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An analysis of the real and imaginary parts of the polarization potential in 
terms of the relative contributions of the single collective states for the 
208 Pb+208 Pb system has been done. The polarization potential has been 
calculated within the Feshbach formalism taking into account the collective 
states calculated with the Wigner function moments method. The contribution 
of the isoscalar giant dipole resonance states has been estimated being of the 
order of 10.:20% of the total at relatively low incident energy. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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1. INT.RODUCTION: 

In the collisions between complex nuclei,·. the excitation of the internal 
degrees of freedom gives rise to a modificatiin of the bare nucleus-nucleus 
potential, calculated for instance by the double folding procedure [1]. This 
modification is usually·referred toas polarization potential. Many authors [2, 
3, 4; 5], using different approaches and various ·prescriptions to calculate 
the form factors, have studied the relevance of the excitation· of vibrational 
collective states (both low lying and giant resonances) for the determination 
of the polarization potential. The role played by the nucleon transfer process 
has also been investigated [5]. 

Very recently, by using (a,a',) reactions, some experimental evidence 
has been found [6] on the existence of low lying isoscalar dipole modes in 
208Pb, 90 Zr, 58Ni and 4°Ca. These modes are of compressional nat~re and 
are quite well -described by the method of . the Wigner Function Moments 
(WFM) [7]. Due to their isoscalar nature, it is interesting to investigate how 
much they contribute to the polarization potential. 111 5?r~~r. to. calculate the 
latter within the same.microscopic approach used in previous studies [3, 4] 
one needs the transition densities of the considered excited st~tes. As shown 

' . ,· ,, ' " . •·, ·' '. . ' 

in the next section, these can be ext.ractedfrom the WFM results by using the 
linear response theory .• Calculations performed. for the 208 Pb+ 208 Pb system 
at various incident energi«;s show that ,the, .~ontribution of these iso.scalar 
compressional modes to the polarization potential amounts to 10-20. %. 

• ••• > • •• • ,, • 

2. DESCRIPTION OF WFM:METHOD 

The detailed description of the method and derivation of its main equa­
tions can be found in [8, 9]. Here we will remind briefly only the basic ideas, 
just to introduce the necesSary-1 d~finitions ·arid nOtatioris~, · · l -~ 

· The starting point for ·this method is the tim~dependent· Hartree-Fock 
equation for the density matrix pq(r1, r2 , t): · · 

(1) 

where iJ(q) is a self-consistent single-particle Hamiltonian; q is the isospin 
index (q = p for protons and q = n for neutrons). A Skyrme-type effective 
force (SGII) is used as nucleon-nucleon interaction. 



Equation (1) is
1
transformed to an equation for the Wigner function 

/q(r, p, t) = 
2
~n j cip-s/1i pq(r + s/2, r - s/2, t) ds 

8/q _ ~ · [! ( H J _ rrH rrf)] H(q) r ( ) 8t - n sm 2 vr .VP v P. v r w Jq , 2 

where HU\r,p) = J cip-s/fi(r+s/2 I H(q) I r-s/2) ds and r = (r1 + 
r2)/2, s = r1 - r2 . .The moments of fq in momentum space define the 
nucleon densi~ies nq{r, t), the mean velocities uq(r, t) and tensors of any rank 
Pqij ... k(r, t) : 

nq(r, t) = j fq(r, p, t) dp, 

m; nq • uq(r,t) = j p /q(r,p,t) dp, 

Pqi1 ••• in = m1-" J (Pi1 - muqii) ... (Pin - ffiUqiJ/q(r,p, t) dp, 

where m is the nucleon mass. The method consists in taking moments of 
equation (2) in phase space, i.e., in integrating Eq.(2) in p and r spaces 
with different weights, in order to obtain a set of dynamic equations (virial 
theorems) for some chosen moments of the Wigner function. For example, 
to describe the negative parity states 1-, 2-, 3- one must integrate Eq.(2) in 
momentum space with the weights 1, Pi, p;p;, p;p;pk (p; are components of the 
momentum p) as a first step. One arrives at a set of coupled time evolution 
equations for the density ( continuity equation), for the mean velocity uq;(r, t) 
(Euler equation), for the pressure tensor Pq;;(r,t) and for the third rank 
tensor Pqijk(r, t). Then the obtained equations, weighted with x; and x;x;xk 
for nq, with 1 and x;xk for Uq;, with Xq for Pq;; and lastly with 1 for Pqijk, 
are,integrated in r-space. Thus one arrives at a closed system of coupled 
dynamical equations for different integral characteristics of the nucleus· -
Cartesian tensors of the first and third ranks: J nq(r, t) x; dr, J uq;(r,t) dr, 
J nq(r, t) x;x;xk dr, J uq;(r, t) x;xkdr, J Pq;;(r, t) xkdr, J Pqijk(r, t) dr. 

In the case of simple interaction ( a harmonic oscillator with a separa­
ble multipole-multipole residual interaction, for example) the integrals con­
taining the interaction can be expressed in terms of the Cartesian tensors 

2 

), 

-1 

mentioned above. As a result . one obtains a system of nonlinear equations 
for the integral characteristics of different multipolarities. Jn the general 
case of a realistic interaction the integrals containing the interaction can 
not be expressed in terms of integral characteristics without any approx­
imations. This problem is solved rather easily in the case of small am­
plitude motion. To obtain the corresponding equations we vary the virial 
equations taking nq{r, t) = n~0>(r) + Snq(r, t), uq;(r, t) = u~~)(r) + Suq;(r, t), 

Pq;;(r,t) = P!~](r) + SPq;;(r,t), Pq;;k(r,t) = P!~)k(r) + SPq;;k(r,t) and ig­
noring terms quadratic in the variations 8. So we arrive at a set of linearised 
equations, which are a very convenient means to study the collective small 
amplitude motion. These equations are simple differential equations. In the 
case of harmonic oscillations they become algebraic equations. The coeffi­
cients in these equations depend only on the ground state properties. They 
are linear combin~tions of integrals over the nuclear volume of different pow­
ers of ground state particle densities n~o), kinetic energy densities P:~] and 
of their space derivatives. 

3. TRANSITION DENSITY 

The transition density is defined as the matrix element (0lp(r)la) of the 
density operator 

N 

p(r) = L c5(r_- r;) , (3) 
i=l 

where r; is the position operator of particle i and I0) and la) are the ground 
and excited state, respectively [10]. The problem of WFM methud consists in 
finding this matrix element without calculating the wavefunctions of I0) and 
la). This can be solved with the help of linear response theory. The linear 
response to the perturbation operator O(t) = Fexp (-iwt) + frt exp ( +iwt) 
can be written as 

(t) . _ !_ '°' { (Ola[aklv)(vla!aqlO) _ {Ola!aqlv)(vla[aklO)} 
Pkz - n LJ w - n . w + n., fpq 

pqv· " 

= !_ L { {Ola/aklv)(vlF'IO) _ {OIF'lv)(vl~/aklO)} , (4) 
n w-n., w+n., 

" 

3 



where af, a,. are creation and annihilation operators, n., the eigenfrequen­
cies of the system, and F' = Lpq fpqa!aq. Using the second quantization 
representation for the density operator 

p(r) = L dpg(r)a!aq, (5) 
qp 

where dpq{r) = (plt5(r - r)lq) = ¢,;(r)¢,q{r) and ¢,g{r) being a basis of single 
particle wavefunctions, we can write the following equation for the change of 
density · · · · 

t5n{r) = L pWd1,.(r) 
kl 

= ~ L { (Olp(r)lv)(vlF'IO) _ (OIF'lv)(vlp(r)IO)}, (
6

) 
1i w-n., w+n., 

II 

which we calculate with the help of the WFM. By varying the continuity 
equation 

a;q = -div {nqUq + 17nqnq,(Uv - u~)} (7) 

we express the change of density in terms of small displacements eqi 

3 a 
Dnq = - La {nqeq. + 7]nqnq,(eq. -eq••)}' 

•=1 x, 
{8) 

where ieqi{r, t) = DUqi(r, t). These displacements are parametrized in the 
following way 

3 3 

eqi(r, t) = Lq.i(t) + L Lq.i,;(t) x; + L Lqidk(t) XjXk (9) 
i=l j,k=l 

The tensors Lqi(t), Lqi,;(t), LqiJk(t) are found by solving the system of cou­
pled dynamical equations involving moments of the Wigner function. Their 
derivation was described in ref. [7, 9]. It is evident that one can extract the 
information about the transition density from eq. (6) taking the limit 

Iim 1i(w - !la)t5n(r) = (Olp{r)lo:)(o:IF'IO), 
W-+Oa 

(10) 

4 

\ 

·r 

Thus, to determine the transition density (0lp(r)lo:) from this expression it 
is necessary to know the matrix element (o:IFIO). By using eqs. {6) and {10) 
one can get the square modulus of the required matrix element : 

}!_I[fa 1i(w - !la) J dr f(r)t5n(r) = (OIF'lo:)(o:IFIO) = l(o:IFIO)l
2

, {11) 

which is tr~e for any hermitian single particle operator F. In the case of a 
real operator one can write 

(o:IFIO) = ± [ lirri 1i(w - !la) J dr f(r)t5n{r)] ½. {12) 
w-+Oa 

Then the final expression for the transition density is 

(0lp(r)lo:) = · ± liII1w-n 0 li(w - !la)t5n{r) 
1 

• {l3) 
[liII1w.:.+n0 1i(w - !la) J dr f(r)Sn(r)] 2 

Combining eqs. {13) and (8) we get the explicit expressions for the transition 
densities of the various multipolarities 

(0lp(r)l2+) 

(0l,o{r)lr) 

(0l,o(r)ll-} 

(0lp(r)I0+) 

8n(r) 
= r-a;:-{A1 + A2n{r))½1-1, 

2 8n(r) = r -a;:-(B1 + B2n(r))½1-1, 

= {rn{r)(C1 + C4n(r)) + 

a;~)[C3 + C2 r2 + n{r)(Cs + C6r2)] }Yi1-1, 

{ 
r8n(r) = D1 (n(r)+ 3-a;:-)+ 

2 2 8n{r) } 
D2 (n (r) + 3rn(r)-a;:-) Yoo, 

(14) 

{15) 

(16) 

(17) 

where the constants A and D are combinations of the tensors Lg;,;; B, 
of tensors LqiJki C, of tensors Lqi and Lqi,ik· These expressions are too 
complicate, to be written here. So we describe the derivation of formulae for 
the most simple constants (A1, A2) in the Appendix, just to give a general 
idea of the procedure. 

5 
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Proton (left) and neutron (right) transition densities for low-lying dipole ex­
citations in 208 Pb with the energies E1 = 7.65M e V, E2 = 8.99M e V and 
E3 = 10.0lMeV, from top to bottom. The dashed curves are the results of 
calculations with only the linear density terms (formulae (14)-(17)). 
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The transition density of Giant Octupole Resonance (GOR) differs from 
that of Low Energy Octupole Resonance (LEOR) by the values of the con­
stants B. It is necessary to note that in our calculations LEOR includes also -
the contribution from the lowest 3- state, because the WFM method gives 
the centroid of all 3- states lying below GOR. The expressions (14), (15) for 
the transition densities of 2+ and 3- excitations differ from that of Tassie. 
model by terms quadratic in the density (terms in A2 and B2). Numerically 
these terms turn out to be small. The formula for the transition density of o+ 
practically coincides with the one derived in [13]. The only difference is the 
term proportional to D2, which however is numerically very small. The ex­
pression (16) can be compared with formula of Harakeh and Dieperink [12], 
which was derived supposing that all energy weighted sum rule (EWSR) is 
exhausted by one state. All the three terms linear in the density have the 
same radial dependence, but the corresponding coefficients C1, C2, C3 have 
nothing in common with. that of ref. [12]. Moreover, the terms proportional 
to n(r)2 give a noticeable contribution in this case. So the total radial depen­
dence of 1- transition density may be different from that of [12]. We have 
three low-lying 1- states contributing to the isoscalar EWSR. Their proton 
and neutron transition densities are shown in Fig.I, left and right side, re­
spectively. The dashed lines give the transition densities calculated by using 
only the linear terms in the density, while the solid lines include also the 
quadratic ones. It is seen that the transition densities of all three excitations 
are rather large inside the nucleus demonstrating their compressional nature. 
The highest excitation has the largest contribution quadratic in the density 
and has a rather big admixture of isovector mode. 

4. POLARIZATION POTENTIAL 

The most elegant way to calculate the polarization potential is to follow 
the Feshbach formalism [2, 4]. In this approach it is very easy to take ex­
plicitly into account the contribution of some definite collective states. Here 
we will briefly describe the method which has been extensively described in 
ref. [2, 4]. In the Feshbach approach the effective heavy ion interaction is 
written as 

V(R, R') = (00!v(R)I00}o(R - R') 

7 



+ L (00lv(R)IK1K2} GK1K 2 (R, R')(K1K2lv(R')I00} 
K1K2 
VF(R)+~V(R,R') . (18) 

In the first term the nucleon-nucleon interaction v(R) is double folded with 
the ground state densities of the two nuclei. In the second term the sum is 
over all the non-elastic channels, and v(R) is double folded with the transition 
densities of the two nuclei: it describes the coupling of the elastic channel 
to the non-elastic ones. This term is the so-called dynamical polarization 
potential. Its physical meaning is transparent from eq. {18): The interaction 
acting at the distance R' takes the system in one of the non-elastic channels, 
then it is propagated at another distance R where the interaction, acting 
again, brings back the system into the elastic channel. Then the polarization 
potential is non-local, and if one or more of the non-elastic channels is open 
it is also complex and its absorptive part describes the loss of flux from the 
elastic channel. The couplings make ~ V also energy dependent because of 
the appearance of the energy in the propagator GK1K 2 (R,R'). 

The calculation of eq. {18) is a very difficult task because of the presence 
of the propagator, then we calculate it in the WKB approximation: 

with 

where 

GK1K
2
(p,s) ~ µ exp(iMK1K2 (p)s) 

21rn2 s 

Mi.K2 (p) = ~ [Ecm - EK1 - EK2 - VL(P) - Vc(p)], 

1 
p = -(R + R') j s = IR - R'I 

2 
The local optical potential VL(p) is given by 

VL(P) = VF(P) + ~VL(p) 

(19) 

(20) 

{21) 

(22) 

while Ve is the Coulomb potential between the two nuclei. A procedure 
to define the local polarization potential ~ VL will be given later on in this 
paper. 

Within the double folding approach the form factors can be written as 

FK1o{R) = (00!v(R)IK10} = J dr1dr2 pK10 (r1)v(l~1 - r2 + Rl)p00 (r2) (23) 

8 

.i) 

. !1 
') 

.i 

i 

J 
!J, 

where pK
10 

and p00 are the transition density and the ground state density, 
respectively. These are calculated within the WFM method, as described in 
section 3 .. The details of the calculation of ~V(p, s) are reported in ref. [4].· 

The potential so obtained is non-local, but since the range of non-locality 
of ~ V is small with respect to its radius [4) we can use a standard proce­
dure [11) to obtain a local potential from a non-local one. Then 

~V(p) = 41r J j0 (ks)Re~V(p,s)s 2ds 

W(p) = 41r J j 0 (ks)Im~V(p, s)s2ds, 

where j
0 

is the Bessel function and 

k2 = 2~ [Ecm - VF(P) - Vc(p)] . n, 

5. RESULTS AND DISCUSSION 

(24) 

(25) 

(26) 

We have done calculations for the system 208 Pb+ 208 Pb at several incident 
energies. The levels used in the calculations are reported in the Table : they 
were obtained with the WFM method. We have parametrized the ground 
state density with a Fermi distribution n(r) = n0 /(1 +exp [(r - R)/a]) whose 
parameters are the following [14]: R = l.115A113 - 0.53A-1f3 fm, a= 
0.568 fm, while n0 is fixed by the condition 41r fa"° n(r)r2 dr = A. As already 
stated in section 3., the transition densities have the advantage to have an 
analytical form from which one can see that their first term corresponds to 
the Tassie model in the case of 2+, r and o+ multipolarities. The corrections 
with respect to the Tassie ones are not important. Formula for 1- is new and 
has nothing common with Tassie model, because it takes into account the 
center of mass movement. The bare potential has been obtained by double 
folding the nucleon - nucleon effective interaction M3Y [1] with the ground 
state density of the two nuclei. In the same way we have obtained the form 
factors eq. (23) by double folding the M3Y with the ground state density of 
one nucleus and the transition density of the other one. Examples of form 
factors are shown in Fig. 2: at the right side we show the one related to 
the LEOR, while at the left side are reported the ones concerning the three 

9 
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• Table 
Isoscalar collective states of 208 Pb used in the calculations 

J1r E,MeV 
1- 7.65 

8.99 
10.01 

2+ 11.82 
3- 4.65 

22.21 
o+ 13.63 

1- Low Lying 

I I 
II 
~ 

EWSR, % 

,,--. 
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Q) 

::s 

5.79 
2.94 
1.13 

33.35 
15.14 
16.20 
34.28 
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3- Low Lying 

5 10 15 20 25 30 5 10 15 20 25 30 
Fig.2. R (fm) R (fm) 

Form factors for 208 Pb for the reaction 208 Pb+ 208 Pb for two different mul­
tipolarities. The three curves in the left part correspond to the isoscalar 
GDR states with excitations energies E 1 = 7.65 MeV (solid curve), E2 = 
8.99 MeV (dashed curve) and E3 = 10.01 MeV (long - short dashed curve). 
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isoscalar GDR states. In the latter case the oscillations are due to the fact 
that the form factors change sign around lOfm. 

In order to show the relative contribution of the states included in the· 
calculations we have computed the polarization potential for various energies 
as a function of the relative distance R. In fig. 3 we show the contribution 
due to different multipolarities( as indicated in the figure) to the real (left) 

lOOr •E·: ~:O? :•· j t~~~=~~~c 
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Fig.3. 
Contribution of the different multipolarities ( as indicated in the figure) to 
the real (left) and imaginary (right) parts of the local polarization potential 
plotted in percentage of the total potential as function of the relative distance 
R for three different values of incident energies for the reaction 208 Pb+ 208 Pb. 

II 



I; 

,.......,_ 
:> 

Q) 

~ ........, 

:> 
<] 

I 

,.......,_ 
:> 

Q) 

~ ........, 

~ 
I 

Fig.4. 

zoaPb + zoaPb, R= 16 fm 
3 ,............-,---,~--.--.-..---.--,----,~---r-...... ~--.--'7""7 

2 

1 

0 

1.5 

1.0 

0.5 

0.0 

' \ 
\ 

'\. 

-', ~3-m. 

- - - - - - ---==--:::- ::::--
:::::::-.::-::,_ - - - - - - - -=---=--==-=---=----~--

/'- ......... ......._...__ 3-u. --
/ ---------/ 
I 
I 
I 

2000 

GQR 
- - - - - - - - GDR 

4000 6000 8000 

E1ab (MeV) 

Contribution of the different multipolarities ( as indicated in the figure) to 
the real ( upper part) and imaginary (lower part) part of the local polarization 
potential plotted as function of incident energy for a fixed relative distance 
R = 16/ m for the reaction 208 Pb+ 208 Pb. 

and imaginary (right) part of the polarization potential plotted in percentage 
of the total potential as a function of the relative distance R. We notice that 
the most important contribution to both real and imaginary parts is due to 
the low lying 3- state. As the incident energy is increasing the relative con­
tribution of the GQR becomes more important. This different behaviour has 
already been found in previous studies [3, 4]. The novel result is represented 
by the contribution of the isoscalar GDR states which lies between 10-20 %, 
that is to say comparable with the contribution of the GQR at least for the 
imaginary part. 

12 

We have also calculated the polarization potential at a fixed relative dis­
tance (R = 16 fm) as a function of the incident energy taking into account 
the explicit contribution of the different multipolarities. The results are • 
shown in fig. 4 where the different curves correspond to the contributions of 
the different states as indicated in the figure. Again we notice the importance 
of the LEOR, which is overwhelming with respect to the other states in a 
large range of incident energy for the case of the imagin~ry part, while for the 
real part the contribution of the GQR, at higher energies, is essentially the 
same as the one of the low lying 3- state. · The contribution of the isoscalar 
GDR to both real and imaginary parts of the polarization potential is more 
important (at this distance) at low energy, and it decreases with the energy 
slower for the absorptive part than for the real part. . 

The interplay between the LEOR and the GQR states seems to contradict 
the findings of ref. [3, 4]. In particular the contribution of the LEOR to the 
absorptive part is very big with respect to the one ~f the GQR. As explicitly 
stated in the second paper of ref. [4], this is .due to the fact that we are 
using transition densities (hence different form factor) different from the one 
used in ref. [4] which were calculated in the framework of the Random Phase 
Approximation. 

6. CONCLUSION 

We hav~ do11e an analysis of the real andimaginary parts ~f the polar­
ization potentia.f in terms of the relative contributio~s of the single collecii~e 
states for the system 2~ Pb + 208 Pb . . The. polarization potential has been 
calculated within the Feshbach formalism taking into accourit th.e collective 
states calculated with the WFM method. Within this method it is possible 
to obtain also isoscalar GDR states whose contribution to the polarization 
potential has beeri estimated being of the order of 10-20 % of the total at rel­
atively low inci.dent energy. Then this contribution should in principle show 
up in some experimental observable, like for instanc~ the elastic cross sec­
tion. The other multipolarities give a contribution'wliich has been analyzed 
in great detail in the previous work [3, 4] where slightly different results were 
obtained. This can be ascribed to the different form factors we have used in 
the 'two cases. 
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APPENDIX 
Transition density for 2+ excitation 

Multiplying (8) by r 2l';µ{ 0, cp) and integrating over angles we find the 
r.adial dependence for the change of density 

41r anq a · •. · 
Onq(rhµ = -is{r ar • Cq2µ + TJTar (nq · nq,) · (Cq2µ - Cq'2µ)}, (AI) 

where the comp~iients of the irr~ducible tensors C9 2: are linear combinati~ns 
of Lqij• In the case ofa spherical nucleus we can study any co~ponent of 
C92µ, for example C922: · ·· · 

C922 = L9u - £922 + 2iL912, L;; = L;,; + L;,;. (A2) 

For a spherical nucleus L911 = L922 so we will concentrate our attention 
on L912, Following the prescriptions of chapter 2 and using formulae (8,9) 
one ·can derive the system •of coupled dynamical equations for £912 and 
f h'P9ridr = 1r9 12 (see ref. [9]): 

Lq12 - 2bq1Lq12 + 2bq2Lq1 12 - 2bq3/311"q12 = 

-i/3 Jr ~:q l';µ · W(t) dr ~ (A3) 

/3ir q 12 + dq 1 . Lq 12 - dq 2 . tq, 12 = 0, 

where /3 = 3
A and W(t) = e r 2(Y.: e-iwt + Y,* eiwt) is the· external 4,rmZqaf P 2µ ·· · 2µ · · 

field.The corresponding system for the other kind of nucleons is obtained by 
changing q +-+ q'. The following notations have been introduced he~e: · 

b91 = z' 4 A + 1 :: ):/+2T3q + z'(7T1 + 2T29) + 89,P • 
1
8
5

cp(I + 11noz'), 
ma1 4ti a 1 , . · · · · •· · 

z t+ .,s· 
b92 = -.-4 A + ,~£9 + z(7T1 + 2T29) + 89,P • 

15
cpr,n0 z, 

ma1 4ti a 1 . 

. 2 . 15 2 . · 1rm · 2 • 0 8/3 
b93 = I + t,,2 (1,a2,- (t+ - zL/2), d92 = 8 ,11z maf , 

d .· 3,-(2 5 '2) 
ql = --4 Os/3 + -Br,z a8/3 , ma, 

A = ;(I+ ~0 )(S~ + 2r,'R.D + 
1
;

0 
{(er+ I)[(u(l - x3) + 2(2 +· X3)] + 

+2u(u - 1)(1 + 2x3)zz'} · (n: + 2r,n.:+i), 

14 

"' 

C!' (-n 2/3 s/3) e; ZP 
c..9 = z '"4 + 2r,'R.4 , cp = 1rno~A, 

n.
2 

L [ 2 Q ( 1 4 3)] T1 = 4maf 35 4S2 + o + 2r, 4~ + Q1 - 3S3 , 

f,, 2 ( z. ) ' . 1 1 3)]. f,, 2 ( z 2 
T92 = 4 - 4 TJ -2t+ -t_ (~ +-

5
S3 , T93 = -

8 4 -
2
t+-L)S2 , 

ma1 ma
1 

a;= 100 
n(r)"r" dr, 1

00 
an 

'R.~ = n(r)"r"(-)2 dr 
0 ar 

.. loo an 100 a2n . s: = Jo r"( ar )" dr, Qµ = o n(r)"r4( a2r )2 dr' 

( ) ( ) • ( ) Z9 , Z9, mt+ 
n r = np r + nn r , z = A' z = A' TJ = --2 , t+ = t1 + t2, 

21i ' 
t_ = t1 - t2, The quantities t0 , t1 , t2, t3 , u, x0 , x3 are the parameters 
of Skyrme forces; ep, the proton charge; m, . the nucleon mass. Deriving 
these formulae for b9 ;, d9 ; we used the Thomas-Fermi approximation for the 
ground state pressure tensor P9°i;(r) = 8i;,n

9
(r)5l3 with 1 = ;;(31r2) 2l3 • 

The system of differential equations (A3) becomes algebraic one taking 
into account the evident time dependence of variabies £

9 12 
( t) = £

9 12 
iwt and 

1r912(t) = if912 e•~t. the solution of this system is: 

Lq12 = dq/6., Lq'12 = dq1 /!:i, (A4) 

where dis the determinant of system (A3). The determinant l:1
9 

is obtained 
by substituting the corresponding column of d by the right~h~nd side column 
of (A3). dis a biquadratic polynomial and has two roots O! and n~ which are 
interpreted as isoscalar and isovector giant quadrupole resonances. Writing 
the determinant in the form d = c • (w2 - O!)(w2 -:-:-0~), where cis a constant 
and putting (A4) into (Al) one can easily calculate the limits in (13) and 
find the .constants A1, A2. 
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