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1. INTRODUCTION 

It was demonstrated in a number of works /1-1/ that 
the energy density formalism /EDF 1 yields satisfactory 
results for the basic bulk properties of nuclei. Recently 
the EDF was applied to the determination of the ion-ion 
interaction in the sudden collision approximation and the 
study of nuclear. properties away from the stability line. 
The methods developed in/ 1- V give numerical solution 
for the nuclear density distribution through a system of 
differential equations. For lack of an analytic expression 
for the density distribution one faces certain difficulties 
and is practically involved in time- consuming computa­
tions. Furthermore Hartree-Fock calculations and experi­
ments on electron scattering on nuclei favour Fermi type 
distribution of the nucleons. We., naturally, come to the 
question whether it is possible to make the EDF compatible 
with the well known Fermi density distribution p v , the 
latter is in good agreement with the experimental data. 
The present work gives a positive answer to that problem. 

A short survey of the EDF and a formulation of the 
problem are carrietl out in section 2. The method of the 
determination of the basic coefficients that enter the 
energy functional is given in section 3. The obtained nume­
rical results about the binding energies and the equilibrium 
parameters of the symmetrized Fermi density distribu­
tion of a wide range of nuclei are presented and discussed 
in section 4. 
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2. THE ENERGY DENSITY 

According to Kahn and coworkers' theorem/4/ the 
ground state energy of a system of Fermi particles can 
be written as a functional of the local density. 

E = J~( p) d T • (1) 

Furthermore the expression for E is stationary with 
respect to variations of the density p. ~ ( p) has been 
specified in/1/ : 

2 
$:' h 3 2 2/3 1 1 5/3 
(9 ( p) = 0. 3 - (- 7T ) ( 1- -) -r ( 1 + a ) + 

5/3 
+( 1- a) 

M 2 A 2 

5/3 l 
p +pV(p,a)+Tepp <llc-

2 2 2 
2 4/3 h TJ 2 2 h (V p) 

-0.7386 e p + -- ( 1 - k a ) (y p) + -- --
P 8M 72M p 

(2) 

where 
2 2 4/3 2 5/3 

V(p,a)=hl(1+ a1a )p+b2(l+a~ )p +h3(1+ a3a )p ,(3) 

and 
p=pn+pp,fpndr =N, fppdr =Z, a= Pn_~_~P 

p ' 

p are the neutron and proton distributions, respectively, 
a~~ the Coulomb potential generated by p in (2) and (3). 
The choice of the basic coefficients b i arld ai in (3) de­
pends on the nuclear matter saturation properties, the 
latter being determined by the particular type of nucleon­
nucleon interaction. Obviously, the hi and ai values 
deduced on the basis of nuclear matter calculations by 
Brueckner et al/I ,2/, contain an amount of uncertainties. 
So it is quite reasonable to determine the hi and a i coeffi­
cients by comparison of bulk properties calculations about 
definite nuclei of known nucleon distribution with the 
experimental data. 
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For the purpose it is necessary to minimize the 
functional (1) with respect to the par.ameters R and b of 
the symmetrized Fermi distribution /5/ 

l 1 
p (r) =p (-----+ -1), 

F 0 r-R -r-R (4) 

where 
le d r - A . 

b 
1 + e 1 + e 

b 

The b i coefficients are the consequent solutions of 
the following system of linear algebraic equations: 

E = E 
exp ' 

aE 
--- = 0' a R (5) 

_rJE =0 
a h 

R and b which enter (5) are the experimentally deduced 
parameters of the density distribution/51. 

The a i coefficients are determined through an analo­
gous to (5) system for the a o4 0 case. The analysis of 
the solutions to the above mentioned system for certain 
selected nuclei gives the optimal set of basic coefficients 
b i and ai . Thus, the functional density (2) is fully deter­
mined and it becomes possible to look for the binding 
energy and the equilibrium parameters of the density 
distribution for any given nucleus. 

3. PARAMETER SEARCH AND APPROXIMATIONS 

A simplifying assumption about the proportionality 
between the neutron and proton density distributions is 
employed in the present work. The coefficients are found 
by means of (5) in the case of 4°Ca for which a= 0 . The 
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obtained sets of b i values are used in search for the 
binding energy and equilibrium density parameters of 
1to . The following set of values: h1 = -'187 .7, b 2 = 1337, 
b

3 
~ -627.1 is in the best agreement with the experimentally 

found values of the binding energies, half-value radii and 
diffuseness parameters of 160 and 40 Ca . These results 
are obtained using a value of TJ equal to 13 (k = 2.15) the 
surface correction term in (2) which agrees with the 
estimates of /1-3/ . 

The Coulomb energy entering (1) is calculated by the 
following approximate formula/6/ : 

2 

E = l_ ~~ [ 1 + l 8. 03 ( .!:_ ) 3 - '}_ rr 4 ( _!>_ } 4 l -
Coul 5 Rc R 8 R 

3 2/3 e 2 Z 4/3 b b 2 
-3(--) -------- [ 1-1.336- + 7.127 (--) 

16 IT R R R c 

-18.21 (..!2...} + 83.406(!L)
1 

l ' 
R R 

(6) 

where 

R" = R r 1 + 2_ IT 2 ( J2. l 2 _ -~ "~ ( ..E. l 1 1 
6 R 72 R 

(7) 

and R , b are the parameters of the symmetrized Fermi 
density distribution. 

The determination of the binding energy, in such a way, 
leads to a minimization of the functional (2) with respect 
to the two parameters R and b . It is interesting to juxta­
pose the saturation curve for a = 0 corresponding to the 
set of values found in the presentpaperand the respective 
result given by Brueckner et al./2/. This juxtaposition is 
clearly seen in Fig. 1 where our saturation curve yields 
greater value of the binding energy per nuclei 
(, -18.8 MeV) and greater value of the equilibrium Fermi 
momentum ("' 1.54 p-1 or p

0 
"' 0.24 p-3 ). The stiffness 

parameter deduced here is of the order of magnitude of 
280 which differs substantially from the result of Brueck­
ner et al. I 1/ but is very close to the estimate of Myers 
and Swiatecki/7 I. 
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The method of determination of the a i set of values ' 
is analogbus to that employed in the b i case. The unpro­
portionality between the proton and neutron density dis­
tributions is effectively taken into account through a mo­
dification of R c ( R c .... 0.92 R c) in- the expression for the 
Coulomb energy (6). Naturally one should expect better 
results when considering this unproportionality in a more 
precise manner. The following a i values are obtained: 

a1 = 0.3118, a2 = 0.377, a3 = -0.8297 . 

4. RESULTS AND DISCUSSION 

The functional (2) specified according to section 2 is 
made use of in computing the values of the binding energies 
and density distribution parameters for a number of 
nuclei. Table 1 gives the binding energies for spherical 
nuclei from 16 o to 20IJ>b . One can see that the difference 
between the experimental and theoretical values is not 
greater than 0.1 MeV per nucleon for all nuclei under 
consideration with the exception of 16 0 where the error 
amounts to 0.5 MeV per nucleon. Table 2gives the results 
about the binding energies of nuclei where the number of 
protons and neutrons differs from the magic numbers. 
The agreement with the experiment is again within the 
same bounds. There is a certain discrepancy in 12C and 
238U where the inclusion of deformation effects seems 

essential. The values of the half-radii, rms radii,diffu­
seness parameters for the considered nuclei are reported 
in Table 3. It is clear that the half-radii are in good agree­
ment with experiment, while we get systematically lower 
values of about 15% on the average for the diffuseness pa­
rameter. This difference can be attributed to factors of 
a different origin. On the one hand, that is the Thomas­
Fermi approximation for the kinetic energy and the cha­
racter of the surface correction term which influences 
strongly the resulting value of the diffuseness parameter. 
On the other hand, it can be the type of a two parameter 
Fermi density distribution employed in the present pa­
per. 
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Table 1 
Experimental and present results for the bindingenergi.es 
of some sPherical nuclei. 

Nucleus Experiment Pre sent work 
----

160 127.6 12 0. 4 
4oca 342.1 342.2 
48Ca 416.0 413.8 
56Ni 484.0 487.4 90 783.9 787.3 ll6Zr 

l4o 8n 988.7 996.6 
208Ce 1172.7 1175.0 

Pb 1636.6 1618.0 

Table 2 
The same as Table 1. The nuclei are not necessarily 
sPherical. 
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Nucleus 

12 
24c 
28Mg 
32 Si 

56
8 

58 Fe 
6oNi 
66Ni 

238Zn u 

Experiment 

92.2 
198.3 
236.5 
271.8 
4 92.3 
5 06. 5 
526.9 
578.2 

1801.7 

Pre sent work 

85.3 
193.4 
230.6 
267.9 
48 9. 6 
501.5 
524.8 
58 0. 4 

1731.2 

Table 3 
Half- value and rms radii, and surface diffuseness para­
meters in F. Experimental values are takenfromRfs. /1,2/ 

l:jalf-radius Rrns radius Diff,parameter 
Nucleus 

EXJ2, Prea.work EXJ2• Pres.work EXJ2. Pres,work 

12c 
2.214 2,5 2,496 2,487 0,488 0.42 

160 
2.562 2,7 2,71 2,65 0.497 0.44 

241jg 2,9 34 3,05 3,105 2.92 0,569 0,46 

28Si 3,085 3,2 3.175 3. 01 0,563 0,46 

325 3.255 3,35 3,37 3.11 0.6 0,46 

40Ca 3,556 3,6 3,493 3.29 0,578 0,47 

48Ca 3.74 3.91 3.49 3,496 0,52 0,48 

56 Fe 4,054 4.01 3,853 3,582 0.6 0.48 

56Ni 4.0 3,58 0. 48 

58Ni 4,153 4.07 3,844 3,604 0.566 0.47 

60Ni 4.11 3,82 3,649 0,48 

66Zn 4.2 4,28 4,081 3,747 0,663 0.48 

90Zr 4,76 4,265 4,096 0.48 

116 Sn 5. 486 5.21 4,55 4. 443 0,56 0,5 

14 oce 5.67 4,741 0,49 

208Pb 
6,557 6.63 5,427 5,449 0,515 0,49 

23Bu 
6,8 5,573 0,49 

--
0 
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~ I -20 ().1 o.i5 0.'2.0 o.~f-~ 

Fig. 1. Nuclear matter saturation curves for a = 0 . Full 
line corresponds to OJ,lr results. Dashed line is the result 
of Brueckner et al./21. 
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Fig. 2. Binding energies for the isobare A ~ 48. Full 
line corresponds to our results. Dashed line is the experi­
mental sequence. 
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Fig. 5. The same as Fig. 1 for A =208. 
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Figs. 2-5 show the binding energies of nuclei for A =48, 
116, 140, 208 isobare sequences. The position of the mini­
mum of the symmetry energy comes out at therightvalue 
of a. 

The results obtained in the present paper show that 
the proposed procedure, rather simple and convenient 
for practical computation, may prove suitable in the de­
termination of the ion-ion interaction, and in different 
applications where realistic symmetrized Fermi type dis­
tribution should be employed. 
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