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INTRODUCTION 

The expansion of unknown wave functions in terms of 
harmonic oscillator wave functions (HOWF) is one of the 
oldest and most widely used approximations in nuclear 
physics. The main attractive feature of such an approach 
is the simplicity of calculations due to 

- the simple form of the HOWF themselves; 
- the possibility of a direct analytical calculation 

of many integrals involving them; 
- the unique possibility of performing coordinate 

transformations on them in closed form using linear 
transformations in a finite dimensional function 
space (Talmi-Moshinsky-Smirnov coefficients). 

On the other hand the HOWF have certain well-known 
diadvantages, too, connected with their incorrect asymp
totic behaviour which, in the cases where the peripheral 
part of the wave function is important, either lead to 
incorrect results or necessitate taking into account 
a large number of terms in the expansion. The method 
proposed in this work is an attempt to avoid the above
mentioned difficulties still retaining the calculational 
simplicity of HOWF. 

DESCRIPTION OF THE METHOD 

We will be looking for the bound-state solutions of the 
Schrodinger-equation: 

(1) 

(the notations are obvious). Introducing a complete ortho-
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normal set of state-vectors I i > the usual way of solving 
(1) by expansion is to write 

N 
l'l'a>"'.I cC:Zii> 

1=0 I 
(2) 

a 
and the approximate energies E{N) and the coefficients 
c ~ are obtained as eigenvalues and eigenvectors of the 
NxN Hamiltonian matrix: 

H .. =<i1H 0 +VIj>, i,j=O, ... ,N. 
IJ 

(3) 

(In the followiftg we shall refer to this procedure as the 
wave function expansion (WFE) method). The WFE method 
corresponds to considering. the problem in a truncated 
function space spanned by the first N functions of the 
basis 1 i>. The truncation is complete in the sense that 
both operators H 0 and V are replaced by PH 0P and 
PVP ,respectively, where P is the projection operator 

onto the chosen subspace: 
N 

P=.I li><il. (4) 
1=0 

While the operator PVP can be thought of as the interac
tion operator of an auxiliary physical problem, PH0P does 
not correspond to the quantum-mechanical kinetic energy 
operator of any system. This is essentially the reason 
why the wave functions of the type (2) show unphysical 
behaviour in the regions, where the potential is negli
gible and the form of the true wave function is determined 
by the kinetic energy only. As is well known, in the asymp
totic region the true wave function must have an expo
nentially decaying shape, the decay rate depending on the 
energy eigenvalue, and a correct representation of such 
a shape over a wide range requires a great number of 
terms if functions, having adifferentasymptotic behaviour 
(e.g., HOWF), are used. To overcome this difficulty we 
propose to consider the Hamiltonian 

- N 
H=Ho+V=H 0 +PVP=H0 +I 1 i>V .. <il 

i,j=O IJ 
(5) 
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with V .. =< i IV 1 j > and to approximate the eigenvalues and 
IJ -eigenfunctions of H by those of H . This choice corres-

ponds to truncating the potential V in the same way as 
in (3) but leaving the kinetic energy Ho unchanged. The 
auxiliary problem defined by the Hamiltonian ii can be 
solved exactly using the familiar techniques developed 
for separable potentials - therefore we call this method 
the potential separable expansion (PSE) method. We 
rewrite the Schrodinger-equation 

(fa -H 0 -V)!Wa> =0 (6) 

in the form of the Lippman-Schwinger equation, appro
priate for the bound-state solution: 

IIJI >=Go(ta)VI'I'a>, 
a 

(7) 

where G 0 (z) =(z-1-1 0 )-I is the Green-operator of the 
non-interacting system. Using (5) eq. (7) can be put in 
the form 

- N -
I 'I' > =' G., ( t a ) I I i.> V .. < j I 'I' .> • (8) 

a i,j=O 1.1 a 

Multiplying of eq. (8) from the left bJ < k I l~ads to the 
following equation for the coefficients c~ ~< j I '~'a 

J 
N 
~ a -a 
.~ Mk.(f )c. =0 
J=O J J 

with 

N 
Mk.(z)~ok.- I Gk0 • (z)V .. , 

J J i=O I IJ 

where the obvious notation 

G ~j ( z) ,- < k I G 0 
( z) I i > 

has been used. 

(9) 

(10) 

(11) 

To solve the homogeneous eq. (9) for the coefficients 
cj first we have to find those values t a for which the 
determinant 1Mij(£a)t vanishes. These are the exact 
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eigenvalues of the Hamiltonian (5). Having (a eq. (9) and 
the normalization requirement uniquely define the coeffi
cients cr . It can be easiiy shown, that - excluding the 
case of pathologically strong potentials - the asymp~otic 
behaviour of the coordinate-space wave function <11'1'a > 
satisfies the relation 

__. - I (2m I( a I __. 
< r I 'I' > --+ A exp - v I r II (12) 

a lr"l-->oo a h2 

as it should be for physical solutions of problems with 
short-rang$ potentials. 

From computational point of view the PSE method 
involves essentially one new element as compared with 
the WFE method, the calculation of the matrix elements 
< i 1 G0 (z) lk >. This task is greatly simplified if the complete 
set of states I i > consists of harmonic oscillator states, 
since the operator G0 (z) is diagonal in the momentum re
presentation and the HOWF have identical forms both in the 
coordinate and momentum representation. Thus, the 
computation of the matrix elements is reduced to calcu
lation of a single integral involving two HOWF and the 

p2 -1 
propagator (z- --) and can be easily performed. 

2m 

There is another computa tiona! method used along 
with the PSE which is worth mentioning. The method is 
similar to that of a -factors known from the theory of 
applied Fourier-analysis * 11 . It is essentially a way 
to regularize (or to smooth) the oscillations (Gibbs phe
nomenon) which always arise when a smooth function 
is expanded in terms of a complete orthonormal set of 
functions and the expansion is truncated at a finite number 
of terms. Let us give a brief scatch of the method. We 
consider the expansion 

* The author acknowledges the assistance of I.Borbely, 
who pointed out the existence of this method and helped to 
apply it to the present problem. 
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t 

N 
f(x) ... fN(x) =I c. g

1 
(x), 

1=0 I 
(13) 

where g1 (x) form a complete orthonormal set: 

I g 1(x)g. (x)dx = 8 .. . (14) 
J IJ 

In this case the Fourier-coefficients c 1 are given by 

c 1 = I f(x)g 1(x)dx. (15) 

These coefficients ensure that for a given N fN(x) is 
the best approximation of f (x) (in the sense of the norm 
following from (14)). The oscillations in fN ( x) are 
connected with the poor convergence of the derivative 
series fN-(x) in which the high - i terms have a non
desirable increased role. The idea of the a -factor 
method consists in modifying the coefficients c 1 in such 
a way that the convergence of f N (x) should be improved 
at the price of certain loss in accuracy in the approxima
tion of the function itself. This can be achieved by dam
ping the higher order terms in the expansion using 
the a-factors as 

- (N) 
ci = ci a i 

N 
f (x) "' fN ( x) = I c. g. (x) . 

i=O I I 
(16) 

The factors a<~> should fulfill the requirements 
I 

O<a~N)<l· a(N)=l· a(N) =0 
- I - ' 0 , N+ I (17) 

otherwise their detailed i -dependence is arbitrary and 
is chosen to fit the actual problem best. In our case the 
a -factors enter the PSE method via eq. (5) which can be 
considered as a truncated double expansion of an operator 
on the basis I i >, the expansion coefficients being the Vii 
The modified eq. (5) should read as 

N . (N) (N) . 
V= I !t> a. V .. a. <JI· 

i,j=O I IJ J 

We have used for a (N) the form 
i 

(5a) 
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(N) 
a = 

i 

1 - exp [ _ ( a i - N-1_) l 
N+1 

1-exp(-a2 ) 

(18) 

with an "experimentally" determined value a=5. There
sult of using eq. (5a) instead of eq. (5) is a considerably 
greater stability of the results against the increase of 
N; both the energies and the wave functions tend towards 
their exact limits almost without oscillations. 

,_1 

NUMERICAL EXAMPLE 

In order to demonstrate the usefulness of the descri
bed method we considered the problem of single-particle 
bound states in a Woods-Saxon potential. The potential 
parameters were chosen as 

V(r) = -V
0

(1 + exp( r-~))-l 
a 

V 
0 

= 51.3 MeV ; a = 0.6829 fm 

1/3 R = 3.1426 fm ( =1.24 fm -16 ) 

(it resembles the shell-model potential of '\> ). There is 
a 1 s and 2 s bound state in this potential * with the 
binding energies: E 1 s = 31.1002 MeV; E 2s = 3.2084 MeV. 
The exact eigenvalues E i and wave-functions ¢~x ( r) 
of these states were obtained by careful numerical in
tegration of the radial Schrodinger equation. We compa
red the quality of reproduction of these exact quantities 
by the two methods as a function of the number of terms 
N in the expansions (2) and (5a). Following the usual 

*For the sake of simplicity we considered e = 0 states 
for the present test. 
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practice we tried to fix the oscillator parameter b from 
the requirement of the most rapid convergence, For the 
WFE method it turned out, as it was to be expected, 
that the optimal oscillator parameters for the strongly 
bound 1 s state and for the weekly bound 2 s state are 
strongly different (1.55 fm and 2.25 /m, respectively). 
In the PSE method, on the other hand, we were able to 
find one single value-( b = 1.35 fm) for which the conver
gence for both states was optimal. If in a calculation 
both s -states are needed,· their orthogonality is impor
tant and the use of different oscillator parameters in 
their expansion is not permissible. Therefore in the WFE 
case sometimes an intermediate b value has to be chosen. 
In our case the intermediate value is b = 1.90 fm and 
we included into results the calculations made with this 
value, too. The obtained results are shown in Tables 
1 and 2. In order to characterize the quality of the appro
ximate wave functions we calculated their overlaps 
f cpi ¢ ;x with the exact ones, and the quantities 

1'1=1- J¢i ·¢i =.Lf(¢i-¢i )2 
ex 2 ex 

are shown in the tables. 

CONCLUSION 

The results show that while for the strongly bound 
states the two methods can be applied equally well, in 
the case of a weekly bound state the superiority of the 
PSE method is evident. Another important point is, that 
if weakly and strongly bound states are needed simulta
neously in a certain problem, in the WFE method an in
termediate non optimal oscillator parameter must be 
chosen strongly reducing the convergence rate, while 
in the PSE method optimal convergence can be achieved 
for both states with the same parameter. This feature 
of the PSE may be due to the fact that in this case the 
object of expansion is not one or another physical state 
but rather the potential itself - which is the same for 
all states. In general we can say, that in the cases when 
the long-distance behaviour of the wave function is impor-
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Table 1 

Results for the ls state. The exact binding energy is E 1 ~~31.1002 MeV. 
The non-filled coloumns mean, that the values do not change any more with 

I' FE b c !.55 bm I'FE b -!.90fm l PSE b -1.35 fm 

E 1 ~,MeV \ .10 6 E 1,, MeV \. 10 6 
E I~ , MeV :\. 106 

)1.0788 191 )1.0476 496 )1.)456 440465 
)1.0791 17J Jl.0861 81 J1.1J79 J6 
)1.0997 4 )1.0911 49 )1.09, 6 
31.0999 2 31.0966 16 )1.0986 1 
31.1000 1 )1.0996 J 31.1001 (.5 
)1.1002 <.5 31.1001 (.5 )1.1.002 (.5 

31.1001 (.5 
31.1001 ~.5 

J1.1Q01 (.5 
)1.1002 (.5 

1.....------- ___ ~.... ___ 
----··'--·----

Table 2 

Results for the 2s state. The exact binding energy is: E 2~3.2084 MeV 

N 
WFE b=l.25fm 'I FE b =L90fm PSE b = 1.35 fm 

Ez., MeV A. 106 Ez.,, MeV A -10 6 Ez 8 , MeV A -10 6 

1 .9966 5)177 2.1578 37522 - -
2 1.4268 42168 2.1759 40475 4.1457 850 
) 2.9681 4108 J.0256 12625 ).4128 278 
4 ).0620 5008 ).0909 7798 J.16J2 27 

' J.l949 620 J.1J01 485) ).20.5.5 2 
6 ).1949 640 3.1772 2)28 J.212J 1 

7 ).1990 )26 J.18J4 1664 J.207J £ • .5 
8 3.20)9 99 3.1968 879 J.2080 < • .5 
9 ).2040 113 3.2001 572 J.208J 

<. ·' 10 ).2072 17 J.20)J J5J J.208J ( .5 
11 3.2072 22 ).2052 21) ).2084 (.5 
12 ).2082 14 ).2061 1J4 
1) ).2082 15 ).2070 74 
14 ).208) 26 ).2074 48 
15 ).2084 29 ).2078 20 

1..---- ._ ____ ----- _______ ..:.__ ----- ------



tant (weakly-bound states, reactions involving the nuclear 
periphery, asymptotic normalization constants) the PSE 
is much better suited to the problem then the WFE method. 
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