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On Statistical Mechanics of Systems with
Highly Singular Two-Body Potentials

A natural cut-off procedure for two-body highly
singular potentials, discussed in the previous paper
(part I), is proposed. The main result is the proof of
a convergence theorem for partition sum (or the free ener-
gies) when the cut-off parameter is removed to infinity.
The question of stability of the cut-off interactions is
also discussed. These results are illustrated by a con-
sideration of the Lennard-Jones potential ( 12-6).
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1. INTRODUCTION. CONVERGENCE
OF CUT-OFF HAMILTONIANS

As was pointed outin ref./l/(part 1), the highly singular
two-body potentials are an idealization. So, a cut-off
procedure is very natural when we start to consider the
physical problems connected with highly sipgular in-

teractions. Therefore, the Hamiltonian Hl‘(\\)generated
L
by the cut-off interaction Uy (x,.cc,x )= =2 @ (x ~x Vin
N 257 ] Lo i
some sense is close to the original Hamiltonian HaAaM

defined in the previous work/!/, Before formulating the
corresponding results we need some preliminaries.
From the definition of the cut-off interactions:

d(x) Ix:Px)<L}
¢ (x) = - (1.1.)
L Ix: d(x)> L1}

it is clear that {U‘,\;(xl,....x\,ﬂ is a monotone sequence
of fltmctions uk (x],..,,\'\)elf(.\“)such that at each point
of A\ Sy it converges to L n(xy, ..., xp)

.

I
lim UM o x )= U (x e x AN
o N XN) NV . XN) for (xr...,xNk?\ \ SN'

According to the construction of {Uk(xl,.“,x,\l)} it is

evident that for Supp[l"N(x], s xN)—U; (s eens xN)] - Sy + EL
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lim mes (S o+ 2 ) =0. (1.2)
L—»oo
Now let us consider the sequence ¥U{§¥ as operators
in the Hilbert space of states H(AN) = LZ(AV).

Lemmal.l. Let the cut-off parameters {L} form
a nondecreasing family, then the functions {U (x,, ..., xy)!
form in the Hilbert space H(AY) a monotonic nondecrea-
sing sequence of bounded self- ad]omt operators i.e., for
v L <e UK € B(H) and for L<L’ Uk<UL in the sense
of quadratic forms.

Proof. The Lemma is a straightforward consequence of
definition (1.1).

Lemma 1.2. Let the operators Hy (A ) be defined for
each cut-off parameter [ as the algebralc sum H, (\ )=
- H, (/\N)JrUI then these operators are self-adjoint and
D(HL) =D (HO).

Proof. The Lemma is an immediate consequence of the
well-known Kato-Rellich Theorem (see Kato /% Vs 4).
From Lemma 1.1 the operators U c (3 and are
self-adjoint, hence, D(U! )JD(H ) so operators U are
Kato-small perturbatlons to the self adjoint k1net1c ener-
gy operator Hj (AN),

Corollary 1.1. For nondecreasing family of cut-off para-
meters {I.} the self-adjoint operators {ll, (AN} form, in
the sense of quadratic form, a monotonic nondecreasing

sequence, bounded from above by the Hamiltonian 1 (AN-
= (M, (A"\)+U,\)P /Y

H <H <..<H, (L <L_ <..), (1.3.)

Remark 1.1. The densely defined, closed symmetric
quadratic forms u [¢] associated with bounded self-
adjoint operators UL are obviously bounded for V1. .
Hence they are also Ho -bounded, so for VL :

= (hy+ u 1.4)

Proposition 1.1. (Kato/?/ VIII, §3). Let th,} be a non-
decreasing sequence of densely defined, closed symmet-
ric quadratic forms bounded from below by a constant
y and dominated from above by a similar form h:

y <h, <h, <u <h,

IA

and let H,Z be the self-adjoint operators associated
with ~hn. Then: (i) the sequence of semibounded from
below self-adjoint operators [li,}] converges strongly
in the generalized sense to a self-adjoint operator H’
which is also bounded from below:

gs.s. ~ lim H = H",

n- o0
(ii) if h'fyl = (¥, H y)is the associated symmetric form,
we have

hn EE'EE for Va=1,2...,

(iii) for VueQh”) the formhy) is the limitof th_} ,

i.e.,

lim b Y] = b Ty] for ¢ <Qh”).

n->00

This completes the preliminaries. Now we can prove
the main results of this section. We start with

Remark 1.2. From Proposition 1.1 and Corollary 1.1
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it follows that the cut-off Hamiltonians H, (AY) for L. «
converge in the generalized strong sense to self-adjoint
operator H’ with the properties (i)- (111), where hfyl-
=, (Hy+ Upgi) ™
Now we can prove that under the conditions of Theo-
rem 2.1/ the Hamiltonians 11" (AY)= g.s.s. ~lim H, (\N)and
H(AVMyare equal one to another. Lo

Remark 1.3. (Kato ’/2/, VIII§ 4). From the monotonicity
of the sequence thy Tyl (1.4) (or H ANy (1.3)) and
h [¢l<hlél it follows that limh [y]  exists at least

[0

for vy ¢ e()(i“). Let us define a form

WOl - Tim El (ol o eQ™) (1.5)
Lo

with Q(h ") consisting of all yyc ™ Q(h ) such that limit
(1.5) exists. Point (iii) of PI‘OpOSlthD 1.1. shows that
h’lwl is a particular case of the general limiting defi-
nition (1.5), so h”l¢l ~hlvl. If we take into account
Remark 1.1, then the limiting form -’{y| (1.5) can be
represented also (see (1.4)) as

= L.
h* gl = ho Tyl + Him (¢, U ) (1.6)
[.ooo
for each ycQ Gl())such that the limit in the right-hand
side of (1.6) exists.

Corollary 1.2. As follows from definition (1.1) and
Lemma 1.1, the operators Hi,"\l‘% and the associated se-

quence of quadratic forms Tll‘lk/llr((r/l,ullq(/})~ satisfy the
conditions of Propositions 1.1. So, g.s.s. - lim vl
Lo
and lim u [yl =3u"Tyl for ¢<cQG’). Butin this case
Lo

it is easy to show that U’ = (;(AY).

6

Lemma 1.3. Let the cut-off parameter L tends to
infinity, then the nondeacresing sequence of bounded self-
adjoint operators {Uki (1.1) converges in generalized
strong sense to the closure of the singular interaction
operator Uy=U(A )

Proof. As was pointed out, the operator of the N-par-
ticle singular interaction Uy (x),..., xy), ,D(l) = (‘.()(,\N\ Sy)

(see /1/ ) is essentially self-adjoint, i.e., it has only one

self-adjoint extension which coincides with its closure
SO

DU = Core 1 (AY) ie, (UAHMDA =Y. (1.7)

N
Hence LU (A )H)(UN)»—H\_ and for V¢ < B()

f‘ dx] ...de[U(/\N)-UL‘l? Il//‘2:

AN ' |

o Cla2y 2

- \{4 dx e dx (U UL < (1.8)

<2 dxp e dry U U010l P
S + ' '

where Syi X, - Supp (Ix-14).50 the right-hand side of (1.8)
for I. . ~ tends to zero, because lim mes(Sy+ X )=0 (1.2).
Therefore for v ¢<hl,)=Core li(\WHE>=

lim Un = L0 1.9)
[Loeo :
But if the sequence of self-adjoint operators %UVX con-
verges for l..~ on the dense in the space HAYN)  set
DU, to the self-adjoint operator UAY) and if DU )
is a core of U\N), then, as is well-known, {Lw } conver-
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ges to the operator UWAN) strongly in the generalized
sense (see, e.g., Kato/2/ VIII, §1):

.

geses. = lim U = UAY) (1.10)

Looo

Corollary 1.3. The sequence EL[t/J]:(y//,U{{Iy/J)« for L~ and

Y& Q@) converges to the form ulyl = (¢,Uy¢) 7, so the
form u’[¢] = ulyj (see Corollary 1.2). Therefore for
VyeQhy) QW  (see (1.6)):

S R R R Y N N P N A (1.11)
Lo N 0
From (1.11), Remarks 1.2, 1.3 and point (ii) of Propo-
sition 1.1., it follows that

N R G e U Y A I T (1.12)

But the quadratic forms in the left and right-hand sides
of (1.12) coincide (see Theorem 2.1 /1/), S0

h'[gl = hlyl . (1.13)

From the uniqueness of the self-adjoint operators asso-
ciated with the forms h’[¥! | hiy] (1.13) (see proposi-
tion 1.1) it follows that H’= H (" ),hence (see Remark 1.2):

o Ny _ 1 (AN
g 5.8, itnoofléA ) = H(AY), (1.19)

Therefore, in the present section we have proved the
following

Theorem 1.1. Let H,(AM=l (A +Uy be a self-adjoint
cut-off Hamiltonian corresponding to the nonsingular N -
particle interaction UL‘ (x1 yoees xN) then, for the cut-off

parameter L going to infinity, the sequence {H, (AM)4
converges to the Hamiltonian H(AN) strongly in the
generalized sense.

Now we are interested in statistical mechanics of
systems defined by HL(AN) and H(AN). As a first step we
mention that from (1.14) the convergence of exp (-Gl )
follows immediately

Corollary 1.4. For f3>0:

s — lim exp(-—/‘gll[‘) = exp(-BH) (1.195)
Looo
uniformly for f in any finite interval of the positive
axis R}

It is clear that (1.15) is insufficient for the proof
of the convergence of partition functions ZB[HL(AN)] to
7,U(AM)]. But in the next section we will show that
(1.15) and some properties of the sequence {H L(AN ¥ oal-
low us to prove the convergence of fexp(-SHp)} in the
trace-class topology.

2. CONVERGENCE THEOREM FOR PARTITION
FUNCTIONS 7.5, (AM)]

To treat the quantum statistical mechanics in a boun-
ded region A CRY of an arbitrary shape it will be very
useful

Proposition 2.1. (Weyl’s min-max principle, see, e.g.,
Ruelle / 3/ ). Let A be a self-adjoint operator bounded
from below. Let

po(A) = i Sup W, Ag) L. (2.1)
n M Y MCQ (A)
dim M =n HLJIH:I



Then either (a) is the n -th eigenvalue from the
bottom of the spectrum «(A) (counting multiplicity) or
(b) o = info NURGYE where o (A= o Aoy (A s
here o, (A) is the discrete part of the spectrum a(A) .

In partlcular 0. ..A)=¢ if and only if lim po (A) = o,

n 300

Now we recall the definition of trace-class operators
a,.

Definition 2.1. (see, e.g., Reed and Simon /4/ ). Let
B(H) be the space of all bounded operators ona separable
Hilbert space . The Banachspace @, C$H) of compact
operators with finite  [|.||, -norm:

M2

HAI " ]Ak T, A, (2.2)

I

where the Ay denote the non-zero repeated singular
values of A (i.e., the non-zero eigenvaluesof |A|= /A* A),
is called the trace class and ||. Hl is the trace-norm.

In particular for any positive self-adjoint operator
Ac(

oo o]

IIAIL, = Tr A :—:kZEI (W, A ) =n:21 (M), (2.3)

where iy, } is any orthonormal system in H and
tup (A} are eigenvalues of A (counting multiplicity).
These preliminaries allow us to prove the following state-
ment which defines statistical mechanics of the system
under consideration (see section 1 and /1/ ).

Lemma 2.1. Let ACR”Y be a bounded region of an
arbitrary shape and Uy be a highly singular N-par-
ticle interaction corresponding to ”point” hard core
particles (see section 1/!/ ). Hamiltonian H{AV) of the
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system.is defined as Friedrichs extension of the algebraic
sum H, + Uy (see/1/ ), then

(i) the spectrum o(H) is purely discrete,

(ii) for B>0 exp(—,BH)GGI ,

(iii) the partition function Zﬁ[ll(/\ ="Tr exp[—/ﬂl(\N)]
is nondecreasing for A, i.e.,

Zﬁ[H(AN)l < [H(Aﬁ] if ACA”. (2.4)

Proof. (i) ThHe N -particle interaction LN (x] ,eees xy) fOT
highly singular two-body potentials with ”point” hard
core, acceptable in statistical mechanics, is known to be
at least semibounded from below (see/!/ and section 3):

U x,ec0n > =« for vi(x ,
i N 1

ree s X < /’N . 2.5
N ’XN) \ (2.5)

Therefore for Vg <Dl ) ~B(U)

N
Wyl = (g, “ ¥) 4 (Y, U (//) > h [l — uly, ¢

or for \'L/JL—Q(h)

mlyl b 1o) - a (0, 0). (2.6)

So, from the Weyl’s min-max principle (Proposition 2.1)
N N
py THAT)) > (H (A = (2.7)

Let us now consider a cube \ cRYand AC \+It is easy

to check that in this case the spectrum o (U (A} Ny s

purely discrete and lim p (H, (AN 1) = = .Thus the same is
1 500

true for the Hamiltonian H (Ali) (see (2.7)). Moreover, it

is clear that for ACA, the Hilbert space H(A") is in

a natural way imbedded into H(AY), so if ¢ CDHAY) it

1"



is also in DH (AT)). From here and Weyl’s min-max
principle (Proposition 2.1), we have

.

p M (M) >p HAM), (2.8)

hence lim p, H(A™) ==, i.e., the spectrum oH(AY) is
00

purely discrete.

(ii) Straightforward calculations show that for the cube
ALCRY expl-pHo(ANI €@, hence expl-BH (AN < | (see
(2.7)). From inequality (2.8) it follows that the same
is true for expl-BH(AV)) i.e., for >0 exp(-BiDcE. There-
fore (see Definition 2.1)

N g w

ZB[H(AN = Trexp [-BIHAD = X exp (-, H'nl. (2.9
n=

(iii) Let us consider ACA’ then from the discussion of

point (i) it follows

g (LAY Y > HAMY,

thus inequality (2.4) is an immediate consequence of
(2.9). This completes the proof.

Corollary 2.1. The cut-off in the singular interaction
Uy (see (1.1)) does not change its semiboundedness
property (2.5): hence

Ul]\;(xl,...,xN)E— a , V(xl ,...,xN)G /\N .
Therefore the self-adjoint cut-off Hamiltonians H, (W)=
—H, (V) U (see Section 1):

(i) have a purely discrete spectrum,

(i) for B>0 expl-pH (A =),

(iii) Z [HL(AN)]=Tr exp[—ﬁllL(;\N)] is a nondecreasing
function of A.

12

Lemma 2.2.If L <L’then for the corresponding trace-
class norms:

llexp AL DI < 1l exp (81 ] (2.10)

Proof. From corollary 2.1 for L<L’ we get

N N
Hp (A7) < Hp .(AY), D@ ) =D, ),

then from Weyl’s min-max principle (Proposition 4.1)
’o (HL) Su (HL . (2.11)

This, together with (2.9), proves inequality (2.10).
Now we prove an important auxiliary statement,
required for the proof of the main result of this section,

i.e., convergence of partition functions ZB[HL (AN to
Z g[H(AN .

f
Lemma 23.Let {A | and A be trace-class operators
with w-~1lim A =A. If the sequence of norms H]AnHl i

n-»oo

decreases monotonously together with {|[A - A(r‘,” I § for
an arbitrary 4> 1 (where AdY_p A P and P, is a fi-

- n d)d n d d(d)
nite-dimensional projector: Ko Py X, dim % = 4 ),
then

?

Bl <lim AL = A (2.12)

—00

Proof Every operator from (il can be approximated
in the trace-class topology by finite-rank operators.
Hence for ve >0, we can find such d(), that for d>d()

A =AW ) < and [|A -AD [} <, (2.13)

13



v
—

-Hence estimation (2.13) is valid for yn >
A - Al e, (2.14)
n n 1
Consider now ||A - A |{,, then
o ) (d) (d}
' A—A“H] P A-ADP Hy+ A=A ]|]+HA“—An H] . (2.15)

But on the finite-dimensional space KL P, H all ope-
rator topologies are known to be equivalent. Therefore,
for ,, large enough:

1P (A = AP 1] <c.

This estimate together with (2.13)-(2.15) proves the
lemma.

Theorem 2.1. Let HI‘ (AN)% be a sequence of cut-off
Hamiltonians (see section 1), then for each >0

HH] ~lim exp (—/ﬂll) = exp (-BH). (2.16)

I.50c

Proof. Let us verify the conditions of Lemma 2.3:

(a) from Corollary 1.4. (1.15) w-lim exp(-ﬁlll)sexp(—ﬂ{)
for 8> 0, o e ’

(b) for y1I. and >0 exp(—/j”]‘)gdl (see Corollary
2.1) and also exp(-gll)c (; (see Lemma 2.1.);

(c¢) the sequence of the tarce-norms f{||exp SR
monotonously decreases when the cutoff parameter L
increases to infinity (see Lemma 2.2);

(d) moreover, inequality (2.11) for single eigenvalues
of Hamiltonians 1 (AN) and Il ,(A\Y) (for L <L") shows
that

14

5 expl-fp M < =
n=d+I " Lo~ o an
or (see (2.9) and Definition 2.1):

Hexp (_ﬁHL’)—P:j exp (_BHL’)F:j HlfH exp (—ﬁHL)—Pd exp (—ﬁIIL)Pd | .

exp [—B/Ln H L)J .

Therefore the sequence lexp(-SH )} satisfies all condi-
tions of Lemma 2.3. Hence (2.16) is valid in the trace-norm
topology.

Corollary 2.2. The 'Ir(-) is known to be continuous in
the trace-norm topology, thus for partition functions
. N - N
/Aﬂ[llll(/\ MW T (‘\[)[-—/3“]‘(/\ l
and each (8> 0.

. N , N
im /‘/3[H],(A M = /A/gIH A (2.17)

Iﬁ»w
The same is obviously true for the free energies I<l -

TR 2yl

3. CUT-OFF PROCEDURE AND STABILITY CONDITION,
LENNARD-JONES POTENTIAL

In this section we discuss a purely thermodynamic
problem which one immediately faces with if a cut-off
procedure is introduced. As was pointed out in /1/ to
ensure the correct thermodynamic behaviour (absence
of collapse) the Hamiltonian II(\¥) must be stable
(Ruelle /3/ )

H(AY) > = BN for B>0 and VN> 1. (3.1)

For highly singular two-body potentials ®(x) this means
that the N -particle interaction Uy(xy,...,xy) is not

15



only semibounded from below (see sections 1) but satis-
fies the stability condition in the sense of Ruelle /3/.

)

Uy(x) e x J>=BN for ¥NZ1, Vix..oox)e AN (3.2)

and fixed B> 0.
The cut-off procedure (see (1.1) leads to the following

representation of the stable interaction Un(x g, o, N
) L. TR

UN(xl,..., XN) = 1J N(xl,. Ly .\'N) i UN(xl...., xN) , (3.3)
here the interaction U;(\';, NN corresponds to a po-
sitive two-body potential ¢, (v)- ®(y) — &p (x). But now
it is an open question whether U{\}(xl,,.,,xN) is stable,
at least for cut-off parameters large enough (compare
Ruelle %" ), If so, then we can add to the statement

of Theorem 2.1 that the sequence of cut-off Hamiltonians
lll'(AN) in (2.17), (2.18) corresponds to the stable inter-

actions U:;(xl,...,xN) for 1. large enough.

We can verify this for the case of the widely-used
Lennard-Jones potentials (12-6) in three-dimensional
space

D) - AR (A2 (2% E>0, a> 0. (3.4)
Pxi x|

This potential is highly singular and repulsive at the
origin and regular out of it. ;I‘hus it obviously satisfies
all conditions of Theorem 2.1/ and Theorems 1.1,2.1,
therefore for this potential the convergence (2.17), (2.18)
takes place. At last, potential (3.4) is stable in Ruelle
sense (3.2) (see’/* and Theorem 3.1). It can be proved
that the cut-off Lennard-Jones potentials ¢ () (see
(1.1) and (3.4)) for v=3 and L large enough are stable
too.

16

Propos.ition 3.1. (Ruelle /3/ ). Let two-body potential
®(x) = ®(x{)  be a continuous and positive-type functions,
ie,d(x<L &) and its Fourier transform ®(q) > 0,
then such a potential is stable if @(0)> 0,

Corollary 3.1. Lettwo-body potential & (x) = ®, {(x) + <D2 (x),
where ®,(x)>0 and ¢,(x) be the same as in Proposi-
tion 3.1 then ¢(x) is stable.

Theorem 3.1. If ®(x) is a Lennard-Jones potential (5.4)
in R3, then the cut-off potential @, (x) defined as in
section 1 (1.1) is stable for L large enough.

Proof. Let us construct an auxiliary function:

'(12 6 ‘d2 6
P (V) = 4B ) - ( ) 1 (3.5)
2 +$2aZ }x!2+ §2a"

then a straight forward calculation shows that for v =3 and
0<&2 2 -1

¢ (x) = P(x) - (D_(x) > 0. (3.6)

A
v

The function ¢ _(x) (3.5) is continuous and bounded from
above, so we can chose the cut-off parameter 1. in such
a way that L > @ (0),then

(DL(X)_> ¢ (x). 3.7

If one represents ®_(x) as (see Ruelle /5/ )

2 — 2
O (x) = 4E[(——2 )3 Y2 (-2 % &
lxl2+§2a2 1x|2+f2a2
2 _ 2 _ 2
S CP A Y S LU S —
X%+ &%’ Ix %+ ¢%a FREYES



then one can show, that ®_(x) is a positive-type func-
tion for =3 and O<§2<\3/—2——1.Theref0re the two-body
potential ¢_(x) is stable (Propositic‘m 5.1). The same
is obviously true for &;(x» (see (3.7)) if L > (0).
This completes the proof.

Theorem 3.1 completes the discussion of the main

result of this paper (see Theorem 2.1 and Corollary 2.2).
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