
f - s 
..tt /w 

E4 - 9448 

/601 1;,-~ 
v.J.Melnikov, B.V.Rudjak, I.B.Ushakov, 
B.N .Zakh ariev 

A MODEL OF THE INVERSE 
SCATTERING PROBLEM 
IN NUCLEAR PHYSICS 

(A finite-difference approximation 
for the Schroedinger equation) 

1976 



1-

L 

E4- 9448 

V .N .Melnikov, B. V .Rudjak, I.B.Ushakov, 
B.N.Zakhariev 

A MODEL OF THE INVERSE 
SCATTERING PROBLEM l 

IN NUCLEAR PHYSICS 

(A finite-difference approximation 
for the Schroedinger equal ion) 

Submitted to Rfll 



L 

1. INTRODUCTION 

Recently/I,2/ the inverse problem was formulated in 
R -matrix scattering theory for finite range potentials 
and potentials which are not known inside a bounded 
region. In comparison with the general case the inverse 
problem is sufficiently simplified in R -matrix theory. 
As the initial information for reconstruction of interaction 
the pure discrete set of scattering parameters ( R -mat
rix resonance positions EA and their reduced widths 
Y,\ ) is then exploited instead of S -matrix which is a 
continuous function of energy. 

In the finite-difference approximation for the Schroe
dinger equation an additional simplification of the recon
struction procedure for potential is achieved /3/ . The 
number of spectral points EA becomes finite (,.\ = 1, ... N ) 
like the number of finite-difference intervals into which 
the region of interaction is divided. The integral equations 
of the inverse problem are then transformed into a sys
tem of the finite number of algebraic equations. So some 
algebraic analog of the Gelfand-Levitan-Marchenko theory 
(see, for example /4, 5, 6/) is obtained. 

In this paper a method of determining the interaction 
which does not require solution even of this system of 
algebraic equations is given. A potential is calculated 
in a sequence of points by a simple recurrent relation 
(see (9), (10)). As in /3/ we get here the exact inverse 
problem in the finite-difference R -matrix theory: from 
parameters I EA , y ..\ I which correspond to a definite 

1- potential V ( n ) the same values of V ( n ) are reconstruc
ted. This fact and the extreme simplicity of the formalism 
make the method useful as a model for investigation of 
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some complicated problems of quantum theory. Thus, 
for example , we may hope to clarify the question about 
the "complete experiment" for different nuclear systems 
(determination of relations between scattering parame
ters). 

The class of problems to which the considered here 
approach corresponds, enlarges due to the generaliza
tion of this method to the cases of complex-valued po
tentials, multichannel systems, nonlocal interactions, 
equations with partial differences (many dimensions), the 
systems of many interacting particles. 

The num.erical calculation algorithm of this method is 
simple for programming and is suitable for realization 
by computer: the same formulae (9), (10) are used many 
times. 

By control numerical solution of the direct and corres
ponding inverse scattering problem for a set of arbitra
ry chosen potentials V(n),the difference.betweentheinitial 
and resulting values of potentials was about 10-4 % (for 
N ""10-20)*. 

2. DIRECT PROBLEM 

Before we shall describe the new reconstruction pro;_ 
cedure of interaction from scattering data IE,\ , y ,\ I we 
shall remind some points concerning the solution of the 
finite-difference Schroedinger eq.( h = m = 1 ) : 

l . i 2 
-2[u,\(n+l)-2u,\(nl+u,\(n-l)]/~ +V(n)u,\ (n)=E,\u,\(n), (1) 

where 1'1 is a finite-difference coordinate step. The 
potential V(n) is assumed to be of finite range 
"a" ( V(n ~ . .N=a/1'1)=0) or it is known for n?. N =a/ 1'1. 

Homogeneous boundary conditions, which are used 
for basic functions in the R -matrix scattering theory, 
are: 

*The calculation of several variants required about 
20 seconds (computer BESM-6). 
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u,\ (0)=0; u,\ (N+l)"" u,\ (N)(l+AB/ a). (2) 

Equations (1)-(2) give a system of N homogeneous algeb
raic equations for N unknown values of eigenfunctions 
u ,\ ( l) , u ,\ ( 2) ... u ,\ (N) on the interval 0 < n ~ N . 

This system has solutions at N energy eigenvalues 
E=E,\. 

The eigenfunctions u>. (n) are orthogonal to each other 
for E ,\ "'FA· and can be normalized according to th.e ortho
normality relation: 

N 

n:l 1'1 • ~u,\ (n) u,\. (n) = 8 A,\. • (3) 

They compose a complete set of functions determined 
at N points of interval 0< n::; N and obey the comple
teness relation (orthogonality with respect to the energy 
variable E>, ): 

N 
I u,(n)u, (m) =8 /A. 

A=l A A mn 

The parameters E,\ and u,\ (N) = Y>. v2a 
the R -matrix 

(4) 

determine 

N 2 
R(E)=I y,\ (5) 

,\ E,\- E 
which is connected with the scattering matrix S(E) /a, 7/. 

3. INVEI_lSE SCATTERING PROBLEM 

The inverse problem in R -matrix scattering theory 
is as follows: we have to find a potential V(n) , 0< n < N 
using as an input information the set of parameters 
IEA.,y>.l. _ 

Thus, we know EA, u.\ (Nh Y,\ y2a and u,\ (N+l)connec
ted with u,\ (N) according to (2), and the value V (N) (which 
is equal to zero, if the potential range is < a = N . A ). 
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Fixing in the Schroedinger equation (1) n = N we get 
the values of eigenfunctions in the first internal point, 
where the interaction is not known: 

2 ' 2 
u,\(N-1}=2A [V(N)-E,\+1/A ]u,\(N)-u,\(N+l). (6) 

Writing now eq. (1) for n = N -1 

-~[u (N)-2u (N-l)+u {N-2)]/l +V(N-l)u,\(N-l)=E,\u,\(N-1), 
2 ,\ ,\ ,\ (7) 

we get one equation for two unknown values u ,\ <N-2) and 
V (N -1) wm'ch is not sufficient to determine them. But, 
if we multiply both the sides of eq. (7) by u,\(N-D·Aand 
summarize them over ,\, using the orthogonality condi
tion ( 4), we get: 

N 2 l 
V(N-l)=AI E,\u,\(N-0--. (8) 

,\ = 1 t\2 

So, according to eqs. (6) and (8) u,\ (n) and V(n)atthe 
point n = N- 1 are determined (one step inside the region, 
where we look for the values of intaraction). Repeafing 
the same procedure in subsequent points, using 'recurrent 
relations 

( 2[ 1 ' u,\ n)= 2A V(n+O-E,\ + 7 Ju,\(n+l)-~,\ (n+2); (9) 

N 2 l 
V(n) =A I E,\ u,\ (n) - --:-2", (10) 

A=l A 

we get the solution of the inverse scattering problem. 
The results of control numerical calculations (for N = 10 ) 
are given in the table. For several arbitrary chosen po
tentials V(n) the sets IE,\, y ,\I were determined (solution 
of direct problem), and used as initial data for inverse 
problem. The reconstructed potentials V(n) lulveappeared 
to be very close to V(n). The calculations with double 
number of steps (N = a>) in the interval 0 <n· ~~a have 
given also a very good accordance of V ( n) f~md V (n) 

· The number of operations which are required for 
finding the potential in this method is proportional to N 2 • 
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If is much easier in comparison with the finite-difference 
(algebraic} analogofGelfand-Levitanprocedurein R-mat
rix scattering theory /3/ * , where this number is pro
portional to N4 • 

The proposed method can be modified in order to 
reconstruct potentials directly from scattering phase 
shifts, instead of R-matrix parameters EA, yA using 
a complete set of eigenfunctions dependent on the coor
dinate variable in the infinite interval 0< n < "" and not 
only in the region o < n "-N where we look for V(n). In the 
case of continuous coordinate such a complete set is 
formed of §Plution with the asymptotic behaviour 

IJI (x) ... ·v'!_ sin ( k x + 8 ( E) ) , 
E 11 

(11} 

where 8 (E) is the scattering phase shift. The complete
ness relation in this case is (if there are no bound states): 

00 

f. 1J1 E ( x) IJI E ( x ')dE = 8 ( x - x' ) • (12) 
0 

f- d 
For the finite-difference analog 'I' F. ( n) ot_!~e solution 
'I'E(x)(continuous spectrum of sojutions 'I' E (n) of 
eq. (l) has an upper bound E - 7 } we get: 

Emax f....d f....d 
max 11~ 

I 'PE (n) 'I'E (m)dE =8 /L'1 (13} 
0 mn 

instead of (12). 

* In paper/3/ the following corrections are to be done: 

tll(E,N)=v'28; yA=uA(N)/J'2a; K(n,n)= 1; q(m,n) + 

N l 
+I K(m,p)q(p,n)= 0 for m<n; V(n)=-2 [K(n+l,n)-
p=m+l 2~ 

-K(n,n-1)]; 'l'(E,N)=I(E,N)- S(E)O(E,N) 

and corresponding corrections in the matrix analog to 
these relations. 
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The orthonormalization relation (13} can be us'ed for 
reconstruction of potentials, which are not known at. n < N *. 

Recurrent relaqons (9), (10} are then replaced by 

f-d 2 1 f-d f-d 
'I'E (n)=2L'1(V(n+0-E+L'1

2
]'PE (n+l)-'I'E (n+2)(14) 

Emax f d 2 
V (n) = L'1 I E ( 'I' E- (n) ] d E 

0 

l 

l'\2 
(15) 

APPENDIX 

Some Possible Ways of Generalization 
of the Formalism 

I. Writing (1)-(10) in the matrix form, the inverse 
problem can be solved for multichannel processes in 
nuclear systems. A generalization of the finite-difference 
R -matrix formalism to the case of coupled-channels is 
made in/2,3/ ** . Here we give, for brevity, only re
current relations of type (9), (10) for a -components of 
eigenfunctions and elements of interaction matrix 

uaA(n)=2l ~ Vaa,(n+l)ua~(n+l)+2uaA (n+l)U-L'12 E~-
a 

-uaA (n+2); (16) 

N 
V . ( n) = L'1 I E Au A ( n) u 'A. ( n) 

aa · hi a a 

0 aa · 

\2 
(17) 

* The inverse problem can be solved using the func-
tions cp and ~ and the orthogonality of </>(E m) and 

; (E, n) (if m<n ) as functions dependent on E. ' 

** The problem of connection of partial reduced widths 
Yal corresponding to closed channels with scattering 

matrix elements remains here unsolved as in refs /2,3/ . 
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2. The case of complex value interaction distinguishes 
(in comparison with real potential cases) only in replacing 
the orthogonality property of functions uA by biorthogo
nality of sets of conjugate eigensolutionsl u A I, I uA I 

: (u~ (n))*uA (m}=~ uA (n)uA(m) =Omn/!'! 

instead of 

l u* (n)u, (m) = o /A. 
A A 1\ mn 
3. As an example of the multidimensional inverse prob

lem it is appropriate to consider the two dimensional case: 
reconstruct;ion of a potential V (n ,m) in the region n from 
the values EA and YAs -uA (s) where s denotes a point 
on the boundary of n. Instead of the Schroedinger 
equation in ordinary finite differences (1) we have here 
the equation in partial differences/5,8/ which connects 
the values of solutions in five neighbouring points on the 
plane: 

l -
2

!'!2 [ u A (n, m + 1) + u A (n + l, m} + u.\ (n, m -I} + u A (n -1, m ) -

- 4u A (n, m) J + V (n, m) u A (n, m) = 

=EAuA(n,m). (18) 

Eigenfunctions u A which satisfy the homogeneous 
boundary conditions (e.g., the constancy of the partial 
difference derivative on s ) form a complete set in n . 
The corresponding energy eigenvalues EA and uA ( s} 
(scattering parameters) determine the R -matrix 

y \ y \ • 
R . ( E} = l /\S /\S 

ss A EA - E 
(19) 

As an analog of (9), (10) there are the formulae which 
express uA (m,n} and V(m,n} at a point (m,n) inside the 
region of unknown interaction through the values EA and 
uA ( in four neighbouring points), which are determined 

at the preceding stage of solution of the problem. 
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The utilization of such recurrent relations of the 
finite-difference inverse problem permits one to get 
explicitly the mutual dependence of different scattering 
data in multidimensional case. Thus we have here a pos
sibility to understand one of the very difficult questions 
in quantum theory. For instance, it is easy to see that 
for the rectangular region it is enough to know the values 
YAs on one of its sides ( s ~ S 1 

) in order to determine 
uA in the whole n including the remaining part of the 

boundary ( yA .;,. s 1 ) by moving over the finite-diffe
rence net add taking into account the boundary conditions 
for uA *. 
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*The connection of scattering parameters can be 
useful for phase analyses, because it gives additional 
relations to determine from cross sections not only the 
moduli of scattering amplitudes but also their phases. 
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