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1. Introduction

In previous papers/l’z/ (henceforth references to
formulas of these two papers are denoted by (El,...) and
(E2,...), respectively) the Schr8dinger eqiation has been
considered for the bound state of three identical spinless
particles. It has been assumed that the particles interact
only in the s-states and that the interaction itself is
described by the boundary condition model (BCk). It has been
shown that in this case the determination of the total three-
particle wave function (E2,4), which follows from the
Schrédinger equation (El, 22), is reduced in & correct way to
the solution of a one-dimensional integral equation (E2,28)
for a function of one variable. By means of this equation the
total wave function of the system of three identical bosons
can be determined in a unique way using the symmetry conditions
(E1,21).

Below it will be shown that it is also possible to reduce
the equation for the channel wave furction (EZ,5) given in the
spuce representation to a one-dimensional integral equation in
a correct way using the method developed in ref./z/ for the BCk
under consideration.of s-wave only. lowever, the circumstance
connected with the fact that the channel wave function must not
fulfil the symmetry condition of the type (El, 21) leads to
the fact that the obtained one-dimensional equation will

determine this function in a non-unique way. Thus, we get the



result that the determination of the total wave function (E2,4)

becomes completely unique, while the occurrence of the non-
uniqueness in the channel wave function does not influence in

any way the one-dimensional integral equation.

2. The eguation for the channel wave function

in the BCM

A8 in ref./z/ we will consider a special problem of
the bound state of three identical spinless particles
interacting only in s-states. At the beginning we also
agsume that the pair interaction is described by a normal
potential. In this case we can express the total three-

by means of the

/3/

particle wave function Y('Zi,f:)

channel wave function in the following way
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where Yz and /% are the corresponding Jacoby
coordinates defined in (E1,20) and (E2,24), respectively.
The channel wave function y’{'Z/// fulfils under

consideration of (E2,1) and (E2,2) the equation/4/
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From this latter equation the equation follows for the

Fouriezr—component \//{'Z/ 1/ of the variable / of )0/2///
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where
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.The solution of eq. (3) might be written in terms of the

Green~function H(’Z '?.I E/ in the form:
¥ /z’% Hiz v EgJVIT)S (% g) ®)

For a potential \/ZZ/ of finite range C

( \/('l/:ﬁ for 'U> € ) and under consideration of the
explicit expression of the Green function //(Z/ZG E%/
given by (E2,11) it follows from (4) and (6) that the

channel wave function reads

y/,z// [c-’L]X( ,f) + 9('(“:]:(('{/// (7)

where
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Here aa{K/ and A /xy are the spherical Bessel and
Hankel functions, respectively, and 'éo(ya V_-E%/ is the
half-on-shell S -component of the two-particle T -mat-



rix given in (El,1). The step function is défined by 9{)(/:1
for X> 0 ana G(x)=0 for X<0 .

Now as in ref./S/ we will assume that the expression
(7) for the channel wave function, which does not contain
the potential in an explicit form, is also correct in the
BCY..Then the determination of the channel wave function in
the BCk, i.e.,actually the solution of eq.(2)is reduced to
the determination of the two-dimensional function }((i)/e/
and the one~-dimensional function ){(?/ . To determine
correctly the functions X{'Z,// and Y{i/ we need two
equations. As the first equation relation (9) cen be used,
because the function ?/"(, E/ has in (9) a well defined

value (E2,21):
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which follows from the fact that in BCk the half-on-shell
+ -matrix £,(p, VE E) = fa/\/E_, P E) is defined in a
unique way by expresséion (E1,9). Therefore the first equation

has the form:
Y@/#rﬁdz]%o[% Ble-t)X (2] + 62 XL ]

Ly
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where
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The second equation for the function X/’Z/// and Y/g/

follows from condition (E2,18), i.e.,follows from the fact

6

that for 4 <cC the s-component f (7'4-/ /4) of the
total wave function !P(NIJJZ} is identically
equal to zero. Taking into account (7) and introducing a

new function

Alor]=2pX(ef) (14)
we obtain result from eq (E2 18):

6(c-2) Alr,f] +26/c- Zj/ dz 0= Alelr) =

'Q+/’
=-frb(c- Z]/’Z ‘de' 9" ij/‘z///
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!
where jﬂ is defined by expression (13).

3. The solution of the equation for the functlon;#[/ /7

Neglecting in (15) the right-hand side we see that
remaining equation for Jo/?)/7 is of the same form as
eq. (E2,35). Then it is possible to solve this equation by

/el in an analyticual way.

means of the method used in ref.
This method has been proposed for the solution of a similar

problem in ref./s/ x). In solving eq. (15) we introduce as

6/ is V.Efimov,from the Leningrad

X) The author of paper
Institute of Nuclear Physics,having the same name as the

author of this paper.



in ref.”% new variables K o, o defined by
7 =R Sind, p= Y2 Reosd,
r nt! - ‘[—,Qcofol/
' =R£nd’, Vs y (16)
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In new variables eq. (15) reads for T < C:
mn{”-rol 1r -y
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fhe variable K  in eq. (17) can be considered as a
parameter and depending on R the whole region T<C
can be divided into some subregions as 1s shown in fig. 1
in accordance with that the right-hand side and the integra-
tion limits of (17) have now different values. Using the
methods given in ref./s/ the solution for /9[2/ o(/ can be

found in the whole region Z<c and has for the different

subregions the form
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In the region 8 (see fig. 1) the equation (17) takes the

form: ,,,;”(_é.r,,.,(} 9;;_,(/
4 ' 1) =
Al 4) + | dd AR, ) =0
¥
13-4l

and its solution is
Ag (R, 4/ F(K) $in4d (25)

where f:[Ky is an arbitrary function of /? « Therefore in

correaspondence with (14) the channel wave function (7) can be

written as

V(2 p)=6(c-k) Pl0/) +
+6(R-c)6(c?) ;7 Alof) +6(e¢) X (%7,

(26)

where in accordance with ref.’%/ the function jﬂ/Q)/f/ is
an arbitrary function of mixed symmetry belonging to the two~
dimensional representation of the group of the permutation

for three identical particles and fulfils the condition

_50(7-1,/1/+ }ﬂ{'zi//i/ + Y%, p5) = 0. (27)
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The non-unicueness of the type BHL-KJSO[Q//y comes
out also in ref./z/ in accordance with (EZ2,50) at the
definition in the BCM of the product \/ﬁZ/!fb(Tyfy
(E2,14) from the three-particle Schr8dinger equation (E2,3),
However, in ref./z/ it has been shown that if the BCh is
considered as the limit case of the potential (E1J7) then
it follows from symmetry condition (El, 21) of the total
wave function that we have to require }0/?L(/Ef0 which
leads to a unique definition of the chiannel wave function
and the total wave function (1). 4 similar consideration
for removing the non-uniqueness in the channel wave function
cannot be ap,lied. Cherefore, eq. (Z) has no unique solu-
tion 1n the BCM.

Note, that the non-uniqueness of the type 96:_K})ﬂ(2//7
of the channel fur.ction (26) in the region 8 of fig. 1
has no 1infiluence on the form of eq. (12). ~ctually,
from the explicit form (11) of the function ?(T/EJ it

follows that the integration in (12) over & term containing

X('t/// happens in the plane (7, 2/ defined by the
conditions:

1 1
7<c//fz7dsc<zz+/. (28)

This region of the plane (7;/67 is the region given by

the subregions 2-5 (see fig. 1) and does not contain the
region 9 which includes the non-uniqueness (25) of the
function _}9(u504/ ° . Inserting the explicit expresgsiins
(20)-(28) for j?‘kzoﬂl into (12) and taking into account
(18) and (8) give a one-dimensional equation for the function

172/. Its solution will determine in uccordance with (8)

1



and (19)-(24) the channel wave function (26) in a unique
way for all values of 7. and /” besides those defined by
the subregion 8 in fig. 1. However from condition (27) it
follows that in spite of the fact that the channel wave
function }l’{'l;// is non-uniquely defined at K<<  the

- =»
total three-particle function H?(Z/jp} defined in
accordance with (1) is completely unique. The fact that the

- 2
total wave function 3?{2712/ is defined in the BCM in

a unique way from eq. (2) and relation (1) is not in
contradiction with the non-uniquenesas of the channel wave
furiction and its definition (E2,5) because in accordance
with (E2,5) for the definition of ’0/zng/ it is
necessary to know the product V{'I—/ .‘fo /z/// » From
eq. (2) and relation (1) it is possible to determine at least
in unique way 2’0 (r, // but in the BCM in accordance
with (E2,18) and (E1,17) st 2<c ¥ (2,//=0 V(¥/=02°
and therefore in (E2,5) there arises the nop—uniqueness of the
type Q-0 . As it has been shown in ref. /2/ it is possible
to determine the product VQ“Q/Q@(Q//V and therefore
also y177f7 in a unique way on the basis of the three-
particle Schr8dinger equation and by means of the symmetry

- =
condition of the total three-particle wave function !?{Zy}p .

4. Conclusion

In our specific model of three identical bosons interacting

only in s-states the channel wave function in the momentum

space fulfils the Faddeev equation/a/

WK;?/ ‘[2’71(’(1‘51}]-1/‘/{/[1‘” (x, /ﬁ#f’/} Eq’) g (29)
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where fo(/(/ b E/ is the s-component of two-particle
t -matrix and EEi is defined by (5). It has been
mentioned above that in the BCM the solution of eq. (2),
which contains in contradiction with eq. (29) the inter-
action potential in an explicit form, is non-unique. There-
fore, of course,the question arises about the uniqueness of
the solution of eq. (29) in the BCh. If we consider the BCM
8s 4 limit case of the poténtial (E1,17) then the question
is reduced to the explanation of the uniqueness of the
solution of the Faddeev equation at presence of a hurd core
only in the two-particle s-component. In ref./7’8/‘it hus
been shown, that in the case when the hard core acts in all
two-body partial components, the Faddeev equations/a/ have
no unique solution. Using the explicit form of the above
obtained non-uniqueness of the channel function 70{77/€/(26)
in the coordinate representation it is possible to
demonstrate that eq. (29), while it takes only the
s~components of the interaction into account, will not have
a unique solution in the BCM.

Thus, when )I’[[/ ?,/ fulfils eq. (29) then a solution

of even this equation in the BCh is also function

y/(K, g]= ‘,P/K;Z/.‘f rixg), (30)

where g

Plios)= [ € GeR) Pl h)

13
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and }9/21//&} is an arbitrary function of mi?ed 2
symmetry ﬁﬁlfilling the condition (27b K2'= Q; + %7%
and é&, P are respectively the Jacoby coordinates
defined by (E1, 20) and (E2, 24). The partial s-component
of the two-particle Zf -matrix takes in the BCM in

accordance with (L£1.10) the form

tylk P €)= ~(K*-E) Fo (%) +

(eVE JE (32)
+[60!/<C —ZC/E;'o(KC)]ez tolF VE, E/,
where c ' '
F (6 7= 2 g 633 P o)

and fo {/o/ /é/ E/: fa//E.’ f; Ej is the s-component of the
half-on-shell 75 -matrix (E1,9). Taking into account the
explicit form (32) of to{K/f}E/ and Fy (K P) (33)
and using identity ﬁ/c—k/: Q(c_k/g(c—'ti/ and
writing (31) in the form
rixg)= & Jdse r3 =

5

[, df, jolirs)e” ¥ O(e-R)Y% 12

it can be shown that the insertion of /(%) Z/ into (29)

leads to the result

A(K9) =42 (%3] + 420K 9/, o)
240K 9) St Jolieg &V gle-R)[¥ea i) +
+ Pl f)+ P35

5)
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éc/Eg
X
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Here 27(7,£7 and‘/ﬂl are defined by (11) and (13),
respectively.From the condition (£7) and from eq. (35) it
follows, that Ay (K, ¢/=0, but from the explicit
expression (11) for f/'l/ E} in accordance with (36) it
follows that Al (K/ 2/:0 « Therefore, in correspon-
dence with (34) we have A (X, 2/20 and the function
y—;(K, f/ (30) is also as 5&(1(/ 7/ solution of eq. (29)
with the f -matrix (32). This latter fact shows the non-
uniqueness of the solution of the Faddeev equation in the
case of three identical bosons under consideration of a
hard core only in the s~-components. In contradiction with
that the one-dimensional equation for the function 1{(2/
following from (12) does have a completely unique solution.
The non-uniqueness of the solution of eq. (29) in the BCM
givesreason to doubt about the correctness of the value
EO =12.69 keV obtained in ref. 79/ for the binding energy
of three identical bosons by solving the two-dimensional
eq. (29) with the T -matrix (32). rhis value is quite
different from that vaiuve £; =7.70 LeV obtained in ref./19/
by solving one-dimensionsl equation which has been deduced in
ref./z/ from the Schrxbddinger equation for the wave function
Sf/izl/é:/ (1) of the sume system of three identical

bosons interacting via the BCMh as in ref./g/. To explain the

15



difference between the results of refs./g’lo/ it should be
of use to calculate Z;b by means of the one-dimensional
equation (12), which comes from eq. (2) for the channel
wave function. The explicit form of this equation and its
solution will be published in the next report.

The author is indebted to Drs. V.B.Belyaev, Yu.A.Simonov,
H.Schulz, J.i.Tjon and R.Van Vageningen for very fruitful
discussions and to Lr. D.D.Brayshaw for the hint to the
importance to show the non-uniqueness of the solution of
the Faddeev equation in the BCM under consideration of the

two-particle s-components only.
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