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1. INTRODUCTION. CONVERGENCE 
OF CUT-OFF HAMILTONIANS 

As was pointed out in ref/1
/ (part 1), the highly singular 

two-body potentials are an idealization. So, a cut-off 
procedure is very natural when we start to consider the 
physical problems connected with highly singular in­
teractions. Therefore, the Hamiltonian II~,(\"') generated 

N 

by the cut-off interaction 11
1N'(x

1
, •.• ,xN)oc.!_L <ll 1(x.-x.hn 

. 2 j f j ' I J 

some sense is close to the original Hamiltonian II(;\ N) 
defined in the previous work/1 /. Before formulating the 
corresponding results we need some preliminaries. 

From the definition of the cut-off interactions: 

l <fJ (x) 
<fJ (x) = 

L L 

lx: <P(x)<LI 
(1.1.) 

lx: <Nx)> L I 

it is clear that It! Vx 
1

, ... , x \ )! is a monotone sequence 
of functions \l~ (x

1
, •.• , x,)~ I:"(\'~) such that at each point 

of .\N\ s" it converges to I, "' C... 1, ... , xN) 

\Lim U~'(x 1 , ... , xN)= ll, 1...
1

, .. , x 'I) 
->OO 

N 
(X I' .. . ' X N)~; \ \ s N • for 

According to the construction of lU ~ (x 1 , ... , x N)l it is 
evident that for Supp[li'l(x 1, ... ,x 1,)-lJ~(x 1 , ... ,xN)]= SN+ ~L 
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lim mes (S + L ) = 0. 
N L 

(1.2) 
L--.oo 

Now let us consider the sequence Itt I , as operators 
in the Hilbert space of states }{(AN)= L 2 (AN). 

Lemma 1.1. Let the cut-off parameters ILl form 
a nondecreasing family, then the functions Ill~ (x1 , ... , xN )I 
form in the Hilbert space }( CI\N) a monotonic nondecrea­
sing sequence of bounded self-adjoint operjttors, i.e., for 
v L <oo U~ ~ :13(}{) and for L_:::L' U~:::_ll~ in the sense 
of quadratic forms. 

Proof. The Lemma is a straightforward consequence of 
definition (1.1). 

Lemma 1.2. Let the operators 11 1 (AN) be defined for 
~ N 

each ~ut-off parameter L as the algebraic sum II L (\ )= 

~ H0 (AN)+ Uk then these operators are self-adjoint and 
D (H

1
) = D (Il

0
) • 

Proof. The Lemma is an immediate consequence of the 
well-known Kato-Rellich Theorem (see Kato 121 V ,§ 4). 
From Lemma 1.1 the operators u~· ~ ;]3(}() and are 
self-adjoint, hence, D (li~)) D (H

0
), so operators u~· are 

Kato-small perturbations to the self-adjoint kinetic-ener­
gy operator H

0 
(AN). 

Corollary 1.1. For nondecreasing family of cut-off para­
meters !LI the self-adjoint operators !H~, (\1'\)1 form, in 
the sense of quadratic form, a monotonic nondecreasing 
sequence, bounded from above by the Hamiltonian II (:\N)= 

N '1 ' 
= mo (A' ) + lJ N) F I I 

H < H < . .. < H , (L < L < . .. ) • 
L

1 
- L

2
- - l - 2-

(1.3.) 
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Rem a r.k 1.1. The densely defined, closed symmetric 
quadratic forms ~L {l&J associated with bounded self­
adjoint operators U~ a·re obviously bounded f.or V L . 
Hence they are also h -bounded, so for v L : 

0 

h L = (hO ; u L) 
-

=hot uL. (1.4) 

Proposition 1.1. (Kato 121 VIII, §3). Let lh n l be a non­
decreasing sequence of densely defined, closed symmet­
ric quadratic forms bounded from below by a constant 
y and dominated from above by a similar form h : 

- - -
y:::_hl:::_h2:_:: ... :::h, 

and l:_t Hn be the self-adjoint operators associated 
with hn. Then: (i) the sequence of semibounded from 
below self-adjoint operators 1H 11 1 converges strongly 
in the generalized sense to a self-adjoint operator H' 
which is also bounded from below: 

g.s.s. -lim H = H' 
n ' 

fi-->00 

(ii) if h '[~] = (~, H '~ fis the associated symmetric form, 
we have 

- - -
h <h'<h 

n -
for Vn = 1,2, ... , 

(iii) for V t/Jr.;. Q(h ') the form h '[~J is the limit of lh 
n 

i.e., 

lim h [~] '= h '[~] 
n for ~I ~ Q(h '), 

11--)CXl 

This completes the preliminaries. Now we can prove 
the main results of this section. We start with 

Remark 1.2. From Proposition 1.1 and Corollary 1.1 
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it follows that the cut-off Hamiltonians H L (;\ N) for L .... "" 

converge in the generalized strong sense to self-apjoint 
operator H' with the properties (i)-(iii), where h[I/J 1 = 

= (1/J' (Ho + UN )1/J) - • • 

Now we can prove that under the conditions of Theo­
rem 2.1 111 the Hamiltonians II '(AN)= g.s.s. -lim H~,G'\N) and 
H (AN) are equal one to another. L~"" 

Remark 1.3. (Kato /21, VIII~ 4). From the monotonicity 
- N of the sequence lh L I tf,]l (1.4) (or IlL (A ) (1.3)) and 

!;1 It/,] d1J,;,I it follows that I im h I tj,] exists at least 
, - 1.-."" L 

for v ~~, <,- Q (h 0 ). Let us define a form 

h "I t_', I .. I i Ill h L [ t/J I ' 1/J 1.- () (1. ") (1.5) 
I ,-.no 

with ()(h ") consisting of all t/' ~ n Q(h l such that limit 
L L 

(1.5) exists. Point (iii) of Proposition 1.1. shows that 
h 'l tf,] is a particular case of the general limiting defi­
nition (1.5), so h"],;,] )I~ 'llil. If we take into account 
Remark 1.1, then the limiting form h '' l t/' I (1.5) can be 
represented also (see (1.4)) as 

- L -
h , '[ ""I = h 0 [""I + I i Ill ( 1/J ' [I "' 1/J ) (1.6) 

L->N 

for each t/J~Q (h 0 ) such that the limit in the right-hand 
side of (1.6) exists. 

Corollary 1.2. As follows from definition (1.1) and 
Lemma 1.1, the operators lli~'l and the associated se­
quence of quadratic forms \1 Lll'JI = (t/J, ll~ tjJ )- satisfy the 
conditions of Propositions 1.1. So, g.s.s. - lim tiL ·c [I' 

L->00 N 

and lim li [l)J] =u'[I/J] for t_',,;; Q (ii '). But in this case 
L->"" 

it is easy to show that l1 · = li (\N}. 
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L em m.a 1.3. Let the cut-off parameter L tends to 
infinity, then the nondeacresing sequence of bounded self­
adjoint operators !U ;l (1.1) converges in generalized 
strong sense to the closure of the singular interaction 

- N 
operator UN= U <A ) . 

Proof. As was pointed out, the operator of the N -par­
ticle singular interaction UN (x1 , ... , xN ), ,D(IJN) ~ ( 0 C'\N\ SN) 

(se~ /1/ ) is essentially self-adjoint, i.e., it has only one 
self-adjoint extension which coincides with its closure 
so 

D (111\i) ~ Corell (AN) 
N ." N 

i. e., ( 11 (,'\ H n (I 11\i ) ) ~ 1 1 ( \ ) • ( 1. 7) 

N 
Hence l: (A )t D( (IN) ~ 111\i and for V ,;, r_ n (I'"') 

J dx ... dx [ll(AN}-IINL1
2

!1/l!
2

= 
1 N . 

AN 

J
. I 2 2 

dx ... dx (ll -II') lt/11 < 
,\N I N N N - (1.8) 

~2 J. dx 1 ... dx,,[li~-+ (11~) 2 1!0! 2 , 
s + L " 

N L 

where s"', Lr,~ Supp 0•"'-1
1
\),so the right-hand side of (1.8) 

for L , ex tends to zero, because lim mcs (S'\ + ~L) c 0 (1.2). 
Therefore for V l).,J)(I \)=Corcli(\~L->oc 

lim (i~'t/1 = l 0 . (1.9) 
[,_,"" 

But if the sequence of self-adjoint operators llJ~l con­
verges for L _,"" on the dense in the space }( (\ N) set 
D(llN) to the self-adjoint operator ll(AN) and if D(UN) 

is a core of U C\ N), then, as is well-known, lll ~ l conver-
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ges to the operator U (AN) strongly in the generalized 
sense (see, e.g., Kato/2/, VIII, § 1): 

g.s.s.- lim U ~· = {I (AN) • 
L-.oo . 

(1.1 0) 

- . L -
Corollary 1.3. The sequence uL[lji]=(l,b,UNlj!) for L_,"" and 

l/1 & Q (il) converges to the form ti [l/Jl = ( 0, LT l/1) ··,so the 
form -;; '[l/11 = -;;[l/J] (see Corollary 1.2). Therefore for 
Vlj!&Q(h

0
)"·Q(;-;) (see (1.6)): 

- L - - ~ 
h"[l/J]=h ll/ll+lim(lji,U 1,) =h [0]tu[~]. 

0 N 0 ' L-.oo 
(1.11) 

From (1.11), Remarks 1.2, 1.3 and point (ii) of Propo­
sition 1.1., it follows that 

h 0 [ l/1] + ~d VI] ~ h , [ 01 ~ }; [ ljJ l = (h () j u ) [ 01 . (1.12) 

But the quadratic forms in the left and right-hand sides 
of (1.12) coincide (see Theorem 2.1 /I/), so 

- -
h'[fl = h[V,J" (1.13) 

From the uniqueness o_! the s~lf-adjoint operators asso­
ciated with the forms h'[l/J] , h[l/1] (1.13) (see proposi­
tion 1.1) it follows that II'= H(AN),hence(seeRemark 1.2): 

g.s.s.- lim H (AN) = H (AN). 
L->oo L 

(1.14) 

Therefore, in the present section we have proved the 
following 

Theorem 1.1. Let H 15A~=H0(AN)+llk be a self-adjoint 
cut-off Hamiltonian corresponding to the nonsingular N -
particle interaction U~· (x1 , '"', xN) then, for the cut-off 
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parame~er L going to infinity, the sequence lliL (;\~)I 
converges to the Hamiltonian II (AN) strongly in the 
generalized sense. 

Now we are interested in statistical mechanics of 
systems defined by HL (AN) and H (AN). As a first step we 
mention that from (1.14) the convergence of exp (-!'31\.) 
follows immediately 

Corollary 1.4. For {3 > o: 

s-lim exp(-f-311
1
) = exp(-{311) (1.15) 

L_,oo 

uniformly for {3 in any finite interval of the positive 
axis R1 . + 

It is clear that (1.15) is insufficient for the proof 
of the convergence of partition functions Z!'3[H L (AN) I to 
z

13
[11 (AN)]. But in the next section we will show that 

(1.15) and some properties of the sequence !H L CI\.N )l al­
low us to prove the convergence of I exp (-(·m r_)l in the 
trace-class topology. 

2. CONVERGENCE THEOREM FOR PARTITION 

FUNCTIONS Z{-3[HL(AN)] 

To treat the quantum statistical mechanics in a boun­
ded region A c Rv of an arbitrary shape it will be very 
useful 

Proposition 2.1. (Weyl's min-max principle, see, e.g., 
Ruelle I 3 I ). Let :\ be a self-adjoint operator bounded 
from below. Let 

11 (A)= inf l Sup (0,Ar,'J)I. (2.1) 
n M r/,C,MCQL\) 

dim M = n ll ~&II = l 
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Then either (a) f!n is the n -th eigenvalue from the 
bottom of the spectrum rr(A) (counting multiplicity) or 
(b) f1

11
' infuf'ss (A), where rress(A)'=a(A)\auisc (A) 

here adi sr (A) is the discrete part of the spectrum a (A) . 

In particular, u"s"(A)=¢if andonlyiflimiL
11

(A)="" 
n ->oo 

Now we recall the definition of trace-class operators 
(11 • 

Definition 2.1. (see, e.g., Reed and Simon I 4 I). Let 
(B(H) be the space of all bounded operators on a separable 
Hilbert space J{. The Banach space <11 c ~3(}{) of compact 
operators with finite 11·11 1 -norm: 

IIAII =2/\ <"", 
I k =I k 

A ~ (1
1 

• (2.2) 

where the /\k denote the non-zero repeated singular 
values of A (i.e., the non-zero eigenvaluesof \AI= \IA*A ), 

is called the trace-class and II· 11
1 

is the trace-norm. 
In particular for any positive self-adjoint operator 

A~ (II 

00 

\\A\\ =TrA ~I (1/J ,Al/J) =I 11 (A), 
1 k=l k k n=l n 

(2.3) 

where 11/Jk l is any orthonormal system in J{ and 
!11n (A) l are eigenvalues of A (counting multiplicity). 
These preliminaries allow us to prove the following state­
ment which defines statistical mechanics of the system 
under consideration (see section 1 and /1/ ). 

Lemma 2.1. Let A cR 1
) be a bounded region of an 

arbitrary shape and UN be a highly singular N-par­
ticle interaction corresponding to "point" hard core 
particles (see section 1 /I I ). Hamiltonian H tAN) of the 
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1 

1 

' 

system.is defined as Friedrichs extension ofthealgebraic 
sum H 0 + UN (see I l I ), then 

(i) the spectrum a (H) is purely discrete, 
(ii) for f3 > 0 exp (-{3H)~ d 1 , 

(iii) the partition function Zp[li(AN )] = Tr exp [-j111 (AN)J 

is nondecreasing for A, i.e., 

Z [H(AN)} < Z [HC\ ',~] 
f3 - {>· 

if ;\ (_ ;\ , . (2.4) 

Proof. (i) The N -particle interaction liN (x 1 , ... , x!'.) for 
highly singular two-body potentials with "point" hard 
core, acceptable in statistical mechanics, is known to be 
at least semibounded from below (see/! I and section 3): 

ll (x , ... ,x )>-u 
N I N 

for \' ( x , ... , x ) "' ;\N , 
I N 

(2.5) 

Therefore for Vl/1 ~ 001
0

) .-. D(llN) 

hll/1 1 ~ ( t/1 • II t/' ) + ( t/' , ll 1/J) > h [ 1/1 I - u ( 1/, , t/1 ) , 
0 N - 0 

or for V 1/J ~ Q (h) 

- -
h[l/,[..:: h

0 
[t!J]- a (t/1, 0). (2.6) 

So, from the Weyl's min-max principle (Proposition 2.1) 

N N 
1\ (II(;\ )) :: f1

0 
01 0 (A )) - a. (2.7) 

Let us now consider a cube A c R v and i\ c \ .It is easy 
+ + 

to check that in this case the spectrum a 01
0 

(A.~)) is 
purely discrete and lim lln (H 0 (A~)) = oo • Thus the same is 

n ->oo 

true for the Hamiltonian H (A~) (see (2.7)). Moreover, it 
N 

is clear that for i\ c 1\ + the Hilbert space J{ (A· ) is in 
a natural way imbedded into }{(·\~), so if 1/J c;;.D(H (AN)) it 
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is also in D (H (A~)). From here and Weyl's min-max 

principle (Proposition 2.1), we have 

11 (H (AN)) > 11 (H (;\ N)) ' 
n - n + 

(2.8) 

hence lim fLn (H (AN))= oo, i.e., the spectrum a (H (AN)) is 
n->oo 

purely discrete. 
(ii) Straightforward calculations show that for the cube 

v N ~ · 
1\ + t: R exp f -f3H 0 (A+)] r;; (j 1 , hence exp [ -f3H (A+) I ~(11 (see 
(2.7)). From inequality (2.8) it follows that the same 
is true for exp[-f3H (AN)] i.e., fo~ {3> 0 exp (--{311)<;;(\. There­

fore (see Definition 2.1) 

N N oo N 
Zf3[H(A )J=Trexp[-{-3II(A )]=n:lexp[-{-3/Ln(ll(\ ))]. (2.9) 

(iii) Let us consider A c A' then from the discussion of 

point (i) it follows 

(II( AN ) ) > (H (A ' N)) 11n _ 11n • 

thus inequality (2.4) is an immediate consequence of 

(2.9). This completes the proof. 

Corollary 2.1. The cut-off in the singular interaction 

UN (see (1.1)) does not change its semiboundedness 

property (2.5): hence 

L( ( N UNx, ... ,x)>-a,Vx, ... ,x)<;;/\. 
l N - l N 

Therefore the self-adjoint cut-off Hamiltonians HL (AN)= 

=lla (AN)+ u;(see Section 1): 
(i) have a purely discrete spectrum, 
(ii)for {3>0 exp[-f3HL(;\N)]~C1 1 , 
(iii) Z~ [HL (/\ N)] = Tr exp [ -{11lL (,\ N] is a nondecreasing 

function of A. 
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Lemma 2.2. If L:::L'then for the corresponding trace­
class norms: 

l\exp(-f3H )\1 < IJ exp (-f3H )II . 
L' l- L l 

(2.10) 

Proof. From corollary 2.1 for L ::;L' we get 

N N 
HL (A ) ::: HL, (A ) , D (Hr) = D (HL,), 

then from W~yl's min-max principle (Proposition 4.1) 

11 (IJL) < 11 (H , ) • 
n - n L 

(2.11) 

This, together with (2.9), proves inequality (2.10). 
Now we prove an important auxiliary statement, 

required for the proof of the main result of this section, 

i.e., convergence of partition functions z
13

[HL (AN)] to 
Z {-3[H (AN)]. 

Lemma 2.3. Let !An l and A be trace-class operators 

with w -lim A =A. If the sequence of norms I IIA 11 1 l 
n n 

fi->00 

decreases monotonously together with ! ! IAn- A<; 1 ll1 I for 

an arbitrary d :::_ l (where A(~l = Pd An P d and P d is a fi-
nite-dimensional projector: J.fdl = Pd }{, , dim J{(dl = d ), 

then 

1\·!1 1 -lim An =A. (2.12) 
fi->00 

Proof. Every operator from d1 can be approximated 

in the trace-class topology by finite-rank operators. 
Hence for\'£> 0, we can find such d(d, that for d> d(f) 

\iA- l\(d) Ill < ( and IIA 1 -A\dll\ 1 <:£, (2 .13) 
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Hence estimation (2.13) is valid for vn ~ 1 

\!A - A(rl) II < l. 
n n 1 

(2.14) 

Consider now II A - An \\p then 

I A-A 11, ~r·p (A-A 1r,ll
1

-+ !\A-~cl)'' 1 +1\A -A(d)l\
1

• (2.15) 
n ,J n 1 n n 

But on the finite-dimensional space }{(d)= P d }{ all ope­
rator topologies are known to be equivalent. Therefore, 
for 11 large enough: 

II p (A - A )P II < ( . 
d n d l 

This estimate together with (2.13)-(2.15) proves the 
lemma. 

Theorem 2.1. Let 111~, (A"') 1 be a sequence of cut-off. 
Hamiltonians (see section 1), then for each {i > o 

\H\ -lim cxp(-{311) = cxp(-{111). 
I L ._.,., L 

(2.16) 

Proof. Let us verify the conditions of Lemma 2.3: 
(a) from Corollary 1.4. (1.15) w-lim exp(-{11~)=exp(-{:ll0 

for {3 > 0, L-."" ~ 

(b) for v L and {3> o exp (-{311 ) "- (! (see Corollary _ L l 
2.1) and also exp(-{311)-=; (11 (see Lemma 2.1.); 

(c) the sequence of the tarce-norms !II Pxp(-{111~,)\\ 1 I 
monotonously decreases when the cut off parameter L 
increases to infinity (see Lemma 2.2); 

(d) moreover, inequality (2.11) for single eigenvalues 
of Hamiltonians HL (AN) and IlL, (AN ) (for L 5 L') shows 
that 

14 

"" "" 
~ _exp [ -{311 n (IlL,)] _5 ~ exp [ -f-3fl n (H L)J, 

n = n+l - n = d+ l 

or (see (2.9) and Definition 2.1): 

II exp (-{3H ) - P exp (-{3H )P \I <II exp (-t3fl ) - P exp (-{:311 ) P II . 
L' d L' d l- L d L d ? 

Therefore the sequence lexp(-{:H11)1 satisfies all condi­
tions of Lemma 2.3. Hence (2.16) is valid in the trace-norm 
topology. 

Corollary 2.2. The Tr(·) is known to be continuous in 
the trace-norm topology, thus for partition functions 

~ N 
Zf)ll (A )I Tr np 1-{nl (;\ )] 

' L L 

and each f-l > o _ 

N ~ 
I im Z f-l]ll L (;\ ) l c_c Z f-l]ll I \ ) I . 
I ,--;ou 

(2.17) 

The same is obviously true for the free energies 1·
1
. 

-1 
c-- {l In z 11 111~,1. 

3. CUT-OFF PROCEDURE ANDS1'ABILITYCONDITION, 

LENNARD-JONES POTENTIAL 

In this section we discuss a purely thermodynamic 
problem which one immediately faces with if a cut-off 
procedure is introduced. As was pointed out in II I to 
ensure the correct thermodynamic behaviour (absence 
of collapse) the Hamiltonian II (\N) must be stable 
(Ruelle I 31 ): 

\ 
II(\ ) >- HN ·for B > 0 and V '<:: l . (3.1) 

For highly singular two-body potentials <ll(x) this means 
that the N -particle interaction li'\'(x 1 , ... , "") is not 
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only semibounded from below (see sections 1) but satis­
fies the stability condition in the sense of Ruelle /3f: 

UN(x
1

, ... ,xN)>-BN for \fN~l, V(x1, .. ,xN)C'\N (3.2) 

and fixed B > 0. 

The cut-off procedure (see (1.1) leads to the following 
representation of the stable interaction UN(x 

1
, ... , ,,) 

lVx1, ••• ,~)ocll~(x 1 , .,x~) i lJ~(x 1 .... ,xN)' (3.3) 

here the interaction u~<- 1 ... , 'N) corresponds to a po-
sitive two-body potential <11 

1 ( x) .· <t> (xJ - q;L (x). But now 
it is an open question whether ll~(.x 1 , .. , xr) is stable, 
at least for cut-off parameters large enough (compare 
Ruelle l:l~· ), If so, then we can add to the stateiJlent 
of Theorem 2.1 that the sequence of cut-off Hamiltonians 
II '(AN) in (2.17), (2.18) corresponds to the stable inter-

1. 

actions UL(x , ... , x ) for L large enough. 
N l N 

We can verify this for the case of the widely-used 
Lennard-Jones potentials (12-6) in three-dimensional 
space 

<fl(x)c4F~[(-'!..-l 2 -(~-) 6], E>O, a>O. (3.4) 
\xi I xi 

This potential is highly singular and repulsive at the 
origin and regular out of it. Thus it obviously satisfies 
all conditions of Theorem 2.1 /I/ and Theorems 1.1, 2.1, 

therefore for this potential the convergence (2.17), (2.18) 
takes place. At last, potential (3.4) is stable in Ruelle 
sense (3.2) (see / 3

/ and Theorem 3.1). It can be proved 
that the cut-off Lennard-Jones potentials <IlL (x) (see 
(1.1) and (3.4)) for v = 3 and L large enough are stable 
too. 
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Proposition 3.1. (Ruelle/?./ ). Let two-body potential 
ctJ(x) = <ll(jx[) be a continuousandpositive-typefunctions, 
i.e., <J:l(x) ~ L 1 (Rv) and its Fouri~r transform ¢(q) :::_ o, 
then such a potential is stable if <ll (0) > 0. 

Corollary3.1. Lettwo-bodypotential <J:l(x)=¢
1 

(x)+ <J:l
2

(x), 

where <IJ 1 (x) > 0 and <fl 2 (x) be the same as in Proposi­
tion 3.1 then <P(x) is stable. 

Theorem 3.1. ·If <ll (x) is a Lennard-Jones potential (5 .4) 
in R 3, then the cut-off potential <IlL (x) defined as in 
section 1 (1.1) is stable for L large enough. 

Proof. Let us construct an auxiliary function: 

2 2 
a r, a 6 

<ll !") = :lE[(---·-----) - (--------) J, (3.5) 
I 1 2 <" 2 2 
1 x~ + s· a 

I I 2 c 2 2 
1 x, + <; a 

then a straight forward calculation shows that for v ~ 3 and 

0 < ~- 2< 0~ -I 

<ll ( x) = <)l ( x) - <ll (x) > 0. (3.6) 
'· 

The function <v _ (x) (3.5) is continuous and bounded from 
above, so we can chose the cut-off parameter L in such 
a way that L_::: <IJ_(O),then 

<J:l (x) > <J:l (x). (3.7) 
L - -

If one represents <J:l _(x) as (see Ruelle /s/ ) 

a 2 3 3- a 2 2 
<J:l (x) = 4E[( )'- \/2 (-----) ] x 

- \ x\2 + ( 2 a 2 \ x\ 2 + ( 2 a 2 

a 2 3 3- a 2 2 3- a 2 
X[(------) t y2(-----) + y4(-----)], 

I 12 c 2 2 I I 2 .c-2 2 I I 2 c 2 2 x + s a XI + s a x + s a 
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then one can show, that <I>_ (x) is a positive-type func-
2 3-

tion for v = 3 and 0 < t <y 2-l. Therefore the two-body 
potential <t> __ (x) is stable (Proposition 5.1). The same 
is obviously true for <I>L(x) (see (3.7)) if L ><I> (0). 

This completes the proof. 
Theorem 3.1 completes the discussion of the main 

result of this paper (see Theorem 2.1 and Corollary 2.2). 
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