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1. Introduction 

In previous papers/1 , 2/ {henceforth references to 

formulae of these two papers are denoted by {El, ••• ) and 

{E2, ••• ), respectively) the Schrlldingereqo.tation has been 

considered for the bound state of three identical spinless 

particles. It has been assumed that the particles interact 

only in the a-states and that the interaction itself' is 

described by the boundary condition model {BC~). It has been 

shown that in this case the determination of' the total three-

particle wave function (E<:!,4), which follows from the 

Schr8dinger equation (El, 22), is reduced in a correct way to 

the solution of a one-dimensionul integral equation (E2,28) 

for a function of one variable. By means of' this equation the 

total wave function of the system of three identical bosons 

can be determined in a unique way using the symmetry conditions 

(El,21). 

Below it will be shown that it is also possible to reduce 

the equation for the channel wave function (E2,b) given in the 

space representation to a one-dimensional integral equation in 

a correct way using the method developed in ref'.IZ/ for the BC~ 

under consideration of s-wave only. however, the circumstance 

connected with the fact that the channel wave function must not 

fulfil the symmetry condition of the type (El, <:!1) leads to 

the fact that the obtained one-dimensional equation will 

determine this function in a non-unique way. Thus, we get the 
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result that the determination of the total wave function (E2,4) 

becomes completely unique, while the occurrence of the non­

uniqueness in the channel wave function does not influence in 

any way the one-dimensional integral equation. 

2. rhe eouation for the channel wave function 

in the BCM 

.-s in ref.121 we will consider a special problem of 

the bound state of three identical spinless particles 

interacting only in a-states. At the beginning we also 

assume that the ~air interaction is described by a normal 

potential. In this case we can express the total three-
... ....) 

particle wave function 'f{t11~ by means of the 

channel wave function in the following way/3/: 

1}:{~,/;)=- f("-1;/f.)+ 'f('l..,_;/1.)+ 'f(tz.7;/i)) (1) 

~ 

where "l.z 
~ 

and /,; are the corresponding Jacoby 

coordinates defined in (El,20) and (E2,24), respectively. 

'rhe channel wave function f('l:.J.f} fulfils under 

consideration of (E2,1) and (E2,2) the equation/4/: 

1. r-'22. 3 '().2. -; 7 t f 
" o L ~,_ + 'i '()t:J,_ +E_j 'lt.fi 'f('l~.JA)-= V z~.) t 'l!-1/~J + 
iT! ~ 11. 

(2) 

+ v ('l-t) ~jJ.J2;z1. [ t("-t.J/7.-/ + f('L~;/3) 1. 
From this latter equation the equation follows for the 

Fourier-component f ('2.1 !J) of the variable f of '((?..1/}: 

~t[ ~; +£1-V('li) }z.~. f(t~.; t) = V(ti.) S(z1.; ~); <3> 

4 

where 
-+ • -t ...... 

$(?.~.1 f)-=-~ jJ.JL;z1. ¢. e-~tth. [tf7.,_j~) + 'f("L31h) J J (4) 

£~ = £- ~~.2.. (5) 

rhe solution of eq. (3) might be written in terms of the 

Green-function H{"z.1 't 1
1 E} in the form: 

?SO 

f("c,1)=ftYth' H('ZJ t~ Ert)V!'l'iS('Zj ~). 
0 

of finite range c For a potential V ('2.) 
<V(?../=-0 for'l>C. ) and under consideration of the 

explicit expression of the Green function H {'Z., ~j E) 
given by (E2,ll) it follows from (4) and (6) that the 

channel wave function reads 

f(rz
1
j')= ::r (J(c-t)X (?.;/) -t- &(z-c)'X. (t1/); 

where 
oO 

X('l;f)= J_~Lft(-df ;~ff;} iffi ~~~)('l/Ei) 'f (t:t~ 

Y. (~J~:Vfrh: JA j('lf.;Ett-)e-'ii { tf/"-2.;/J_) + y/z31A)jJ 
""" 

(6) 

(?) 

(8) 

(9) 

1 (rr.; E)= ~! t2-Jt ~~ (f'<) t() (t; YE1 E). (10) 

here jofx} and h ~)(;<) are the spherical Bessel and 

Hankel functions, respectively, and io(?; VE, t=) is the 

half-on-shell S -component of the two-particle f -mat-
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rix given in (El,l). The step function is d;fined by (}(f./::1. 

for X> 0 and (} {1 .. ) ~ 0 for X<. 0 • 

Now as in ref./5/ we will assume that the expression 

(7) for the channel wave f'unction, which does not contain 

the potential in an explicit form, is also correct in the 

sm: .• :rhen the determination of the channel wave function in 

the BC~, i.e.,actually the solution of eq.(2~is reduced to 

the determination of' the two-dimensional f'unct ion X {7.; /} 

and the one-dimensional function 'f (fJ} • To determine 

correctly the f'unctions X {'r..J/} and 'j {tJj we need two 

equations. As the first equation relation (9) can be used, 

because the function ~ ( "7.1 t=.J has in ( 9) a we 11 defined 

value (E2,21): 

tt('t E)::_ L e-;,~.;E [f~ S(?.-(..) t- c cJI(z-c-) 7 
rJ I 't to- tC~ f' 'J; (11) 

which follows from the fact that in B~ the half-on-shell 

i -matrix to {p, VE, E): fo/IE, ?1 E) is defined in a 

unique way by expresaion (El,9). Therefore the first equation 

has the form: 
~ t7D I. Y. {f,j=-!rrfrz.d?..jfl"f[inr fl(c.-tJX {~,f)+ r;(~~c.JX(t,fJj J( 

l.rz.t/ 
;1. f," '2.'1?.' Cl(?.5 £'1-)J~ f1t) 
J~t~t/ ~ } 

(12) 

where 

/r =' 'r (z2+ ~ .I!J.. - '21J. 
(13) 

The second equation for the f'unction )( ('?.;/) and 'i itt) 
f'ollows from condition (E2,18), i.e.,follows f'rom the f'act 

6 

that for 'l:{ < C the a-component 'J:
0 

('t~ 
1 
f~} of the 

tv - -total wave function 1. {"r..~,.1 f't} is identically 

equal to zero. ·:raking into account (7) and introducing a 

new function 

jj(rr,~;J = 'l./ X (tz.;Jl) 

we obtain result from eq. (E2, 18): 

Lt+f a I 

e(c-zj)l(t,j) + 2. &(c-7:JfJ. + (}(c~'l') Jl(z~tJ =. 

/f'l.-1/ / 
:f_'l.+f 

=-!r&{c-'lj j 'l'Jz' 6'(7.'-c) X (z)t)1 

fft-f/ 
where j' · . ~s def'~ned by expresaion (13). 

(14) 

(15) 

3. The solution of the equation for the function .JJ(?.
1
/). 

Neglecting in (15) the right-hand side we see that 

remaining equation for ~(~1 fl) is of the same f'orm as 

eq. (E2,35). Then it is possible to solve this equation by 

means of the method used in ref./ 2/ in an analytical way. 

This method has been proposed for the solution of a similar 

problem in rer.16/ x). In solving eq. (15) we introduce as 

X) The author of paper 161 is V.Efimov,from the Leningrad 

Institute of Nuclear Physics,having the same name as the 

author of this paper. 
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in ref / 6/ new variables /( o/. c:J. 1 

.I ) 
defined by 

'Z-= /( .g;nr}. ..1 /==- '1_ J(c;of.l..; 

rz .. / = R, .ft/1 of I / I::: ..f3 /( c.o:f'of. I 
.I fL .I 

1<2 ~ 2~ + 'f 12-. = 't 12.. + j ;'2... 

In new variables eq, ( 15) reads for 'L < C. : 

Pllh(f-tJ.} J..J-.,l) 
j) (~1 .J.) + !i.. j doi' fJ{c.-~ gt'nJ~ .J(R1d) =- F(t.,d..).; 

1"3/rr / --,.)._ 
3 

where - 2.5 J 
ltiiJr(]+.l.) y-cl.. 

F/r<,eL}= j JJ'IJ(I<$th.L 1-c) i(f?., J~ 
Jf-d/ 

~ !()<) ";., J i.fii J(~t'irr:l-
p(.e/J)-=-7rl3 

0 
qdfl t1; e ftil(Yj_ 9~ cofoL). 

rhe variable t in eq. (17) can be considered as a 

(16) 

(17) 

(18) 

parameter and depending on /?, the whole region 'C.< C. 

can be divided into some subregions as is shown in fig. 1 

in accordance with that the right-hand side and the integra­

tion limits of (17) have now different values. Using the 

methods given in ref / 61 the solution for ../} { R
1 

of.) can be 

found in the whole region 'L. < C. and has for the different 

subregions the form: 

''+.;... 
ll II( rJ..)= - ( "§ J.;.' j(~;cl.. ') 

P1. l' J )!!_.;. J (19) 
3 

8 

./);. {t.,d.) = ~.J. q,,.l ~ (c~.,.;') p(t.) f +d- t) + 
1 

+ 1,~((,-+ ~ 1 
{Ht((j!i!t((-f)- If Ht (.e) fih~(o!.-,JJ)}; 

)l3 (f.,J..) = i.,.{OdrJ. I~ (.J.,oL') p r~) J.:- of)+ 
1. -+ . ; )[-H1.t~)co!/(+~)+Vf.H:;,(t<)c~!~(d.o-J.)I 

-/111((o + ~ v:; J.J 
of..' 

./}If (f.;ol) =i Qr;/. I -&(.J.,o/.') p(f<) [-+of')+ 
'J.,_ 

-1- .;~ Hat~) [1riJJ{J,_ cu/L(J.-.LJ.)--!InlfJ."J 1ti!!!...(rJ..-t~-!Lj1 
() { t<, f3 6 'j ) 

./..3 ll-

JI~ (!<..~d-)-:= it_ Jc:J.' #(oL,rJ.') p(.R_; ~~-.1.) + 

V3 H; (r<) ~. . Jt " J + 1 a fill L .frnlfrh :f,hij (rJ.3-cJ) + 8ri!ilrJ.3 c.9f 13 {rl-~-.t) J 

) .II I ) Y3 H3 {~) . Jlr, (P.,J.. == 1 ,R,J. ==- -;J -!tni./J.. :'- a uo ) 
where 9 {oL,oL'l = :f(n!i..(J-oJ.') -C&!!L (.1.-oL'} fj {j } 

J
.L3 H

1 
{r<}:::. dc~. p{~, .;.) 

oi.o J 

.(lij!l. "(-H~ (!<} =11 do~- !t'n-= f-c~..) cf>(~,o~.J.~ 
~~ •J 

f/2. - . 
H3{t<}==_h rid. :f,Ji!f_(-!L" -oL)p(R,rJ.)_~ 

"'-0 f1 

Q{"}-::. !•'tl(44~}0!o _ .fin(4-k)a!o 
" t{ 1.1 _) .., + -:;;;-- 'i- -

•3 9 
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(21) 

(22) 

(23) 

(24) 



( 4 -o-=-rt(J.-t-)} 

f./ { I j/) X -:o.-ot-~--uo {3 6 ) 

')_T d.-
3 

= - -do 3 _) 

·C­
cJ.o = a.z.c 1•hy J 

j/ I 

d..t = 3-o..o J 
T "'-2.. =d.~-?; J 

":11 p I C 
0'-0 = r- ol-p = a'2.c cof ~ !<. 

In the region 8 (see fig. l) the equation (17) takes the 

form: m<n{t-+J.1 ')_;-_o~.) 

JI(K,J.) -t ~ j dr!.'.A(I<,"'-') = 0 

1}-.L/ 
and its solution is 

Jig ( f<
1 
J) =- F (~) :ft"nilrJ. 1 

(25) 

where F(l\) is an arbitrary function of /? • Therefore in 

correspondence with (14) the channel wave function (7) can be 

written as 

f(rc_
1
/)=- ()(c-R) :f(?.1/) + 

+ e(~-c)G(c-z) _:t._ JJ/"-;1) + &('l-c) X('r1 /) 
~ffZ/ J 

(26) 

where in accordance with ref / 61 the function f("t; /} is 

an arbitrary function of mixed symmetry belonging to the two­

dimensional representation of the group of the permutation 

for three identical particles and fulfils the condition 

':f('L1.;!i.) + 'f{'l2/./':L} -t /('?.3//3} =0. (27) 
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'£he non-uniqueness of the type (}{t.-1<} :J?{'l.;/) comes 

out also in ref./2/ in accordance with (E2,50) at the 

definition in the BC.I" of the product V('t) tf0 {?...;/'} 
(E2,14) from the three-particle Scr~6dinger equation (E2,3). 

However, in ref / 21 it has been shown that if the BCL: is 

considered as the limit case of the potent iol (El ,17) then 

it follows from symmetry condition (El, 21) of the total 

wave function that we have to require f('c
1
j):= 0 which 

leads to a unique definition of the channel wave function 

and the total wave function (1). i1. similar consideration 

for removing the non-uniqueness in the channel wave function 

cannot be ap,,lied. rherefore, eq. (2) has no unique solu­

tion in the BCM. 

Note, that the non-uniaueness of the type O(c-!<.) f'('<-,/) 
of the channel fur;ction (26) in the region 8 of fig. 1 

has no influence on the form of eq. (12). nctually, 

from the explicit form (ll) of the function 9('L; E) it 

follows that the integration in (12) over a term containing 

){ (1?..1.f} happens in the plane {'L; /) 

conditions: 

'7:_<C
1 

j}rz-Jj$C~~'t-t-/. 

defined by the 

This region of the plane (71/) i>~ the region given by 

the >Jubregions 2-5 (see fig. 1) and does not contain the 

(28) 

region 9 which includes the non-uniqueness ( 25) of the 

function ..Jl ( ~ oL} · • Inserting the explicit expressi'>ns 

(20)-(23) for /1(/(,oL) into (12) and taking into account 

(18) and (8) give u one-dimensional equation for the function 

'{f~}. lt>J solution will determine in accordance with (8) 
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and (19)-(24) the channel wave f'unction (26) ib a unique 

way f'or all values of' '2:.. and / besides those def'ined by 

the subregion 8 in f'ig. 1. However f'rom condition (27) it 

f'ollows that in spite of' the fact that the channel wave 

f'unction 'f('l.,f} is non-uniquely def'ined at /(<C. the 
... ....') 

total three-particle f'unct ion ':t ('l-; / defined in 

accordance with (1) is completely unique. The fact that the 
~ ""tl 

total wave function t' {'L,~ /J is defined in the BCM in 

a unique way from eq. (2) and relation (1) is not in 

contradiction with the non-uniqueness of the channel wave 

function and its def'inition (E2,5) because in accordance 

with (E2 1 5) for the definition of ~~~~~} it is 

necessary to know the product V('l.j 'i:tJ {'l;j>} . From 

eq. (2) and relation (1) it is possible to determine at least 

in unique way ':f 0 { "t/ /') but in the BCM in accordance 

with (E2 1 18) and (E1 1 17) at ~<C. 'i:o{'l;,f)=P; V('t)=OQ 

and therefore in (E2,5) there arises the non-uniqueness of the 

type O·oo • As it has been shown in ref. 121 it is possible 

to determine the product v ('t.) ':to {'l.; /) and therefore 

also f('l.J /} in a unique way on the basis of the three­

particle Schr6dinger equation and by means of the symmetry 
.... ->J 

condition of the total three-particle wave function 'f ('l-1 /;· 

4. Conclusion 

In our specific model of three identical bosons interacting 

only in s-statte the channel wave function in the momentum 

space fulfils the Faddeev equation/3 / 

f(K;~j -[21T1{K1-E'J,)j-J.Jrif/to(~ Jff+f'~ Eq_} i< 
(29) 

12 

X r(J-f-H'I; ~'it- io(K)-fi-1Z Ett)t(Jf+[i'l,1/] == 0) 

where £o(K1 f; E) is the a-component of' two-particle 

f -matrix and E f,. is defined by (5). It has been 

mentioned above that in the Beb1 the solution of' eq. (2), 

which contains in contradiction with eq. (29) the inter­

action potential in an explicit f'orm, is non-unique. There-

fore, of course,the question arises about the uniqueness of 

the solution of eq. (2\J) in the BCL.. If we consider the Bel<, 

as a limit case of the poUmtial (El,l7) then the question 

is reduced to the explanation of the uniqueness of the 

solution of' the Faddeev equation at presence of a hard core 

only in the two-particle a-component. In ref/7 •8/ it has 

been shown, that in the case when the hard core acts in all 

two-body part iel components, the ~'addeev equat ions/3 / have 

no unique solution. Using the explicit form of the above 

obtained non-uniqueness of the channel function 'f('l-;/) (2G) 

in the coordinate representation it is possible to 

demonstrate that eq. (29) 1 while it takes only the 

a-components of the interaction into account, will not have 

a unique solution in the BCM. 

·rhus, w1hen f{~ if) fulfils eq. (2g) then a solution 

of even this equation in the BCM is also function 

t ( ~<, 1 J -=- r f I<} 1) + r r ~<; 1 J) (30) 

where ..... """""' . ~ _,. 

f'(K1 'f,/-=}h~ Jj e -•t<.'?.rlf,h_ ()(c-1() tj('lJ.;h) (31) 
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and !!J('l..i 1 J~) is an arbitrary function of' mixed 
F :;.. 1.( .2.. 

symmetry f'ult'illing the condition (27~ f..:l"'" 'l;, 4 j"~ 
... -

and 'L;, 1 ./; are respectively the Jacoby coordinates 

defined by (El, 20) and (E2, 24). The partial a-component 

of' the two-particle -t -matrix takes in the BCA'l in 

accordance with (Ll.lO) the f'orm 

-(;0 (~ / 1 
E)==-- (1<.2.- £) 0J (K1 ?) -t­

+{COfKc. -ic./£;~(Kc.)jei,c./§ t0 (~ $ 1 £)1 

where c. 
~ ( ~ p) = j ~ 1d?_ ~~ {K'"L) ~~ (f'l-} 

"0 

(32) 

(33) 

and fo {~ VE1 E)== i() (/£, fJ £) 
is the a-component of the 

half-on-shell ~ -matrix (El,9). Taking into account the 

explicit form (32) of "to{K1 fJE} and F0 {1<;!') (33) 

and using identity &(c-.RJ = tJ(c.-RjtJ(c-'"t-1..) and 

writing (31) in the form 

r (K,1J= ~.,.}JJL~ r{K/IJ = 
. ~ .... 

==Jdz~ rlj jo{K'l.1)e-tf/i ()(c-!<)f('l~o1 /1-) 

it can be shown that the insertion of r (t<; 1-) into (29) 

leads to the result 

tJ (K, fJ.):::: A1. (~ tJ.j + AJ- (~ ~); (34) 
......... 

4i.(~ lf)=fri'l~tl£ ;~(K'l!}e-'fh fJ(c-~[ rj(tc.1.11t) + 
(35) 

+ tt'l2./;;~ + ttz.3/AJ L 

14 

2 (t{ffjJ.. . . ,~ ' JJ t-c./Ei 
11 (Kti}=- ' _ lcoJJ(e- -t-c.vE'f.J(){I<~ e x 

'.2. n- K~ -t=11 1--~ (36) 
y f 'L+/ 

x'j:_Jrc.ftdf e(c-1<) f('0/) I rz_ 'dt' j ('l-j Et)j~(qJ). 
0 0 Jf:t-f/ 
Here j('"l,£} and _/

1 
are defined by (ll) and (13), 

respectively.From the condition (~;7) and from eq. (35) it 

follows, that Ll!. {~f) ::::.0
1 but from the explicit 

expression (11) for j('"l; E} in accordance with (36) it 

follows that .4;_ { t<.1 't) =. 0 • Therefore, in correspon-

dence with (34) we have L:l {K; l/)=0 and the function 

f{K; f,.} (30) is also as tf{K; 'J) solution of eq. (29) 

with the f -matrix (32). This latter fact shows the non­

uniqueness of the solution of the Faddeev equ~o~tion in the 

case of three identical bosons under consideration of a 

hard core only in the a-components. In contradiction ~ith 

that the one-dimensional equation for the function Y. (~j 
following from (12) does have a completely unique solution. 

'rhe non-uniqueness of the solution of eq. ( ~9) in the BCM 

givesreason to doubt about the correctness of" the value 

Eo =12.69 ~eV obtained in ref. 191 for the binding energy 

of three identical bosons by solving the two-d imens ion~o~l 

eq. ( 28) with the f -matrix (32). rhis value is quite 

different from that value £0 =7.70 1ieV obtained in rer/10/ 

by solving one-dimensional equation which has been deduced in 

ref. 121 from the Sch~lldinger equation for the wave function 

'}!(~, J;} (l) of the same system of three identical 

bosons interacting via the BCJ;:. as in ref / 91. To explain the 
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dit'ference between the results of refs/9 •101 it should be 

of use to calcul!.tte £ 0 by means of' the one-dimensional 

equation (12), which comes from eq. (2) for the channel 

wave function. The explicit form of this equation and its 

solution v;ill be published in the next report. 

rhe author is indebted to Drs. V.B.Belyaev, Yu.A.Simonov, 

1-i.~.ichulz, J .... Tjon and R. Van Vageningen for very fruitful 

discussions and to Dr. D.D.Brayshaw for the hint to the 

importance t.o show the non-uniqueness or the solution of' 

the J:o'addeev equation in the BCM under consideration of' the 

two-particle a-components only. 
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Fig. 1. The regions in defining the function Jl(f<; d..}. 
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