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Introduction 

Study of properties of one-dimensional models bas 
become an important line in investigation of strong Lang­
muir•(l') and wbistler(w) turbulence. Thereexist/1- 5 7 
SOliton solutions in plane Oll~-dimensional geometry: It 
was pointed out in papers / 5-B/ that linear description 
of plasma density perturbations is not available in the 
range of near-sonic soliton velocities, M ... I , and 
some analytical solutions (subsonic two-humped Langmuir 
solitons) have been found / 7,8/ . An important result is 
that small corrections due to nonlinearity and dispersion 
of ion-sound ( s) perturbations turn out to be able to 
reconstruct solution for H.F. field. 

We shall consider further some aspects of the problem, 
namely, stability of these peculiar Os) solitons, and the 
dynamics of their interactions not only with each other, 
but with s -solitons and with rarefaction s -waves. 
Besides, two-humped ("camel") whistler solitons having 
positive density perturbation, will be described. 

1. Dynamics of Is -solitons 

The most rigorous description of nonlinearity and 
dispersion of s -waves, which are driven by H.F. field 
E of I -oscillations, is accomplished in dimeJ}sionless 
variables of papers /2-5/ by the set of hydrodynamics 
equations and Poisson equation: 
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Here v is the dimensionless ion velocity in terms of 

----,--J 
v =yT/m. , T=T + T. s 1 e 1 

¢ is the potential of 
4 m 

L.F. perturbations in terms of T 1 e , t =a _e 
m. 

1 

W = I E 1
2 

, n , n e are the ion and electron densities 
averaged over I -oscillation period in terms of unper­
turbed plasma density n0 

In this notation an equation for E ( x, t) takes the 
~rm · 

2 
i ~ + a E =t-1 (n e - 1) E. 

at ax2 
(1.4) 

From the set (1.1 )-(1.3), considering L. F .nonlinearity 
and dispersion effect due to deviation from quasi-neutrali­
ty in L.F. motions as small corrections, one can obtain 
an equation for velocity 

v - v + €3 v - d v2 ) =tW t + d v W ) • (1.5) 
XX tt XXtt Xt X X X 

The second term in the right-hand side can be neglected 
in comparison with the first one, because of smallness 
of v in comparison with unity. 

For density perturbations 8n = f-1 (n -1 ) in Is -so­
litons moving in an arbitrary direction of x -axis, an 
approximate equation takes the form/6,9/. 

( 2 l 8n - 8n - l 8n ) - -8n = W 
t t X X XX 3 XXtt XX 

(1.6) 

Analytical solutions of papers /7 ,a/ 
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i}, 

-~ M 
E = v 48£ A • th b e . sech b e . exp ( i - X - i 0 t) ' 

2 

2 . 3 -1 2 . 
8n=6Asech be, {=x-Mt, A=-f (M -1) (1.7) 

20 ' 

h = y -A 

with accuracy up to the terms corresponding to correc­
tions of more high orders, are soliton solutions of sets 
(1.1)-(1.4) or (1.4), (1.6). 

Stability of soliton solution (1.7) was verified by 
numerical experiment at M """ 0.95 on the basis of sets 
(1.4), (1.6). Solution (1.7), being concerved with high 
accuracy, propagates up to distances many times longer 
than the size of soliton. Increase of density pit by the 
factor of 1.2 first leads to the increase of both IE 12 

-
maxima and to the transform of some part of 1 -plasmons 
into the front hump (acceleration of I -plasmons); then 
at t :: 30 both maxima of I E 1 2 become again equal. 
Gradually density pit, being adjusted with the number of 
I -plasmons in initial packet, decreases, apparenUy, 

forming a soliton with the amplitude and velocity defined 
by the value of integral s1 =fWd x stored in it. Forma­
tion is accompanied by the arising of sign-alternating 
train of s -waves behind soliton, which run in the di­
rection opposite to that of I -packet. The distance at 
which Is -soliton is formed is much more than the 
soliton size. 

When the initial density pit is equal to 80 per cent of 
that of Is -soliton, 1 E 1 2 -maxima first decrease and 
the bacf hump is enriched with I -plasmons. Note, 
that lEI -minimum <I El 2 = 0) corresponds to maxi­
mum depth of the density pit. 

Here let us consider the counter collision of two iden­
tical Is -solitons (1.7) at M=0.95, solving the set(l.1)-(1.4) 
via computer (see Fig. 1). Such an interaction turns out 
to be inelastic like that in nonresonance region, when 
M = I - !). , A~ 1· . Nonstationary solution is always 
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Fig. 1. Interaction of the counter moving 
M = 0.95. 

Is -solitons at 
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four-humped. Shortly after solitons contact each other 
the exchange of energy and momentum between plasmons 
occurs; the inside humps lose some part of plasmons and 
the outside ones are enriched py them; finally, there 
takes place the throwing-out of super'sonic I -plasmons. 
A share of these accelerated supersonic plasmons is con­
siderable - about 20 per cent. The main part qf I -plas­
mons groups again in two diveJ:ging two-humped packets, 
which seem to turn into the less-amplitude Is -solitons . 

The set of equations (1.1)-(1.4) allows us to consider 
head-on collisions between differe~t type solitons, i.e., 
ion-sound and near-sonic (M= 0.95) Langmuir ones. At 
s-soliton amplitude As = -0.2Af (Af - amplitude of 
density perturbation of ls -soliton) their interaction is 
rather small. But yet at As =-0.4Af s-soliton knocks 
about 40 per cent of I -plasmons· out off Is -soliton when 
going through the latter; and this part of plasmons gets · 
supersonic velocities (see Fig. Z). Therefore, one can 
see again the essential acceleration of I -plasmons . 

Results of interaction between Is -soliton and rarefac­
tion s -wave with A!'l = 0.4Af are less considerable. Only 
collision with rarefaction s -wave A = At leads to 
a noticeable inelasticity (see Fig. 3). About one fourth of 
I -plasmon is concentrated in supersonic throwing-out. 
Oscillatory structure of density behind rarefaction ·s -wave 
can be explained mainly by the destroying of thfs wave 
due to nonlinearity and dispersion of s "':'waves. 

We should underline here that the results ofinteraction 
of ls -solitons with nonlinear compression and rarefaction 
s -waves differ qualitatively from those of interaction 

between · nonresonance I -solitons and linear s -im­
pulses/3/. 

Z. Near-sonic Whistler Solitons 

To describe density perturbation occuring in near­
sonic whistler solitons (ws) with M=l+~ ,0<~«1 , 
one should, as it was done previously, take into account 
corrections because of dispersion and nonlinearity of 
s -waves. It yields a nonhomogeneous 1 equation: 
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Fig. Z. Collision of Is -soliton (M = 0.95) with s -soliton. 
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V - v2 V - v2 (V 2) - d 2 V = _J_~~-. (2.1) tt s z z s z z e z z tt 4 
1T mi no 

Here we denote: V= (n-l)/n0 ~ h is the magnetic 
field of w -oscillations. Let us use dimensionless va­
riables ( d denotes dimensional ones): 

zd 

I hd 12 

~ 
2 

Ct.l pe 

~ 

2 
c 
-- z' 
vs 

(iJ 2 
t d = He c t V -r- ~' 

Ct.lpe vs 

4 4 2 
v (iJ (iJ 

s pe I h 12 k - pe 
2 2 ' d -

ko CtJHe CtJHe 
=4TTn

0
mi 

Bn, 

vs 
--K 

c2 

(ko is an average wave-number which defines soliton 

velocity vg= 2CtJHe k 0 c
2 /Ct.Jpe = Mv

8
). 

Using the Schrodinger equation for h field, we get 
the following set of equations: 

2 
. ah + i._L+ Bnh = 0, 1-- 2 

at a z 

(2.2) 

- 2 
Bntt -Bnzz -a(8n2 )~z -{38nzztf-lhlzz , (2.3) 

where 

4 2 
Ct.lpe vs 

a = -~----------
Ct.l2 k2 c4 

He 0 

{3 = 

In coordinate system, 
velocity, x = z - Mt , 
= h(x)• exp(iK 0 z, - iO t) 
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4 2 2 
Ct.lpe v s de 

(iJ 2 4 
He c 

moving with the ws -soliton 
writing the field as h 
and introducing A = 0 - K5 

we get the following set of equations to search for 
a steady-state soliton ( M = 2K 

0
) 

h +Bn·h+Ah=O, XX {2.4) 

2 2 
{38nxx +g8n +a(Bn) =-h . (2.5) 

Here: g = l- M2 , {3 = ~ M2 , A is an energy level 
to be obtained in self-consistent potential. 

We shall look for the solution of set (2.4), (2.5) 
assuming that density perturbation in soliton has the 
form Bn = Asech2 (ax) . Using suchBn with indefinite 
parameters A and a from Eq. (2.4) one can get 

hxx + (A + A sech 2 ax) • h = 0. 

Let us introduce a new variable f.= th ax 191 
Equations (2.4), (2.5) take the form 

d 2 dh 2 ...2 -1 
-[{1-f. )-]+[s(s+U-r{l-~) ]h=O, 
df. df. 

(2.6) 

2 2 2 2 2 2 
gA+aA {l-f. )-2{3Aa {l-3f.) =-h 0-f. ). (2.7) 

- -- I 
Here we denote: s(s+ l) =A a -2 , r = v -A a- . Solution 
h ( f. ) , finite at f. = ± l ( x = ± "" ) , can be obtained only 
when s - r = n, where n = 0, l, 2... . At the same time 
Eq. (2. 7) must be satisfied. It can be done if n = l , s = 2 . 
It this case the solution of (2.6) is given by the formula 

( s- I) 

h = B f.· (l -e)~ , B = const . Substituting this 
formal solution into Eq. (2. 7) indefinite constants turn 
out to obey the following relations 

( 
2 2 2 

{3 -a) A = - B , gA +a A. _P._A2 = 0. 
3 
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Therefore, the solution exists at a ~ f3 , while 
30-Ml) 2 2 

A = --, B =(a -{3) A • 
({3- 3a) 

As a result we have 

2 
h = B • t:h a x • ~sech a x , 8 n = A sech a x , 

a = y -,\ ' ,\ = -A 
6' 

The condition a ~ f3 means that k 0 w de ~ 1 . The 
Schrodinger equation to be valid, it is necessary that 
the half-width of soliton in k -space is !l K «Ko that 
yields 

[ 4 (M - 1 ) ] Y. 
---- «1 (3a -{3) 

or AY. «1. 

3. Brief Conclusions 

The obtained results may be summarized as follows. 
First, the interaction of Is -solitons with each other 
and with compression and rarefaction s -wave in the 
model under consideration differs qualitatively from that 
taking place for nonresonance l -solitons. In fact, the 
interactions of Is -solitons can give the significant share 
of accelerated (supersonic)plasmons that, generally speak­
ing, may slow down the creation of Langmuir condensate 
in k .... o region and, therefore, the dissipation of 
H.F. energy. 

Secondly, the effect of interaction of ls -solitons 
with compression s. -wave turns out to be more essential 
than that for rarefaction s -wave, whichqualitativelly dil­
fers from the results obtained for slow l -solitons m/3/ . 
It reveals an essential difference between soliton structu­
res of one-parameter ls -soliton family and that of 
two-parameter l -soliton family. Near-sonic ls -solitons 
turn out to be less "conservative" at interactions than 
near-sonic I -solitons. 
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When kw de > 1 near-sonic whistler ws -solitons are 
possible to exist. These ws -solitons are supersonic ana­
logs of subsonic Is -solitons, but they have density hump 
instead of Is -soliton density pit. 
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