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1 Introduction
One of the bas1c problems of nonrelatwrstrc quantum 'mechanics is to ﬁnd the ¢ energy
spectrum and ergenfunctlons ofa mlcrosystem descrlbed by the Schrodmger equation w;th
an appropriate potential. Exact solutions of this equation have been found ({1]-[4]) for a
quite limited class of potentials like the harmonic oscillator, the Coulomb potentlal and
some others. However, most quantum systems are described by potentlals for which the
Schrodlnger equatlon cannot be solved analytlcally Thus, the solution of the Schrodmger
equatlon with a suﬂic1ently arbltrary poteéntial represents the main mathematlcal task.
For tl’llS aim, many approximate analytical and numerical methods were worked out.
The great progress in the development of ‘computer techmque and effectlve algorlthms of
numerical solutions of differential equations pertmit one to obtain numerlcal solutions for
the energy spectrum and wave functions with a quite high accuracy although practlcal
calculations are nsually very laborious and’ requne powerful computers.

- Approximate analytical methods imply a perturbatlve procedure when the Hamllto-
nian is divided into two parts H = Ho + Hj, the solution of the zeroth approxmlatlon
Hov ) = BOgO) 5 supposed to be obtained and perturbatlon corrections to'the zeroth
approximation E(O) and () can be calculated. The physical and mathematical top pomt
is that the Hamiltonian Hp in an approprlate representatlon of the Schrodlnger equation
should be chosen in such a way astocach the main dynamic properties of a quantum system
and to give a possibility to calculate analytically all physical characterlstlcs of the system
under consideration. The interaction Hamiltonian H; should give small corrections to the
zeroth approximation and these corrections can be calculated S

Here. we mention the standard perturbation Reley Schrodlnger theory ([1] [4]), the
quasiclassical or WKB method ([1)-[4]), 1/N:-expansion([5], [6]). We will not go into
details of these methods and refer readers to the numerous hterature ( see, l'or example,
(11-l6)).

In this paper the oscillator representat10n method ([7],[8]) will be applled to Quantum
Mechanics problems. The most remarkable difference between Quantum Field Theory
and Quantum Mechanics is that quantized fields in QFT are set of osc1llators and any
interactions of fields do not change the oscillator nature of these quantized fields..
the same time, in Quantum Mechanics most of the potentials and therefore their corre-
sponding wave functions are quite far from the oscillator behaviour. The application of
the oscillator repesentation method implies .that a wave functlon, being a bound ground
state of a quantum system with an attractive potential, is expanded over the oscillator
basis in the representation in which canonical variables  (coordinate and momenta) are
expressed through the creation and annihilation operators at and a. .However in most
cases the asymptotic behaviour of a true wave function (for example, the Couloumb wave
functions) for large distances does not coincide with the Gaussian ‘asymptotic behaviour
of oscillator wave functions. This means. that ‘the expansion.of these wave functions over
the oscillator basis, although being mathematically correct, leads to series converging not
sufficiently fast for practical purposes.

Therefore, before applying the oscillator representation method we have to modify the
variables in the starting Schrédinger equation to get a modified equation having solutions
with the Gaussian asymptotic behaviour. In the Coulomb systems such a modification




is performed by going over to the four-dimensional space where the wave function of the
Coulomb system becomes an oscillator one. In an early paper [9], Schrodmger has noted
the existence of such a transformation which transforms the three-dimensional Coulomb
system into an’ oscillator one in the four-dimensional space. Kustaanheimo and Stiefel
[10] gave the explicit form of this transformation and used it to solve the classrca.l Kepler
problem.

It should be taken mto account that these transformations are not the canonical ones.
It means that a qua.ntum system after ala Kusta.a.nhermo Stiefel transformation becomes
another quantum system with another set of qua.ntum numbers and correspondmg wave
functions. However this new set conta.ms a subset of wave functions which are wave
furictions of the initial system at the same time, and we should be able to pick out
necessary quantum numbers and wave functions. Therefore, these transformatrons should
be considered as a successful mathematical technical method.

So we get a modified Schrédinger equation the elgenfunctlons of which have the os-
cillator Gaussian asymptotical behaviour. The next step is to write the Hamlltoman in
terms of normal products over the creation and annihilatien operators at and a. Now one
faces the question what is the optimal way to determine the frequency of thrs oscillator,
In the language of the Hamilton formalism the problem of calculation of the ground-sta.te
energy can be formulated in the following manner. Let the Hamiltonian of a system be
given. Let us pick out the pure oscillator part with some unknown frequency w and write
this Hamiltonian in the form Hy = wata. The rest of the Hamiltonian should be repre-
sented in terms of normal products over the operators a* and a. The requirement that
this interaction Hamiltonian does not contain quadratic in the canonical variables terms
leads to the equation which determmes the oscillator frequency w. This requirement is
called the oscillator representatwn condition (ORC). As a result, the total Hamiltonian is
written in the representation where the main quantum contrlbutrons to the ground state
or vacuum of the system are taken into account. :

The conception of normal products introduced into nonrelativistic quantum mechanics
is actually not new (see,for example, [11]); however, the question is on what principles the
realization of this idea should be based. All approaches which have used the formalism
of creation and annihilation operators imply that the groind state wave function belongs
to the oscillator basis a.lthough the true wave function can have completely different
asymptotic behaviour. Besides, the "free” Hamiltonians Hy, for which the exact oscillator
solutions exist, are usually chosen in the form which destroys completely the canomca.l
quantum structure of the Hamiltonian (see, for example,{5}-[11] ).

The paper is organized in the following way: In section 2, basic formulas of the
oscillator representation method are given. In section 3, we consider the one- and three-
dimensional anharmonic potentials and power-low as well as logarithmic potentials. The
energy levels for the ground and orbitial as well as radial excited states are calculated.
The results of our calculations in'the zeroth approximation agree with the exact values
very well. In section 4, the relativized Schrodinger equation is considered. '

2 - The Oscillator Representation

The method is based on the ideas and methods of quantum theory of scalar fields and
consists in the following. In nonrelativistic quantum mechanics any ground state of a
bound system can be approximated by a wave function of an oscillator. The question
arises how to choose this oscillator in the optimal form. For this aim we take advantage
of the ideas of quantum field theory developed in the papers [7],[8] .

Our starting point is the radial Schrédinger equation in 3 dimensions:

[_l(d—dr-)zﬁ I+l)+v ]x/a, ,—En:sbn;(r)-’ ) - (21)

We shall consider the potentials of the Coulomb or Yukawa type, i.e. the potentials
decreasing for large distances . - oo .

V(ir)=»0 for r—ooo, (2.2)
and the anharmonic potentials of the confinement type for which
Viry—=r%*,  (6>0) for rooo. (2.3)

These potentials can have a repulsive region at short distances.

Our aim is to calculate the energy spectrum E and to find the wave functions 1,(r)
by using the oscillator representation method. This means that the wave functions’ Yai(r)
should be expanded over the oscillator basis. This expansion can-be done but it will
not be effective for the simple reason that the asymptotic behaviours of the true and
oscillator wave functions disagree for large r — oo and short r — 0 distances. Thus we
cannot : apply the oscillator representation method directly, but we have to transform the
Schrédinger equation {2.1) in such a way that the true wave function should become the
necessary asymptotic behaviour for large and small distances. For this aim, we will use
the well-known technique of changing the independent coordinate ( see, for example, [12],
[13]) which was applied to show the equivalence between solutions for different power-
low potentials in the spaces of different dimensions. For example, there exists’ equivalence
between the Coulomb potential in 3 dxmensmns and the oscillator potential in 4 drmensmns
( see [10],-[13]). : .

Our idea consists in the followmg We want to change the variable ro= r(s) and.
identify the transformed equation with a Schrodinger equation in the space with another
dimension. The transition in the radial Schrédinger equation to the highest dimensions
from the general point of view has been considered earlier ('see, for example, [14] )
Thus, the calculation of the function yo(r) would be equivalent to the calculation of the
ground state wave function of a modified Hamiltonian in another dimension. Moreover,
the wave functions in this auxiliary space should have the oscillator Gaussian asymptotic
behaviour. The radial excitation wave functrons ¢,,,(r) 171,) will be equlvaleut to the
highest oscillator states. wih - o

The Schrédinger equation (2.1).can be wntten in the form o

/d3rlIl(r) [ - %A +V(r)~ E] ¥(r) =
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If ¥(r) = Pu(r)Yu(8, 4), then this equation forthe ‘wave function of the I-th orbital

excitation looks as,

o0

-/ df(rwr))[ 1) 5 (10 )] (i) =

b0

The wave functlon 1/Jn,(r) depends on one radral varlable r only After the substltutlons

2 and r1/:,,¢(r)= s (D( )s - (2.4)

r=s
where p and @ are parameters this equatlon becomes after some transformations

/dssD lfb(s)[—§<(d—s) +2;f1- :)-FWI( ; )}@(s):O,’*' (2.5)

with

WI(SZ, E) — W(sz;l,p, D, E) — _ILQ’%’_'Q + 2 2 4p-2( (32")— E) |
D~2a—2p+2 K(l,p,D) = ((D 2)* — 47 (2l+1))

One can see tha.t in, the case when the functlon (I>(s) (D(s) depends on s? g only thrs
equatron ca.n be identified with the equatron in the space RD with

D—2a—2p+2

on:a: wave: functron (I>( ) dependmg .on the radius s only The equatron (2 5) can- be
rewrrtten :

s [ 1 N ‘ . -
/ d”s¢( [~ 580 + Wi(s, E) —,e(E)]«b(s) — o,
where the. functron SRR ; 7 . ‘ . ’ -
S e(E) =¢(l,p,D; E).

should be consldered as an elgenvalue of the Schrodmger equatlon in D-dimensions
| ' [— —-AD + W,(s )]q>(s) - e(E)d)(s) : “(2.6)
The desired energy E is deﬁned by the equation - ’ o .
B =elp,D;E)=0. e

' Formulation of the problem We would like to stress that the energy E enters into

the Schrédinger equation (2.7) as a parameter. Thus, our problem is formulated in the
following way. We have the Hamiltonian H*in D dimensions

5 1 . p? .
H(E) = ~5Ap + Wi(s%, E) =1;-' +Wi(sh, B), (2.8)

and we have to solve the Schrodinger cquation
H(E)® = + Wo(s E)]<1> = <(E)® 29

for radial excitations only. The desired energy spectrum E, of the initial problem in (2.1)
is contained in the radial excitation spectrum £ of the Hamiltonian (2.8):

H(E)ol(s) = (EYol(s),  (n=0,1,2,...), - (210)
and it is defined by the equation i
o M=o ‘ 2

We shall solve equation (2.’10) by the oscillator representation method. The Hamilto-
nian (2.8) can be represented in the form (for details see )]

H = Ho(E)+ III{E) + co(E) = Ho+ 11 + 0, (2.12)
with .
Hy = w(a%da), _
g = Ab\PT5 12 Y-k | ik
Hy = / (2—”) (K2, E)e 109 :
Dw T duuPr2-1e=v L fu
EO(E;w, D) = T + / —[;(DTj— . ”’1(;, E),
o
where : * : is the symbol of the normal ordering and ¢; =" —1 — = — 3=
The condition of the oscillator representation can be written as
D (B DY=0. (2.13)
Ow y

This equation determines the parameter
w=w(E. D).

as a function of the energy E, D and other parameters defining the potentail V(r) in
(2.1). ‘

The ground state energy <(E, D) of the Hamiltonian [/ in (2.12) will be calculated by
perturbation method over the interaction Hanultonmn I1; and in the N-th approximation
order has the form:

sow(E. D) = <ol E, D) + +eul D) + - +e~(E,D)

According to (2.11), the ground state enelgy E ol' the initial problem in the N-th
perturbation order of the oscillator representation method is defined by the equations

(2.13) and
(B, D) = eo B, D) + &2(E, D) + .+ en(E.D) =0 . (2.14)



This equation determines the energy Eny(D) in the N-th perturbation order as a function
of D and other parameters defining the potential. The parameter D can be defined by
the condition ,

Egny = min Egny(D) . 2.15
() = mir (D) o (‘ ‘)

.. The ground state energy in the zeroth and second approximations. Really,
we shall use the oscillator representation method in the zeroth and second approximations
only. Here we give formulas simplifying these calculations for the ground state energy.
The function ( E;w, D) in (2.12) depends on two parameters D and w. We shall consider
problems for solution of which a greater number of auxiliary parameters can be introduced.
Let us denote these parameters by.{a;} and the auxiliary,ground state energy .

ey Eiw,a)) = EQ(E;w,'d;f)‘ +52(E,w,a_,) N

Accérding to (2.12) the function (;:o(YE;L‘u,:a,-) has the form
co(Eyw,a;) = Alw, a5) — EB(w,a;), (216)

where A(w, a;) and B(w, a;} are known functions. ]
In the zeroth approximation, the equation defining the oscillator representation (2.13)
and the equation (2.14) '

eo( Eoiw, aj) =:.z_4(w,a,-3 - EOB(w,a,-)‘= 0

give

The equations

0 e O (AW o
6akEo(w,aJ)— Far '(B(w,a,-)) =0 for all &

define the parameters {a;} as functions of Ey

. ;'.aj = QJ'(E), o

(2.17)
Asa reSult; in the zeroth apprbxi;n’é,t"i(‘)‘ri the e‘rie.rgy' Ey is determined By thdmﬁiini;ﬁ_i
e Aw,e5) A(we,a?)
Ey = min ————2 = . 2.18
® " {wa} B(w,aj)  B(wo,a?) (2.18)

3

where the parameters wg and af define the minimum. ' o
In the second approximation, we have to solve equation (2.13) and

e Eiw,a;) =e(Ejw, a5) +£2( Esw,a;) =0 . (2.19)

We expect that the second correction is small so that in the second approximation the.
energy E2) = Eo + E; and

eo( Eq2);wo, @) = Alwo, @) — EgyB(wo, ;) = —E: B(aj) + O(E3})

where wgo = w(Ep). Thus the second correction is

€2( Eo; wo, a;) 2
B, = 20700 3 4 O(E3).
: B(“’Oaaj) ( :

Finally we get o .
By = EotEa= . (2.20)

S 2
{waj} B(w,a;) B(wo, ;(Eo))- 0
2) )

E

 A(wo, a?) + £2(Eo; wo, @) +E0 ‘Ez_
B(ws; af) Eq

Using this formula, calculations become simpler in comparison with (2.15) and (2.17).

The accuracy of the oscillator representation can be evaluated. as

€2

€o

6~

» Tl.leAra(dial‘ excitations. The radial excitations in the OSCLi.u:E‘LtVOi‘ representation are
defined in the form N .
ny -2 _9nr,, \L AT T 2.21
) = C(afal)10) , - Col= 2 me =gy (22)

We shall apply the oscillator representation. to the Han}iltonian ifl the form (2.12), anc:
then we get the Schrodinger equation (2.10) . The dt?sned energies E, (n = 0,1, ) o

the initial equation (2.1) for the ground and radial excited states are defined b).l equa?mg
(2.11), and therefore, we should find the functions ef*/( E) for the ground and radial excited -
states. For the state [n).(n = 0,1,...) the matrix element S :

An|Hi|n) = AW, a;) — EoBM(w,a;) #£0 .
The energy €™ in the lowest approximation looks like .

(n|Hln) = eo( E) + 2nw + (n|Hy|n) : |
AP(w, a;) — EBM(w, ;) , (2.22)

eP(E)

where
AN, 05) = Aw, 05) + 2nw + AP (@, 5)
B§")(w’ai) = B(w, ;) + B["](w’ai) .



Two equations

) 9
5'{;/1(0.),0]') - E%B(w, QJ') =0 y » (223)

AP (W, 05) — EBM(w,05) =0,

determine the functions w(a;) and E(a;). The energy of the n-th excited state in the
first approximation of the oscillator representation is determined as

{n) AP
B i A0
(o} B (w(e;), ;)

In the second approximation the energy is defined as

e (B) = eo(E) + 2n(E) + (n| Hiln) (2.24)

~(nl(Hr = (nlHiln)) - gz - (Hr = (alHin) )

The wave function in the second approximation is

1 )(H,—(n|H1|"))}[") -

o — (1
2 { Hy - 2nw(E

The parameter D and the oscillator basis. Here we want to make a remark
concerning the connection of the space RP, for which D can be a noninteger, and. the
algebra of the creation and annihilation operators implying the number D tobean integer.

The parameters p and D are arbitrary and can be chosen in an apprbpi‘iate way. They
can be considered as additional variational parameters which can be found, for example,
by the minimization of the energy in the zeroth approximation:

€o(E) = {r;lgl) e(l,p, D; E).

" On the other hand, the parameter p can be connected with the behaviour of the wave
function tn(r), at large distances to get the Gaussian asymptotics. For example, for
potentials (2.3) we can choose the parameter p = 1/(1 4 o) so that one can get

l+a)

U(r) ~ exp(—r ~ exp(—r!/?) ~ exp(—s?) ~ ®(s).

The parameter a or D can be connected with the behaviour of the wa.vé function at
short distancies. If the potential V(r) has no repulsive character for r ~+ 0,then we choose
K(l,p, D) =0 and from (2.6) we get . o :

D=2+2p(2+1).

If the potential V(r) has a repulsive character for r — 0,then D is a parameter which
should be chosen to dump the repulsive behaviour of the potential at short distances. For
example, it can be found by the minimization of the background energy in the zeroth

approximation. It implies that D can be any positive number. In other words, the
dimension D of the space RP can be considered as an additional parameter which can be
chosen to improve the zeroth approximatiou.

One can see that the radial quantuin number n does not enter into the Schrédinger
equation (2.9) in the explicit form. The orbital quantum number [ enters into (2.9), but
it is absorbed by the "dimension” parameter D. From the point of view of the space R”
the functions :

Do(s) = s (%) or Yulr) = r—&—u_:p'z q;n(rl/:’p) .
for any n and for a fixed { are eigenfunctions of the basic series of radial excitations in
the space R? with the radial quantum number n and the zeroth orbital momenta.

Thus, the solution of the equation in 3-dimensions for- the [-th orbital excitation is
equivalent to the solution of the Schrédinger cquation in the space RY for states with
zeroth angular momenta.

~ As a result, the initial Schrodinger equation is represented in the form (2.9) in which
the wave function of the ground state ¢(s) has

e the Gaussian asymptotics for large distances ®(s) ~ gxp(-—s’),

¢ maximum at the point s = 0.

The oscillator representation methiod consists in that we look for the solution of the
Schrodinger equation (2.9) in the form '

d,.(s) = exp(—%’s?) Z Cnm P,("D)(szw)

m

where'{P.SlD)(t)} is the class of orthogonal polynomials which are orthogonal on the interval
0 < t < oo with the weight function ‘

D
2

polt) =17~ exp(~1),

/ de 157~ PP PIPNE) = B -
o

These orthogonal polynomials can be constructed by using the formalism of creation

and annihilation operators a; and a} in the space R? (see [8]). We have:

[0) ~ exp ( - t‘—;s?).

All radial excitations can be written in the form

B, ~ (ata®)"[0) ~ PP wst)e 3 ~ PP un17) exp(—5r1/%),  (2.25)



where P,sD)(t) is a polynomial of the n-th order. The parameter D in this representation
can be considered as any positive number. These polynomials satisfy the orthogonal
condition:

(\Il,,,\Ilm) ~ (0l(aa)"(a*a*)"0) ~ /ds sP-1 exp(—sz)nyD)(sz)Prle)(SZ)

0

- /dt tD/z_l eXp(—t)PTSD)(t)PrSID)(t) ~ 6nm .
4 .

This condition can be imposed on any positive D. Thus the algebra of creation and
annihilation operators is nothing else than the mathematical method to perform any
calculations connected with orthonormal polynomials.

3 Anharmonic Potentials

Anharmonic oscillator models have played an important role in the evolution of many
branches of quantum physics. In spite of seeming simplicity it is not easy problem to
find spectrum and eigenfunctions of an anharmonic interaction. There is a voluminous
literatute where different analytical and numerical methods are worked out to solve this
problem (see, for example,[15]-[21]). On the other hand, the anharmonic potential is a
good touchstone to test any new method.

Bender and Wu [16] have made a valuable contribution to investigation of the an-
harmonic oscillator, which is of particular interest to field theoreticians because it can
be regarded as a field theory in one dimension. The main hope is that the unusual and
unexpected properties of this nonlinear model may give some indication of the analytical
structure of more realistic field theory. Nevertheless the developed technique turned out
to be quite complicated even for this simple case.

The standard way of attacking this problem is to invoke perturbation theory. Per-
turbation series for any physical characteristics are asymptotical ones, i.e., they have the
zeroth radius of covergence. Summation methods should be applied to calculate high
order corrections. As a resull, we have quite a cumbersome process. A thorough discussion
of these difficulties has been done by Stevenson [17].

The quasiclassical approximation was applied to the three-dimensional anharmonic
oscillator [18]. The problem of calculation of the energy levels is reduced to the solution
of a very cumbersome.transcendental equation invoking the complete elliptic integrals.
However, its accuracy drastically worsens for the low lying energy levels and moderate
anharmonicity.

Another known approach for treating systems with strong interaction is a modified
perturbation theory [19]. The accuracy of the modified perturbation theory with the prin-
ciple of minimal sensitivity has been carefully analyzed [20] for the anharmonic oscillator.

The 1/N expansion for the anharmonic oscillator was used in Refs.[21]. In [6] the 1/N
expansion was applied to calculate the spectrum of the anharmonic oscillator.
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In this section we would like to contribute to these numerous investigations. We shall
demonstrate the oscillator representation method to calculate the bound state energies of

anharmonic oscillators.

3.1 Anharmonic potentials in R!

Here we demonstrate the oscillator representation method on calculation of the bound
state energy of one-dimension anharmonic oscillator. The Hamiltonian is
2 2
H=2 1T 2t (3.1)

In the case of symmetrical potentials V(g?) the ground state wave function depends on

q* only, i.e.,

1\

Il
=3
—_
=~}
[
N
L)
—~
=
=
If
o

so that we can write

[ g w@] - g+ Vi) - mE U@ <0

or
" g U - - Vi) - mE] v =0, (32)
0 2 dg* o
2,2 : :
V(g?) = “=qF + mAg*.

Thus we can consider the wave equation on the positive semiaxis 0 < ¢ < oo.

We are going to apply the oscillator representation to this Hamiltonian so that. we
should coordinate the Gaussian asymptotic behaviour of functions in.OR with the true
one. For large ¢ this asymptotic is defined by the anharmonic term Ag* and the wave

function is proportional to
U() ~ exp(—¢))  for q— oo,

However, it is clear that for small A the true wave function is close more to the Gaussian
wave function than to the anharmonic one. Thus, we can expect that the behaviour like

U(q®) ~exp(—¢*)  for q— oo,
where 2 < a < 3 is a parameter, can be an acceptable approximation. Let us introduce
the new variable )

g=sl"=s" p=—.

A-fter some transformations the integral in (3.2) can be written as

oo 1l 1-2pd 2 _
/(; dss'=?% ‘I’(s)l:— E[E;i-l- ———E;] +Wi(s ,E'):! U(s)=0,

S
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where

2
W(s%, E) = 4p? my. (:;2)"">‘1 + mA(s?)%7! - mE(s%)*? . (3.3)

Now we can identify the operator
d"+1~2p_d__d2 d-1d
ds? s ds - ds? s ds

and the measure

—Ay d=2-2

dss'™? = dss?™! (ds)*

with ”the Laplacian” Ay and "the measure” (ds)? in an auxiliary space R if these oper-
ators act on a function depending on the radius only. The relation (2.7) can be used and
equation (3.3) looks as

/(ds) \ll(s)[— ZAg+ W(s E)] =0. (3.4)

The wave function ¥(s) in (3.4) can be considered as a wave function of the ground state
satisfying the Schrédinger equation

[—~Ad + W(s? E)¥(s) = HU(s) = ¢(E)¥(s) ,

H= ? +W(s*E), . - (39
and the desired energy E is determined by the equation
e(E)=0. (3.6)

Now we can apply the oscillator representation method to the Hamiltonian (3.5). Accord-
ing to formula (2.6) the Schrodinger equation and the Hamiltonian (3.5) in the oscillator
representation look as v

 (Ho+ Hy +€0)¥ = e(E)V -
2 .
H= % +W(sLE) = Ho+ Hy + ¢, (3.7)
where Hy and Hj are given by (2.11),and ¢, (2.16) is

eo(E) = }EBEO(E;“””) ,

with
dw * duui-le=v u
eo(Ejw,p) = —+ [ —7—W(—,E
o B, 0) 17 )y T I %)
= A(w,p) — EB(w,p) ,
1- 4p? v? A
Alw,p) = —Low -ﬁ’i_mi"j[m TG+ 5 I‘(Sp):l
Sy 4Pmw  T(p)
Blop) = =3 r(i-p)"

12

where z = w?*. The functions w(E) and p(F) are defined by the equations

, o
‘a“fo(E~w~l’) =0, .—azfo(b,w'.p) =0.

Let us calculate the second correction to the ground state energy. The first correction

equals zero:

&1 = {0]1;]0) = 0.

The second correction is defined by the standard formula

1
= — (013 Hil0) =

— ({g ) /(;ﬁ;)dm(mmw(_ CRLA(CIg

1 .
1
S5(z) :/%[cosh(l )— 1 - ] z )n()n)' ,
. 2
8p2miuw — R, Trtl-p) 3.8
_F(]——lp);<n!) Tm+2-2p) " - (3.8)

where -
mv? T(n+1=4p)T(1 +3p) _/L

" T G2t I'(1 —4p) 523
P(n+1—6p)0(1 +57) E r(n +1=2p)T(1 +p)
’ T(1 —6p) S M1 = 2p)

" The ground state energy E in the zeroth perturbation order is defined by the equation
(2.19)

Alwo,
Ey = mn) gt’ ;:) BE‘»‘:,/’;Z))’ (3.9)
where wg and pg define the mi‘nimum. The cnergy in tllé second perturbation order equals
Ep = Fo + Es, ©(3.10)
where
I'2-p) mr? T'(1+3p) 1 A ) I'(1 +5p) ] 1
St ] o e R A T R A N (e )

2
T(n+1-p)

_ £2( Eo; wo, po) _ _ 2 & F_". .
E. = Blwo,po)  T'(p) ; n! Mo +2-2p)°
1

In Table 1 the numerical results for the background energy are given for the case m = 3
and mv =1 in the zeroth and second approximations.

13



Table 1. Rgsults of calculation of the ground state energy of
one-dimensional anharmonic oscillator for the case
m= % and mv = 1 as a function of the parameterA.
E® and E® arethe energy of the zeroth and second
approximations, E°7 is the exact value in Ref.[22

E
A P (0] I EG) I Eex-
02 1 2.02]1.015]1.015
1 2.07 1 1.065 [ 1.065

2 212§ 1.119 | 1.118 [ 1.118
.5 2.18 | 1.243 | 1.242

1. 2.23 | 1.394 [ 1.393
1.5 i 2.25 | 1.511 [ 1.510
2. 2.27 | 1.610 | 1.609 | 1.608
5. 2.31 ) 2.022 | 2.020
10. | 2.32°) 2.454 | 2.452
20. |} 2.34 | 3.016 { 3.014 | 3.010
100. | 2.36 | 5.009 [ 5.008 |.

The accuracy of the zeroth approxima.tion can be defined as

| E©) _ E(2)|

E©) ;

and from Table 1 one can see that it is less than | per cent, i.e., the perturbation series

converges fairly fast.
If v =0 and m =1, then the ground state energy equals

E = cA3.

-100% ,

The constant ¢ in the zeroth perturbation order is defined by equations (3.9) and equals

. 1/3
co = mi 3 '[r(sp)r2(2_p)] = .66933... .

min
{0} 4T(1 4+ p) 4p

The second approximation is done by (3.10). The result is
C(g) = Co+ Cy = 66846, Ca = —.00087... .

The exact numerical value is ¢ = .667986... (see [15]).

3.2 Anharmonic potentials in R

In this section we consider the three- dlmenSIonal anharmonic potential. The Schrodinger
equation looks as
[_ 1 (_(_l_)?r (1+1) L

2mr \dr 2mr?

2

24 ar ]1[)(1‘) = Ep(r). (3.11)

14
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[P mnrt

S -,

According to (3.32) we do the transformation r = s and get-the representation
H(E)(b(s) =e(E)d(s),
H(E) = P2 +W(s? E)

W(s2 E)=dp m[ (21 4 A(s)1 — B(s?)] (3.12)

where s € R? with
d=2p20+1)+2.

Now we can apply the oscillator representation method. The Hamiltonian is
2
H= % +W(s%,E) = Ho + Hy + €0, (3.13)
where Hy and Hj are given by (2.11) and ¢, according to (2.16) equals’
’ ¢o(E) = min go(Ejw, p) ,
- A{ww)
with
dw duus-le~ u
. e o © wilt e
olbin) = Gt [ g ()
= A(lw,p) = EB(l,w,p) ,
p(2l+1)+1 ; 4p?mw

Alw,p) = 2 CrtTe@ir D)

‘:nwz ] I’(p(21>+’5)) + % . F(P(él + 7))} »

222
4pPmw  T(p(21+ 3))

B(l,w,p) z TeERI+D)+1)’

I

where = w?.

The ground state energy Eol in the zeroth perturbation order is
A(lw,p) . T(p(2l+1)+2) =
— . s St bt LA . + 3.14
Eof ?313 B(l,w,p) ~ {r,p) T(p(201+3)) 8mp? (3.14)
mv? T(p(21+5)) A T(p(2t+7))
2z T(p(20+3)) T(p(21 4+ 3))

The ground state energy of the anharmonic oscillator has been extensively studied
numerically and the exact result[6] for Ego in the case A = 1, m = 1/2 and v = 2 equals

ES = 4.64881... .

Formula (3.14) gives for this case
Eoo =4. 6511

One can see that the oscillator representatlon method in the zeroth approximation gives
a quite acceptable accuracy. -
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3.3 The power-low potentials

In this section the oscillator representation method will be applied to calculation of the
ground, orbital and radial excitation energy spectrum of three-dimensional power-low
potentails:

V(T) = ATV . (315)
The Schrodinger equation looks as
1 gdy? M+1 ‘
" 2mr (E) T (9 rz) +ar ]¢(T) = Ey(r) . (3.16)

The transformation r = s? leads to the representation
H(E)®(s) = £(E)3(s) ,
1 i
H(E) = 39 + W(, E) |
W(s*, E) = 4p*m A(s?)P3Hu)-1 —-E(sz)z"_l] y - (3.17)

where s € R? with .
d=2p(2l+1)+2.

The Hamiltonian in the oscillator representation looks as
' 2
H= ”— + W(s%, E) = Ho+ Hi + €0, - (3.18)

where Hy and Hj are given by (2. 12) and & a.ccordmg to (2.16) equals
eo(F) = {mr}so(E w,p),

with

il

dw duusle u
eo( Eyw, p) T + /0 —WW(—, E)
= A(lLw,p)~ EB(Lw,p),
p2l+ 1)+ 1 ot 4p°mIw ) T(p(2t +3 +v))
2 v T+ D+ 1)
4p'mw  T(p(20+ 3))
v T(pRl+1)+1)’

A(l,w,p) =

B(l,w, p)

where y = w” . ‘
The ground state energy FEgrin the zeroth per;upbation order is
. A(l,wsp) :
= — ) ‘ 3.1
Bo = min 50,0.0) | (3.19)
_[re@an e g A T(eei+3+y)
wer | T(p(21+3)) 8mp? " y* T(p(21+3))

2 -

24w [reei+1)+2) e A V' =
= n8,»’}“r(,;(21+3))[ Sump? ] [2 Tp21+3+ ))] :

16

Now let us obtain the formula for radial excitations. According to (3.24), we have in

the first approximation

& = g + 20w + (n|Hy|n)

v

where

dk k?
(n|Hi|n) =/(é7l:) W(k? )e‘q)(—4—)(n| 92 n)

Let us define the polynomials

pint

- .2
ealtyd) = (n] s €7 s ) = 3 em(modi™, 4= -1

m=2

2" BP(4 4 0 + p)

em(n,d) = —

where
p = max(0,m —n).

The coefficients for 7 = | and n = 2 are

I.d 2
el d) = 7
A(d + 8) 16
(2 d) =l y(2,d) = —— (2,d) = —=—
2(2.d) d(d +2)° (2 d) d(d +2) ca(2.d) d(d+2)
Three first polynomials are
Eo(t) =0 N
1) = 2¢
e (t) = p
1 A I
., L )42 143 4
ea(t) a5 [(d+b)t + ¢ +2t} ;

If the potential has the form

3 § we(s7)™

then one can get

.2

dk "k i
(n|H/|n) :/ (Zr—) ”,1(/.2)9(1)(—3—;)(n| b |n) =
= Z _U_lk— CL (1 0‘&) y

T2 + oy 2 -
2 & —

s=2

17

+m) & (n =+ p)l(m = 2p)1(p)?



Table 2.Results of calculation of the ground state energy
power-low potentials for the n = ¢ =0 and 2m =1 of
various v. Egg is the zeroth approximation of the oscillator
representation. The results of the numerical, Ref.[23], and

Table 3. Results of calculation of the energy spectrum for a wide
class of potentials in the zeroth approximation. The numerical
ones are taken from Refs.[6], [23] (in parentheses)

1/N- expansion methods, Ref.[6], are also shown o V(r)
v I/N Num. Eog “Z—;; _% 23_57‘ Inr
- 2 = 2 = ) — —
1.5 -.20888  -.29609 -.29703 : m=1 2m=1 2m=1 m=1
‘11.205 .?290535 2 90529 %2{?527 n=0 [=0 -2.686 -1.2186  9.353 1.045
. 2 28 2t ) -2
15 1.32795 1.32795 1.3279 (-2.686) (-1.218) (9.35243) (1.0443)
| I=1 -2.345 -0.5004  13.445 1.641
5 1.83341 1.83339 1.8335
_ (-2.345) (-0.500) (1.643)
75 2.10815 2.10814 2.1082 _ 1—9 5
_ =2 -2156 -0.2047  16.993 2.014
1.5 2.70806 2.70809 2.7081 : 4
2 3.0 3.0 3.0 ‘ - (-5-126) (-0.295) C(2.015)
. . . . 23 5000 05
30 345111 3.45056 3.4511 ~ (202} 00 oy
4.0 3.80139 3.79967 3.8024 £029) 0. »(- 6)
; 2 .
5.0 4.00146 4.08916  4.006 n=1 I=0 -2253 -0.462  16.355 1.848
6.0 4.33801 4.33860 4.3524 s
(-2.253) (-0.462) (16.3518)  (1.8474)
7.0 4.54690 4.55866 4.5815 . _
I=1 -2101 -0281  19.540 2.151
8.0 4.71772 4.75587 4.7901 v
10.  4.92220 5.09786 5.1607 : (-2.101) (-0.281) (2.151)
-® I=2 -1.990 -0.195 22521 2.388
: (-1.990) (-0.195) ©(2.388)

The next step is to solve equations (2.23). The result is I=3 -1.905  -0.146 25.330 2.580
n=2 l= 0 -2.044 -0265 22.084 2.290

C(p(2A+3+v) F(v) [_F(0) T(p(2l+1)+ D] (-2.044) (-0.265) (22.08224)  (2.290)

k)

E, = Amin . .

l o T(p(21+3))  F(0) [8'mA] T(p(2l+3+v) I=1 -1.951 -0.187 24833  2.49]

with v (-1.951) - (-0.187) (2.491)
1=2 -1875 -0.142 27478  2.663

(-1.875)  (-0.142) (2.663)

F(v)=4n[p(2 +v) = 1]+ [p21+ 1) + 1][p(2+ ») + Cn(d,p(2+v)—1)],
1=3 -1.812 -0.113 30.021 2.811

J=pv+[p(2+v) = 1]Cu(d,2p — 1) = (2p = 1)Culd, p(2 +v) = 1),

where d = 2p(21 + 1) + 2. The numerical results are shown in Tables 2 and 3. .
This is one of the potentials which has been used in heavy quarkonium spectroscopy [23].

The standard calculations according to formulas (3.12), give the following result for the
energy E, in the lowest approximation: '

3.4 The Logarithmic potential
Now we consider the logarithmic potential P d

B = Amin{ 2ota (5 + 4o + 21+ Culd )] +0( + o)
V(r) = Aln(r) . (3.20) g 4 : ‘ 2
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L4 d d
+—1—ln 1 5(2) (5 +4n)o+ s(1 -|;C,,(d,a)) o @a)
2p (c4+1PmA T($+0) 1+ Cnld,0) — 05Cnld, 0)
d : d
§=p(21+1)+1, o=2p-1,. ¢(1)=-(Elnf‘(a:).

The functions Cy(d, o) are defined in the previous section.
The numerical results are shown in Table 3. One can see that the first approximation
of the OR method coincides with the exact values in four signs.

4 The relativized Schrodinger equation

The standard Schrédinger equation describes the behaviour of nonrelativistic particles.
Nonrelativistic potential models turned out to give the successful description not only
of heavy quarkonia but also of ordinary hadrons. One can say that these models work
much better than we would naively expect. Nevertheless, the quark-quark systems are
‘relativistic ones so-that calculations of relativistic corrections are one of the important
problems of quark bound states. The relativistic character of quark-quark interaction was
studied in papers ([25]-[28]). The main point is that the complete quantum field theory
of bound states is not yet formulated, so that we have different more or less motivated
approaches like Bethe-Salpeter and Breit-Fermi equations and the so-called relativized
Schrodinger equation,wich will be considered in this section. ‘

There exists a voluminous literature where the bound states of quark-quark systems
are studied in the framework of nonrelativistic and relativized Schrédinger equation (see,
for example, [26]). Here we dare not. discuss physical aspects of quarkonia. Our aim
is to attract attention to the OR method and show its application to spectroscopy of the
relativized Schrodinger equation.

The relativized Schrédinger equation is based on the simplest idea (see, for example,[28])
to take into account the kinematic relativistic corrections using the relativistic kinetic en-
ergy instead of the nonrelativistic one ‘

, .
———;) —\/pt+m?.
2m

Thus, we get the following relativized Schrédinger equation in the space R*:

[\/pz +m?2+ V(rz)] v=FEV. (4.1)

The usual solution of this equation is done by numerical calculations on computers and
by variational methods (see([25]-[27]))- .

We shall solve this equation by the OR method. Let the orbital moment be I; then the
wave function is

U(r,0,8) = Yim(0, &) Vo) - (4.2)

The radial Schrédinger equation becomes

r

1.d .. (1+1) , .
[¢—;(—dr)‘7- + =5 +m?+ V()| Wy = EaV. . (4.3) -
Introducing the function

Ua(r) =r'o(r),

one can get

1 d . oaa Ly(ls+1
[\/__4_5( )2" lzl + Ll“'—) + m? 4+ ‘(’2)} \I’nl = Enl\pnl .

P odr re

T is . . . a . - .. ) L .k 0 ' -
his equation coincides with the radial Schrédinger equation in the space R%:

[\/ ~Ag+m?+ V(rz);l O(r) = Ed(r) . (4.4)

Now we can apply the oscillator representation to the Hamiltonian

H=pP+m?+V(r?)

in the space R%. Let us rewrite this Hamiltonian in the form:

— 1 2 q..2 ; p2 7 19
H = 2—“(,; +9r%) + [\/p?fm’~ 2—11} + [Hr?) -5 (4.5)

2u

whgre # and ¥ are parameters, and introduce the oscillator canonical variables:

J \/17 ’ P \/5 ' (‘1-6)
+
N~ , P = 4 -4 -
b; J J 2 : (4=1..4d)
The vacuum is defined in the standard way:
(o) =1, a;[0) =0 .
’ &i; J

{Orir;10) = 55 {Olpip;10) = &5 -

Let us substitute th+e representation (4.6) in (4.5), go over to the normal product of the
operators a; and af in the Hamiltonian and require that the interaction Haniiltonian
should not contain terms with : p? : and : 72 ;. Alter some transformations one can get ‘

H=1y+ 1+ 1,



with

Hy, = wa;-'aj, w:%;

H = /(%)de-p’{\/pmm?:exp(—2pp—p2)—1+,p"(1~§p2):

p’ 2
V(;g—):eXP(—2Qp—Q) 1+Q(1 ek ]
2 U2
-/ (%)[ R exp(~20) - e : 4V )exp(—4—l,)=e;"':]., (4.7)

where

1;’(112) = /(dp)dmefup ;
V(uz) /((lp) I/( ) tup ,

~2

<

e; =€ -l-z—-= 5

E,

mﬂin/ (%)def”’ [\/m{w%?)]

2 df2-1_—u
= n}gin/_(h“;r(—[\/uﬂ+m2+v
2)

0

The parameters g and ¥ are determined by condition of the oscillator representatlon ie.,
cp2.

the interaction Hamiltonian H; should not contain the quadratlc terms with : p?: :r? ..

These equations are

[ dwiree & [m _ I’(ﬂ)] -0,

0

_ 2 7 a2 v d 0 . . ' Z 4.8
w_m/duu e duv(ﬂ) ()
0

These formulas permit . calculating the spectrum of the relativized Hamiltonian.

4.1 Examples

Here we would like to consider the Cornel potential{29] for the quark mass m =0 beca:use
in this case all calculations can be performed analytically. The Cornel potential gives

22

the simplest interpolation from the Coulomb behaviour at short distances to the lineary
growing confined potential at large distances. The Cornel potential is

H=Vp-Z+hr. (4.9)

This potential was used to give semirelativistic description of quark-quark bound states.
Phenomenologically, the first term in the potential is connected .with one-gluon. exchange
and describes short distances.- The.second term ensures the confinement of qua.rks
Equations (4.8) for ¥ and w can be solved easily: o e T e
W e

K=

1—x’ 1410

_ h T(+2)

CTVTRTUTY ST o
One can see that - : '

. if A =0, ie., for the pure, Coulomb potential the re]atxvnzed Schrédinger equation
has no solutions descnbmg any bound states;
2. for k > 1 there exists "the downfall on the centre ’, 1.e., there are no stable states

in this system.
The Hamiltonian in OR looks as -

H=wafaj-}_-H1+60,

.. [ A T@+Y [ (du)? Sull o ps
H; T 1 —x w2t [ y20+D) EXP(——4") e,
l 1, wq o A
+(l — K+ §mu ) €3 i
1+2 s
Sy e

The second correctlon can be ca.lcula,ted We glve thls formula for the case £ = 0. It is

where

Ey, =

Lo T(l+2) .
E = Eyt+E= E0(1—6,)_2\/_r(1+3/2)( 5,) |

S &4 2)T(2n +1/2) 24,,_1112(271_1/,2),,
& ‘F; T@n+1+1/2)  T(4n+2)

The nuine;ipal ﬁalnes of 51"aré - ’ ‘ o
6 =.006, 6, =.004, 6 <.003 forl>2.
For asymptotlcally large [ we obtain

E=FEy~ovhl. . =~ (4.12)
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For the same linear potenfial in the case of nonrelativistic kinetic energy in the Hamiltonian
one can get ) ’

E = Eyw 5(/:1)2/3. (4.13)

The phenomena of ”the downfall on the centre” for # > 1 leads to the sensitivity of
the eigenvalues of the Hamiltonian to the mass m in the kinetic term. In partlcular, if &
is close to 1, the nonrelativistic limit comes for a quite large m. Let us demonstrate this
statement. We have two Hamiltonians:

Hrel= VP2+m2—m_§,+hr’

2
H=E—Zinr.

Our aim is to find values of y as functions of & for which the ground state energies of these
two Hamiltonians practically coincide. It is convenient. to do the following substitutions:

T m .
r - —, = —, H=H/VE.
v U
We shall consider the Hamiltonians -

K
H":=\/P’+;f"—#—;+r,

2

y=P _E
2n r+r

Table4. Results of calculations of the ground state energy
for the relativized and nonrelativized Hamiltonian
as a function of the parameters & and u

£=0 k=0.1" k=05 . k=109

u . rel nonrel| rel nonrel | .rel  nonrel rel = nonrel
01 | 2.247 8.614 [2.131 8.591 | 1.586 - 8.500 | 0.704 - 8.409
.1 2,162 3.998 }2.046 3.949 | 1.500 3.749 | 0.616 3.543
1.878 2.338 | 1.757 . 2.254 | 1.186 1.896 |-0.256 1.503
1. 1.654 1.856 | 1.523 1.749 | 0.902 1.279 | -0.13¢  0.730
2. 1.396 1.473°] 1.246  1.337 | 0.517¢ 0.702 | -0.802 -0.114
5. 1.068 1.085 | 0.877 0.896 |-0.168 -0.120 | -2.526  -1.706
10. [ 0.857 0.861°{.0.616 - 0.614 |-0.934. .-0.968 | -5.226 -3.885
40. T -4.607 7-4.925 | -21.127 -16.158
100. :52.850 -40.483

According to the above-stated, one can get for the ground state energy for both cases

E&'f—mm—{/ dtvie [V +ta? — p] — ke + — }

B r2+p) ., @ 1 (_)}
E""*‘E‘L"{ NERCTA TE) Tz TR
24

The numerical results are shown inTable4. One can see that for x = 1/9 the nonrela-
tivistic approach comes approximately for p2 = m?/k = 100 = 500 only. .

References . .

[1] Landau L.D., and Lifschitz E.M.,\’Quantum Vl\icid}‘z\tmics :‘ ’ Non -
Relativistic Theory (Pergamon Oxford; 1977). ‘- : T

{2] Blokhintsev D.L,Quantum - Mechanics : M., :Atomizdat,, 1981-.(in Russian). . . .- :
[3] Messiah A., Quantum Alechanics (John Wil(;,yl‘é‘l\ld Syon‘s‘ .I.nc Néw Yor]\ 1961)

[4] Froman N., and Froman P. O JW I\B Appro:czmatzon (North Holland Amsterdam
1965). . . NS DA

[5] Mlodinow L' and Pap‘ameol’a"éu N., Ann. Ph'ys (N.Y.) 1% . 314(1980)
Bander C., Mlodinow L., and I’apamcolaou N., I’hys Rev A25, p. 1305(1985)
.- Ader J., Phys Lett., 97TA, p.178(1983); : ; :
Yaffe L., Rev. Mod. Phys., 54, p.497(1982);::
Witten E., Nucl. Phys. B160, p.57(1979).

Rt

[6] Sukhatme U., Imbo T., Phys. Rev. D28, ptllb( 963),
Imbo T., Pagnamenta A and Sukl xatme U., Phys. ‘Rev. D29, p 118(192:4)

7 Efimov G.V., Preprint IC/91/31 Mnamale-Tueste (1991), -
Preprint IC/90/93 Miramare-Trieste (1990). N

[8] Dineykhan M., and Dﬁmov G.V. The Osc1llatm Repleqentatlon and the Stablhl.v of
the Three- Body Coulomb Systems. Few-Body Systems 1993 (in plcss) ’

{9] Schradinger E.: Proc.R.Irish Acad.46,p. le(IQH)
[10] Kustaanheimo P.and Stiefel E ] RG]I]L Angew Math 218, p 701(19()5)

{11} CaswellWD Ann. Phys. 17'5 p. 153(1‘)19), P
Feranchuk 1.D. and Komarov L.1., Phys.Lett. A88. p.211(1982).

[12] Duru L:H. and Kleinert H., Fortsch: der Phys. 30,p.101(1982).

[13] Mlodinow L.D., Papanicolaow N., Ann. Phys., 131, p.1(1981);
Sergeev A.V., Yad. Fiz. 50 ,p.915,1989- (in Russian).

(14} Johnson R., J.Math.Phys. 21,p.2640(1930);
Papp E., Phys. Rev. A38, p.5910(1988).

[15] Hioe F.T., Don Mae Millen and Montrall E.W., Phys. Rep. C43, p.307(1978).

[16] Bender C.M., and Wu T.T., Phys. Rev. 184, p.1231(1969); Plys. Rev. DT,
p.1620(1973). '

25



[17] Stevenson PM Nucl. Phys B"3l p.6 (‘5(1984)

(18] Seetharaman M., Raghavan S., and Vason'S., J. Phys. A15, p.1537(1982); J. Phys.
Al7, p2493(1984 J. Phys. A18, p.1041(1985).

[19]. Yukalov V.I., Theor. Math. Phys., vol.28, p.652(1976) (inRussian); -
Killingbeck J., J. Phys. Al4, p.1005(1981). .

[20] Stevenson P.M., Phys. Rev. D23, p.2916(1981).

[21] Koudinov A.V.,and Smondyrev M.A., Czech. J.Phys. 32, p.556(1982); Theor. Math.
- Phys., vol.56, p.357(1982) (in Russian).

[22] Banerjee K. et al., Proc. Roy. Soc. London 360, p.575(1978).

[23] Quigg C., and Rosner J., Phys. Rep., 56, p.206(1979);
Richardson J., and Blankenbecier R., Phys. Rev. D19, p.496(1979);
Dumont- Le Page M et al., J. Phys. A13, p. 1"43(1980)

[24] Gerry.C.C., and Laub J., Phys. Rev. A30,p.1229(1984);
Lam C.S., and Varshni Y P., Phys.Rev. A6, p: 139(1972)
Becher A., Ann. Phys., 108, p.49(1977);

Dutt R. et al., J. Phys. A18, p.1379(1985);
Sever R,,,Tezcan C., Phys. Rev. A36,p.1045(1987).

[25] Basdevant J.L., Boukraa S., Z.Phys. C, 28, p.413(1985);
Goldfrey S.,Phys. Rev. D31, p.2375(1985).

[26] Eichten E., Feinberg F., Phys. rRév. D23, p.2724(1981);
" Sebastian J., Phys. Rev. D26, p.2295(1982).

[27] Martin A., Z. Phys. C, 32,p.359(196).

[28] Gupta S.N. et. al_, Phys. Rev. D26, p.3305(1982);
Godfrey S., Isgur N., Phys. Rev. D32, p.189(1983);
Golangelo P Nardulh G. and Pletrom M., Preprmt BARI TH/90-70; Phys Lett.
B220, p.265(1989): . ‘ .

(29] Eichten E. et al,Phys.'Rev. D21, p.203(1980).

Received by Publishing Department
on March 10, 1994,

26



