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An analysis of the real and imaginary parts of the polarization potential in
terms of the relative contributions of the single collective states for the
208 pp+208 pp, system has been done. The polarization potential has been
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states calculated with the Wigner function moments method. The contribution
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order of 10-209%, of the total at relatively low incident energy.
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1. INTRODUCTION:

In the collisions between complex nuclei, the excitation of the internal
degrees of freedom gives rise to a modlficatlon of .the:bare nucleus-nucleus
potential, calculated for instance by the double foldmg procedure {1]. This
modlficatlon is usually referred to as polarization potentlal Many authors [2,
3, 4; 5), using different ‘approaches and various prescnptxons to-calculate
the form factors, have studied the relevance of the excitation of vibrational
collective states (both low lying and giant resonances) for the determination
of the polarization potential. The role played by the nucleon tra.nsfer process
has also been 1nvest1ga.ted [5]. : :

Very recently, by using (a,a’y) rea.ctlons, some experlmental evidence
has been found [6] on the existence of low lying isoscalar dipole . modes in
28pp, 0Zr, N7 and *°Ca. These modes are of compressional nature and
are quite well described by the method of :the Wigner Function Moments
(WFM) [7]. Due to their isoscalar nature, it is interesting to investigate how
much they contribute to the polarization potential. In order to calculate the
latter within the same microscopic approach used in previous studxes [3, 4]
one needs the transition densities of the c0n51dered excited states. As shown
in the next section, these can be extracted from the WFM results by using the
linear. response theory Calculatlons performed for the 208 Pp 4 2‘”’Pb system
at various incident energies show that :the, contrlbutlon of these 1soscalar
compressional modes to the pola.rlzatlon potentlal amounts to 10 20 %

2. DESCRIPTION OF WFM METHOD

The detailed description of the method and derivation of its main equa-
tions can be found in [8, 9]. Here we will remind briefly only the basw 1dea.s,
just to introduce the necessary’ ‘definitions’ and notations.” "

‘The starting point for this method is the trme—dependent Hartree-Fock
equa.tlon for the dens1ty matrlx pq(rl, rz, t) S

ap S :
aq [H(q)»/’q] ) . (1)
where H® is a self-consistent single-particle Hamiltonian; ¢ is the isospin

index (g = p for protons and g = n for neutrons). A Skyrme-type effective
force (SGII) is used as nucleon-nucleon interaction.
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Equation (1) is'transformed to an equation for the Wigner functic;on
1 ) ‘
fo(rsp,t) = .27r_h./ e~ PR o (r+5/2,r ~5/2,t) ds

where H{(r,p) = [ e=P*/Mr4s/2 | H® | r—5/2) ds and r = (r; +
r2)/2, s = r; — r,. The moments of fy in momentum space. define the

nucleon densities ny(r, t), the mean velocities u,(r,t) and tensors of any rank
Foijk(r,t) :

B
n [5 (VEV) - VEIN Y, (2)

nq(r,t) = / fq(r1 P, t) dp,
mong-w(nt) = [ pAGe,0 dp,
Pq.‘;....',. = m!™" / (Piy — mugi) ... (pi, — mugs, ) fy(r,p,t) dp,

where m is the nucleon mass. The method consists in taking moments of
equation (2) in phase space, i.e., in integrating Eq.(2) in p and r spaces
with different weights, in order to obtain a set of dynamic equations (virial
theorems) for some chosen moments of the Wigner function. ‘For example,
to describe the negative parity states 17,27,3~ one must integrate Eq.(2) in
momentum space with the weights 1, p;, pip;, pip;ps (p; are components of the
momentum p) as a first step. One arrives at a set of coupled time evolution
equations for the density (continuity equation), for the mean velocity ugi(r,t)
(Euler equation), for the pressure tensor P,;;(r,t) and for the third rank
tensor Fqijk(r,t). Then the obtained equations, weighted with z; and T,T;T
for n,, with 1 and z;z for u,;, with z, for F,i; and lastly with 1 for P,
are.integrated in r-space. Thus one arrives at a closed system of coupled
dynamical equations for different integral characteristics of the nucleus —
Cartesian tensors of the first and third ranks: [ ng(r,t) z; dr, [ uyi(r,¢) dr,
J ng(r,t) zizjzi dr, [ ugi(r,t) z;z.dr, J Puij(r,t) zydr, [ Ppi(r,t) dr.
In the case of simple interaction (a harmonic oscillator with a separa-
ble multipole-multipole residual interaction, for example) the integrals con-
taining the interaction can be expressed in terms of the Cartesian tensors

mentioned above. As a result.one obtains a system of nonlinear equations
for the integral characteristics of different multipolarities. .:In the general
case of a realistic interaction the integrals containing the interaction can
not be expressed in terms of integral characteristics without any approx-
imations. This problem is solved rather easily in the case of small am-
plitude motion. To obtain the corresponding equations we vary the virial
equations taking n.(r,t) = ngo)(r) + ény(r,t), ugi(r,t) = u‘(::-)(r) + ugi(r, t),
Pyis(r,t) = PONE) + 8Pysi(r, ), Pyisa(r,t) = POL(r) + 8Pyuju(r,t) and ig-

is Faijk
noring terms';ﬁ’a.dratic in the variations 6. So we arrive at a set of linearised
equations, which are a very convenient means to study the collective small
amplitude motion. These equations are simple differential equations. In the
case of harmonic oscillations they become algebraic equations. The coeffi-
cients in these equations depend only on the ground state properties. They
are linear combinations of integrals over the nuclear volume of different pow-
ers of ground state particle densities ngo), kinetic energy densities Pq(?,-) and

of their space derivatives.

3. TRANSITION DENSITY

The transition density is defined as the matrix element (0|5(r)|c) of the
density operator :

N
plr) =) 8(c=7) 3)
=1
where 7; is the position operator of particle ¢ and |0) and |a) are the ground
and excited state, respectively [10]. The problem of WFM method consists in
finding this matrix element without calculating the wavefunctions of |0) and
|e). This can be solved with the help of linear response theory. The linear
response to the perturbation operator O(t) = F exp (—iwt) + F't exp (+iwt)
can be written as ‘

W = Ly (Olafar|v) (vlalagl0)  (0lafaylv)(vlafas[0) 1,
Pt ’ h'pqu w—0Q, v wH rq
_ Iy {<01a{aklu><u|ﬁlo>' _ <o|F‘|‘v><v|é{dk|o>} @
h w—Q, w+a, ’
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t
where a;,a; are ereation and annihilation operators, (2, the eigenfrequen-

cies of the system, and F' = qu qua a;. Using the second quantization
representation for the densxty operator

i) = (e, . %)

where dp,(r) = (p|6(r —7)|g) = ¢5(r)@e(r) and ¢,(r) being a basis of single
particle wavefunctions, we can write the following equatxon for the change of
densnty

E pl(cl)dlk(r)

0]()|V)VIF|0 0)F|v){(v|p  0‘ |
ﬁz{ A(r ) _ (ol Iw)ig(r)l)}’

én(r)

(6)

Wthh we calculate with the help of the WFM. By varying the continuity
equation

on, . ‘
at ='—div {nou, + ﬂnqnq’(uq - uq)} A (7)

we express the change of density in terms of sma.ll displacements £,;

= —Z a {neqs +"7" o (€gs — ra)}s (8)

=1

where 2£,i(r,t) = Su,i(r,t). These dlspla.cements are pa.ra.metrlzed in the
followmg way : : : ‘ : »

&l t) “ q-(t) + Zqu-J(t) z; + Z quk(t) szk . (9)

Jk=1"

The tensors Lg;(t), Lqi;(t), Lyi,;x(t) are found by solving the system of cou-
pled dynamical equations involving moments of the Wxgner function. Their
derivation was described in ref. [7, 9]. It is evident that one can extract the
information about the transition density from eq. (6) taking the limit

im w — Qu)én(r) = (0]5(c)]a) (el Fl0), (10)

Thus, to determine the transition density (0|4(r)|a) from this expression it
is necessary to know the matrix element (a|F'|0). By using eqs. (6) and (10)
one can get the square modulus of the required matrix element : '

Jip 8w = 02) [ dr S©)5n(E) = OFla)(alFI0) = [P, (1)

which is true for any hermitian single particle operator F. In the case of a
real operator one can write

(o] Fl0) = [ lim A(w - ) / dr f(r)6n(r)]% (12)

Then the final expression for the transition density is

+ limy—q, A(w — Qa)én(r) K
e N ( )
(Olp(x)ler) = [lllnu—ona h(w = Q) [ dr f(r)én(r)]? - | |

Combining eqs. (13) and (8) we get the explicit expressions for the transition
densities of the various multipolarities

Ot = (A4 A as (14)
i) = 2B, 4 B, (15)
OBIT) = {ra()(Ci +Canl(r) +

a’;ff) (Ca + Car® + n(r)(Cs + Cor)| i, (16)

{u(n <r>+;a’;£')>+

Dg(nz(r)-i- -rn ()3 n(r)

(0lA(r)io*)

il

)}Yoo, (17)

where the constants A and D are combinations of the tensors Lyij; B,
of tensors Ly;jx; C, of tensors L,; and L,; ;. These expressions are too
complicate, to be written here. So we describe the derivation of formulae for
the most simple constants (A4,, A;) in the Appendix, just to give a general
idea of the procedure.
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Fig.1.
Proton (left) and neutron (right) transition densities for low-lying dipole ex-
citations in 2®Pb with the energies E, = 7.65MeV, E; = 8.99MeV and
E3 = 10.01MeV, from top to bottom. The dashed curves are the results of
calculations with only the linear density terms (formulae (14)-(17)).

The transition density of Giant Octupole Resonance (GOR) differs from
that of Low Energy Octupole Resonance (LEOR) by the values of the con-
stants B. It is necessary to note that in our calculations LEOR includes also-
the contribution from the lowest 3~ state, because the WFM method gives
the centroid of all 3~ states lying below GOR. The expressions (14), (15) for
the transition densities of 2* and 3~ excitations differ from that of Tassie
model by terms quadratic in the density (terms in A; and B,). Numerically
these terms turn out to be small. The formula for the transition density of 0%
practically coincides with the one derived in [13]. The only difference is the
term proportional to D,, which however is numerically very small. The ex-
pression (16) can be compared with formula of Harakeh and Dieperink [12],

- which was derived supposing that all energy weighted sum rule (EWSR) is

exhausted by one state. All the three terms linear in the density have the
same radial dependence, but the corresponding coefficients C), C2, C5 have
nothing in common with. that of ref. {12]. Moreover, the terms proportional
to n(r)? give a noticeable contribution in this case. So the total radial depen-
dence of 1~ transition density may be different from that of [12]. We have
three low-lying 1~ states contributing to the isoscalar EWSR. Their proton
and neutron transition densities are shown in Fig.1, left and right side, re-
spectively. The dashed lines give the transition densities calculated by using
only the linear terms in the density, while the solid lines include also the
quadratic ones. It is seen that the transition densities of all three excitations
are rather large inside the nucleus demonstrating their compressional nature.
The highest excitation has the largest contribution quadratic in the density
and has a rather big admixture of isovector mode.

4. POLARIZATION POTENTIAL

The most elegant way to calculate the polarization potential is to follow
the Feshbach formalism [2, 4]. In this approach it is very easy to take ex-
plicitly into account the contribution of some definite collective states. Here
we will briefly describe the method which has been extensively described in
ref. [2, 4]. In the Feshbach approach the effective heavy ion interaction is
written as

V(R,R') = (00]v(R)|00)5(R — R)



4 3 (00[(R)K Ka) Gy (R, RY)(K Kolo(R)00)
KiK,
= Vr(R)+AV(R,R)) . (18)

In the first term the nucleon-nucleon interaction v(R) is double folded with
the ground state densities of the two nuclei. In the second term the sum is
over all the non-elastic channels, and v(R) is double folded with the transition
densities of the two nuclei: it describes the coupling of the elastic channel
to the non-elastic ones. This term is the so-called dynamical polarization
potential. Its physical meaning is transparent from eq. (18): The interaction
acting at the distance R’ takes the system in one of the non-elastic channels,
then it is propagated at another distance R where the interaction, acting
again, brings back the system into the elastic channel. Then the polarization
potential is non-local, and if one or more of the non-elastic channels is open
it is also-complex and its absorptive part describes the loss of flux from the
elastic channel. The couplings make AV also energy dependent because of
the appearance of the energy in the propagator Gx,x, (R, R’).

The calculation of eq. (18) is a very difficult task because of the presence
of the propagator, then we calculate it in the WKB approximation:

i exp(iMi,k,(p)s)

Grika(pys) ~onh? P (19)
with 9
M}, (p) = 25 [Ben = Ex, = By = Vi) = Vo(o)], (20)
where ] _
,p=v§(R+R'); s=|R-R/| (21)

The local optical potential Vi(p) is given by
| | - Vale) = V(o) + AVL(p) (@)

while V; is the Coulomb potential between the two nuclei. A procedure
to define the local polarization potential AV, will be given later on in this
paper. ' : S

Within the double folding approach the form factors can be written as

Fro(R) = (Q0Iu(R)IK0) = [ drsdes pya(v)olles = r2 + Ripu(rz) (29

-

s ':;“,.,W: e

where p,. , and p,, are the transition density and the ground state density,
respectively. These are calculated within the WFM method, as described in
section 3.. The details of the calculation of AV(p,s) are reported in ref. [4].-

The potential so obtained is non-local, but since the range of non-locality
of AV is small with respect to its radius [4] we can use a standard proce-
dure [11] to obtain a local potential from a non-local one. Then

AV(p) = 4n / j. (ks)ReAV(p, 5)s?ds (24)
W(p) = 41r/jo(ks)lmAV(p, s)s’ds, (25)
where j_ is the Bessel function and

8= 2B~ Vi)~ Velo)] - (26)

5. RESULTS AND DISCUSSION

We have done calculations for the system 2% Pb+ 298 P} at several incident
energies. The levels used in the calculations are reported in the Table : they
were obtained with the WFM method. We have parametrized the ground
state density with a Fermi distribution n(r) = no/(1+exp [(r — R)/a]) whose
parameters are the following [14]: R = 1.115 A3 — 0.53 A3 fm, a =
0.568 fm, while ng is fixed by the condition 47 f° n(r)r?dr = A. As already
stated in section 3., the transition densities have the advantage to have an
analytical form from which one can see that their first term corresponds to
the Tassie model in the case of 2%, 3= and 0% multipolarities. The corrections
with respect to the Tassie ones are not important. Formula for 1~ is new and
has nothing common with Tassie model, because it takes into account the
center of mass movement. The bare potential has been obtained by double
folding the nucleon - nucleon effective interaction M3Y [1] with the ground
state density of the two nuclei. In the same way we have obtained the form
factors eq. (23) by double folding the M3Y with the ground state density of
one nucleus and the transition density of the other one. Examples of form
factors are shown in Fig. 2: at the right side we show the one related to
the LEOR, while at the left side are reported the ones concerning the three



. Table
Isoscalar collective states of 22 Pb used in the calculations
J"| E,MeV | EWSR, %
1- 7.65 5.79
8.99 2.94
10.01 1.13
2t 11.82 33.35
3~ 4.65 15.14
22.21 16.20
ot 13.63 34.28
17 Low Lying 37 Low Lying
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Form factors for °8 Pp for the reaction 2°8 Pb + 298 Pb for two different mul-
tipolarities. The three curves in the left part correspond to the isoscalar
GDR states with excitations energies E; = 7.65 MeV (solid curve), E; =
8.99 MeV (dashed curve) and E3 = 10.01 MeV (long - short dashed curve).
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isoscalar GDR states. In the latter case the oscillations are due to the fact
that the form factors change sign around 10fm.

In order to show the relative contribution of the states included in the
calculations we have computed the polarization potential for various energies
as a function of the relative distance R. In fig. 3 we show the contribution
due to different multipolarities( as indicated in the figure) to the real (left)
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Contribution of the different multipolarities ( as indicated in the figure) to
the real (left) and imaginary (right) parts of the local polarization potential
plotted in percentage of the total potential as function of the relative distance
R for three different values of incident energies for the reaction 28 Pp+- 208 Pp,
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Contribution of the different multipolarities ( as indicated in the figure) to
the real (upper part) and imaginary (lower part) part of the local polarization
potential plotted as function of incident energy for a fixed relative distance
R = 16 fm for the reaction 2P + 293 Pp, :

and imaginary (right) part of the polarization potential plotted in percentage
of the total potential as a function of the relative distance R. We notice that
the most important contribution to both real and imaginary parts is due to
the low lying 3~ state.  As the incident energy is increasing the relative con-
tribution of the GQR becomes more important. This different behaviour has
already been found in previous studies [3, 4]. The novel result is represented
by the contribution of the isoscalar GDR states which lies between 10-20 %,
that is to say comparable with the contribution of the GQR at least for the
imaginary part.

12

We have also calculated the polarization potential at a fixed relative dis-
tance (R = 16 fm) as a function of the incident energy taking into account
the explicit contribution .of the different multipolarities. The results are -
shown in fig. 4 where the different curves correspond to the contributions of
the different states as indicated in the figure. Again we notice the importance
of the LEOR, which is overwhelming with respect to the other states in a
large range of incident energy for the case of the i 1ma.gma.ry pa.rt while for the
real part the contribution of the GQR, at higher energies, is essentially the
same as the one of the low lying 3~ state. The contribution of the isoscalar
GDR to both real and imaginary parts of the polarization potential is more
important (at this distance) at low energy, and it decreases with the energy
slower for the absorptive part than for the real part. .

The interplay between the LEOR and the GQR states seems s to contradict
the findings of ref. [3, 4]. In particular the contribution of the LEOR to the
absorptive part is very big with respect to the one of the GQR. As explicitly
stated in the second paper. of ref. [4], this is.due to the fact that we are
using transition densities (hence different form factor) different from the one
used in ref. [4] which were ca.lcula.ted in the fra.mework of the Random Phase
Approximation. : :

6. CONCLUSION

We have done an. analysns of the real and 1ma.gmary pa.rts of the polar—
ization potentlal in terms of the relative contributions of the single collective
states for the system 2°®Pb 4 2%Pp.. The polarization potential has been
calculated within the Feshbach formalism taking into account the collective
states calculated with the WFM method. Within this method it is possible
to obtain also- 1soscalar GDR states  whose contribution to the polarization
potential has been estimated being of the order of 10-20 % of the total at rel-
a.tlvely low incident energy. Then this contribution should in principle show
up in some experlmental observable, like for 1nsta.nce the elastic cross sec-
tion. The other multlpo]antles give a contribution which has been analyzed
in great detail in the previous work [3, 4] where shghtly different results were
obtained. This can be ascribed to the dlﬂ'erent form fa.ctors we have used in
the ‘two cases. : : A RTEIEN
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. APPENDIX

Transition density for 2+ excitation

Multlplymg (8) by r?*Y3,(8,¢) and 1ntegrat1ng over angles we find the
radial dependence for the change of densrty ,

5"q(7')2u=—ﬁ T Lot 1 (- ) (cqzu-ﬁlu)}, (A1)

where the components of the 1rreduc1ble tensors [,,, 2y BTE : linear comblna.tlons
of L ¢ij- In the case of a spherical nucleus we can study any component of

L34, for example L,a5: . ‘ L
Lom =Ly = Len + 2ilgns, Ly = - L i + L,, (42)

For a spherical ‘nucleus Lq 11 = L4322 so we will concentrate our attentlon
on-Lg1z. Following the prescriptions of chapter 2 and using formulae (8,9)

one ‘can’ derive the system'of coupled: dyna.mlca.l equations for L,,7 12 and -

f&Pqudr = 7rq12 (see ref. [9]): .
qu2 - 2bq qu 12+ 2bq2L 1y — 2bq3,37fq12 =

i / ra—q Yiu- W(t)dr, (43)

Brg1z+dgr - Lyrg —dga- Lq’l2 =0,
where f = m and W(t) = er}(Yy,e=! 4 Yy, e™t) is the external
field. The correspondlng system for the other kind of nucleons is obtained by
cha.nglng qe q The followmg notatlons have been 1ntroduced here

’

. Z 4 , l ,
be1 ='ma1A+74ﬁ2 8 +2T3q+z(7T1 +2T2q)+5qp 15(,0( +‘1]noz)
s ) 8 .

. z
qu-z_;n'zal'f4+74hz 8 +Z(7T1+2T2q)+5q’p“ 15 I]TIOZ o
o - 2rm 15 08/3 oo
boa=1+ h’;A ok, (t+ . /2), ,,_?7,, el
'dq‘lf— 4( 5/3 8’120‘8/3)7 o ‘ _
A = (1+ )(S4+217'R4)+ 120{(cr+1)[(cr(1 —z3)+2(2+za)]+

+20(cr - 1)(1 + 223)z2’} - (R + 29RIMY),

14

ey 2,

& = 2(RY° + 29RY®), 4 = 1n, =2

3%

Bt 2 1 4cs
= mg[ﬁz + Qo + 271(4732 + Ql. - 353)]7
K2 A
Tqa = ima 471( t+ ~t )R+ Sa)]a qs— 8ma 4(—t+ t.)S;,

a”=/ ‘n(r)*r¥ dr, 'R,i“:/ n(r)“r"( )2dr

[+] 1] ‘

‘ L On e 9%n .
R I‘= B _ W = [ B4 2

s /0 (37" dn Q. /o n(r)“r (—azr) dr,

n(r) = np(r) + nu(r), z= Xq, 7= Tq, n= #, Ctr =ttt
t. =t —t,. The qua.ntltles to, tl, tz, t3, 0, 29, z3 are the parameters

of Skyrme forces; ep, the proton charge; m, .the nucleon . mass. Deriving
these formulae for byi, dyi we used the Thomas-Fermi approximation for the
ground state pressure tensor P° 2i3(F) = 8ijyng(r)*/3 with 4 = L (3733,

The system of differential equations (A3) becomes a.lgebra.lc one takmg
into account the evident time dependence of variables L, lg(t) Lq 12 € and
Ta12(t) = 712 €. the solution of . this system is :

Ly =404, I 12 =A0g/A, B o (A4)

where A is the determinant of system (A3). The determinant A, is obtained
by substltutmg the correspondmg column of A by the rlght ha.nd side column
of (A3). A is a biquadratic polynomial and has two roots 02 and Q2 which are
interpreted as isoscalar and isovector giant quadrupole resonances. Writing
the determinant in the form A = ¢ (w? — 22)(w? = Q2), where ¢ is a constant

and putting (A4) into (A1) one can easily calculate. the limits in (13) and
find the constants 4, Az
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