
/ 

4 v>O v>O 
(12) 

is stable against the variations of w: 
- -

dE dE dA 
- =- -- = o. 
du) d~ dw 

For ~ -1- o (it is always different from zero for 
dw 

the pairing acting in a sufficiently large s .p., h. o. space) 
we get: 

dE = o. 
M 

Thus, the value of ~ (in uJ units) corresponding to the 
stability point can be obtained by finding the minimum of 
the energy E with respect to 11. The dependence of 
w on ~ is given by (6) or (8). These relations couple 
also the equilibrium values weq and ~eq: 

w = (j) (~ ) • 
eq eq 

The procedure described above has been used in the 
VCP method. It should be pointed out, that once the pairing 
contribution at the stability point is written in the form 
(10), no use is made of G and the BCS equation (11) 
in the process of finding the ~eq value. The relation 
(6) couples the s.p. a,nd pairing parameters. They can be 
determined at the equilibrium point from the values of the 
same experimental quantities (the mean square radius 
of the nucleus in our case). Once weq and ~eq are 
determined, the equation (11) may be used to calculate G. 

It should also be stressed, that in order to use the 
condition (6) the pairing calculation should be performed 
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in a sufficiently large s.p. space. In one oscillator shell 
the condition (6) is an identity and loses its physical 
meaning. This corresponds to the fact, that with the h.o. 
degeneracies the pairing force acting in one oscillator 
shell has no influence on the structure of the wave func
tion. The pairing amplitudes are fixed in the degenerated 
case by the conservation of the average particle number 
and do not depend on G. 

In the VCP calculation the term - G~ v~ has been 
v 

added to the energy expression (12). This is consistent 
with the present derivation of the method since this 
r -independent term may be considered as an L\ -depen
dent correction to the constant term of the s .p. potential, 
which is not explicitly used in the calculation. 

IV. THE PARTICLE NUMBER PROJECTION 
EFFECT 

The pairing calculation is often improved by projec
ting the right particle number component out of the BCS 
wave-function and only then performing the variation 
with respect to L\ (see, e.g., ref. /6-7/ ). From the point 
of view of the BCS energy calculation the effect of the 
particle number projection amounts to multiplication of 
G and the s.p. operator in the varied energy expression 
by the /'1. -dependent factors. The factors are equal to 
the ratios of the projected and unprojected average 
values of the pairing force and the s .p. part of the 
Hamiltonian, respectively. 

The main projection effect comes in the standard cal
culation from the multiplication of G by the L\ -depen
dent factor. It can be accounted for by a redefinition of 
L\ in equation (11), corresponding to calculating it with 
the L\ -dependent G /8/. The projection does not influence 
then the form (10) of the pairing contribution used in 
our method. 

The particle number projection effect could, therefore, 
influence the VCP results only through the L\ -dependent 
factor multiplying the s.p. part of the Hamiltonian. Here, 
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however, it can be included in the w dependence on 
L\ and the condition (6) determines then the total n -de
pendence of ~~, together with the part of it introduced by 
the projection. The VCP method feels, therefore, the 
particle number projection only through the values of its 
parameters, and the projection is effectively accounted 
for when the parameters are determined from the experi
mental values of physical quantities. 

In order to illustrate this conclusion, an example 
•of the VCP E (L\) curve is compared in fig. 1 with the 
curves calculated by the usual BCS method and by the 
BCS with the particle number projection before thevaria
tion (PBCS). The Nilsson s.p. potential with u>0 ~Al/.~/3 MeV 

16~0 
.... ~ 

..... 'ntu.trOl\ s ..... . ..... - -·-·-·-·- BCS 
t 

1.0 

t VtP 
..... 

......... ______ PBC5 
t 

0.0 
0.1 O.lt 0.1 A [MeV] 

The VCP E(L\) -curve for 164 Dy {full curve) is compa
red with the curves obtained. in /7; by the BCS calcula
tion with (PBCS) and without particle number projection 
(dashed and dash-dotted curves, respectively). 
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was used in all the three cases. In VCP only the parame
ters of the Nilsson potential were required. The equilib
rium deformation was determined by minimizing the 
energy expression with respect to quadrupole deforma.
tion. The details of calculation may be found in ref./ 51. 
The BCS and PBCS curves were calculated in /7/ at the 
experimental equilibrium deformation and with G fitted 
to the experimental odd-even mass differences. It should 
be noted that the inclusion of the corrections discussed 
in this paper in the BCS and PBCS calculation would 
lift up the minima in both cases. 

The authors would like to thank Dr. S.Frauendorf for 
supplying the BCS and PBCS curves for comparison with 
the result of VCP. They also thank Dr. I.N.Mikhailov 
for useful discussions of the subject considered here. 
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