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1 Introduction 

Collecti.ve excitations ( CE) associated with surface plasma oscillations are 
~ . ,,._ ' , 

now a field of extensive investigation in alkali metal clusters (see, for ex-
. ' •.,, , . '·: ,-, . 

ample, recent papers [1-22] and refs. therein) .. ~xperi~en~al data clearly 

demonstrate a resonance structure of these oscillations [1-7]. Most of the 
, . . . , ' ' '• , 

experimental and th~oretical investigations are devoted to the electric 

dipole (El) resonance. Information about ~lectric resonances of higher 

multipolarity is very scarce and limited mainly by theoretical estimations 

[15,19,21,23]. ' 

Valence electrons in alkali clusters are often considered as moving in 

the mean field with shells like iii atomic nuclei [24,25] .. Single-particle 

potential desc!ibing this mean field can be obtained in the self-consistent 

way [26,27] or approximated by some phenomenological potential [28-32]. . ' 
Vibration of the mean field, which is describedin terms of residual cor-

' ' ' . ' , 

relations, leads to appearance of collective E>i excitations. It is known 

that investigation of CE is rather complicated in clusters with open shells, 

which possess quadrupole (as well as hexadecap<?le and octup?le) defor­

mation [5-7,28,30~35]. In these clusters deformation spUtting and Landau 

damping can lead to a quite complicated picture of CE when collective 

strength is distributed over many peaks. On the other hand, investiga-. ' 

tion of CE in deformed clusters is very important: just.a deformation 

splitting of the El resonance now provides the _most reliable informa­

tion about the magnitude of cluster's deformation. To overcome these 

troubles, the random phase approximation (RPA) with residual forces 

of the separable form is suitable. This approach provides the micro­

scopic accuracy of numerical.results without time consuming calculations. , 

The self-consistent version of this approach, so called viqrating potential 

model (VPM)[15,36,37], is especially attractive. In the VPM the form of 

residual forces ana their st~eO:gth constants are fOnsistent with the form 
of the single-particle potential including all its deformation distortions. 

Moreover, the self-consistency condition between variations of the single-
1 



particle potential and the corresponding ground state density provides 

the analytical expression for the strength ·constants. As a result, the 

model has rioany adjusting param~te~;. 

The VPM was firstly: suggested in. nuclear physics [36-40]. In [15] 

the main equ'ations
0

of the VPM for metal cluster~ ~ere derived. If the 

Coulomb ternis aie'n~glected the equations [15] turn o~t to be suitable 

for the description: of is~scalar giant reso~ances in atomic nuclei. So, 

the model is convenient for the comparison of collective excitations in 
' , ·"•"• ,. ' l' • 

clusters and atomic nuclei. Up to now, numerical calculations within the 

VPM in both atomic nuclei and metal clusters were limited to· the case 

of the harmonic oscillator potential with quadrupole deformation (see, 

for example,' [38,41]). In thi;'paper, a more general version of the model 

(a generalized VPM (GVPM) [42-44]) is described. Using the multipole 

expansion of the single-particle potential and ground state density, we 

will obtain equations of the GVPM for systems with practically any ki:nd 

of static deformation: Any single-particle potentials and ground state 

densities (including the ones calculated in· the framework of the Kohn­

Sham procedure), for which the coefficients of the multipole expansion 

are known, can be used within the model. Spherical sy~tems are also 

covered. 

Two features of the GVPM simplify the calculations. The first one is 
. ' 

the separable form of the residual interaction. It should be noted that 

we use the total (without any truncation) multipole e~pansion ~r the 
Coulomb potential, i.e. we completely take into account a long-range 

,, . . /,'1 t 

character of the Coulomb forces. The second feature is the use of the 

strength function method [42,45]. This method allows one to a\ioid a 

direct· solving of the RPA equations and to 'get 'information about CE 

through the strength function. As a result, the calculatioi!is are dr~tic~y 

simplified, which is very important for study of CE in large and deforn~ed 

clusters. 

In the present paper, the GVPM is described in detail (Sec.2). The 
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results of calculations within the GVPM for surface El, E2 and E3 reso­

nances in spherical (Nas, Na20, Na40) and deformed (Na10, Na1s, Na26 ) 

sodium clusters are presented. For deformed clusters, axial quadrupole 

and hexadecapole deformations are taken into account: , .Both prolate 

( N a10 , N a26) and oblate ( N a18) shapes are considered. Triaxial quadrupole 

deformation in these clusters is known to be negligible [5,10,35]. A. mean 

field is approximated by the Woods-Saxon potential. Preliminary simpli­

fied results of the GVPM calculations for the El resonance in spherical 

sodium clusters were published in [44]. The results of present calculations 

are discussed in Sec.3. Conclusions are given in Sec.4'. 

2 Generalized vibrating potential model 

2.1 Main equations of the VPM 

In this subsection main equations of the VPM [15] are briefly reminded. 

We start with the energy functional for a system of N6 valence electrons 

in the external field of ions 

E{n(r,t),r(r,n(r,t))} = 1/2 / r(r,t)dr+ /v(r,t)dr 

1/ 2
// 

(n(r,t) - ni(r))(n(fi,t)- ni(r1))d .. ,J .. + . . 
1
.... ..

1 
rur1 

r - r1 
(1) 

where 

n(r, t) = Lk l4>k(r, t)l 2 (2) 

and 

r(r, t) = Lk I 'v 4>k(r, t)12 (3) 

are the ground state. density' and kinetic energy density of valence elec­

trons, respectively. Further, ni(r) is the ionic density in the jellium ap­

proximation, ef>k(r, t) is a single-particle wave fmiction. Summation in (2) 

and (3) is performed over all occupied· single-particle levels. The func­

tional (1) includes the kinetic, exchange-correlation and Coulomb terms, 
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respectively. The latter embraces electron.:electron (e-e), electron-ion (e­

i) and ion-ion (i-i) interactions. In.this section we will keep the convention 

e =me= Ii= 1 where e and me are charge and mass of an electron. 

The time dependent single-particle potential is obtained as 

H(r,t),f>k(r,t) ~ 6</>~~ ) = (-"
2 

+ V(r,t))<!>k(r,t) (4) 
. .. k r,t 2 · 

where 
V(r, t) = dv +II (ti(ri) - ni(r1))d .... dn ,... ... , r1. r - r 1 . 

(5) 

If .the coµective motion results in the density changing 6n(r,t), the 

Hamiltomian ( 4) can be divi~ed into the static part 

Ji(;;'\_·_ '12 (dv ). · I no(r1) - ni(r1) d ... 
o r; -

2 
+ d n=no + 

1
... ...

1 
r1 

. n r - r 1 
(6) 

and the time-dependent dynamical part 

~H(~ ) (d2v) .: ( ... ). I 6n(r1,t)d ... u r,t = d 2 n=n0unr1,t + 
1 
...... 

1 
r1 

n r - r1 
(7) 

where n(r,t) = n0(r) + 6n(r,t) and n0(f') is the static ground state den­

sity. It is seen from (7) that variations of the density and single-particle 

potential are consistent. 

It is convenient to express the density variation through the displace­

ment field u(r) as 6n(r, t) = a(t)(("v • il)no + i1 • '7no) where a(t) is an 

amplitude ofthe collective motion [15,46]. In the present paper, the sim­

plest case of the irrotational and divergency free collective mode ( "v xiv = 
v i1 = 0 where iv(r, t) = -a(t)il(r')) is the velocity field) is considered. 

The displacem~nt field is chosen as a(f') = "vf(r) with f(r) = r,\Y/µ(n) 
and Y,\~(n) = Y,\µ.(fl)+d·Y,\t(n). Here, Y,\µ(n) is the spherical harmonic, 

the coefficient d = ±1 assures the hermiticity of the Hamiltonian. Then, 

the density variation has the torm 6n(r,t) = a(t)("vf(r') • '7no(r)) (for 

the sake of simplicity, in this subsection we will omit indices >..µ and d). 

This kind of collective motion is proportional to '7no(r), i.e. is of the 

surface character. 
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Due to a considerable electrostatic screening between electron and ion 

fields (this is the exact case if the electron density is taken in the jellium 

approximation no = ni) the contribution of a direct Coulomb interaction 

to the static single-particle Hamiltonian (6) can be neglected [47] and we 

can use for the static single-particle potential the ansatz Vo(r) = (~~)n=na• 

Then, substituting the expression for'6n(r, t) into (7), one gets 

6H(r, t) = a(t)Q(r) (8) 

where 
Q(r) = "vVo(r') • "v f(r) + J '7no(r1) · "v /(r1) ... jr- r1l dr1, (9) 

Following the condition of consistency between dynamical variations of 

the single~particle potential and density, one can rewrite (8) as 

6H(r, t) =-K-Q(t)Q(r) (10) 

where Q(t) = J Q(r')6n(r, t)dr and 

K,-l = I no(r) "v Q(f') · "v J(r')dr = - I Q(r) "v J(f') · '7no(r)dr (11) 

has the meaning of the inverse strength constant of the residual inter­

action (9). Substituting the Hamiltonian H(r,t) = Ho(r) + 6H(r,t) to 

the time dependent Schrodinger equation, one finally gets the dispersion 

equation 

X = 2"" < k'IQlk >2 fkk' = -1 
t- L...t 2 2 K, 

kk' fkk' - Wt 
(12) 

where fkk' = fk + fk' is the energy of a particle-hole excitation, I k > 
and fk are the single-particle eigenstate and eigenenergy of the static 

hamiltonian (6), Wt is the root of eq. (12). 

Equations (9), (11) and (12), determining the form of residual forces, 

strength constant and dispersion equation, form the basis of the VPM 

[15]. If one neglects the Coulomb terms, these equations can be used to 

study isoscalar giant resonances in atomic nuclei. 
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2.2 Specification for deformed and spherical clusters 

Equations (9),(11) and (12) are too general to be effectivelly used in prac­

tical calculations. One can get more concrete and convenient equations 

for deformed ( and spherical) clusters [42-44] using the multi pole expan­

sion of the.single-particle potential Va(r) = Li L~=-I ½m(r)Yi~(n) and 

ground state density no(r) = Li L~=-1n1m(r)Yi~(n). Omitting tedious 
mathematical transformations we present the final expression for the op­

erator (9): 

Q~1(r) = LYLM(n). I:ccfmlfµ. + d(-l)P.Cfmlf-µ.)(Q~11m(r) + Q~tm(r)) 
LM Im 

(13) 
where 

Q(v) (r) = (2,\ + 1) /,\(2-\-1). [M(l) d½mr,\-1 _ M(2)v, r,\-2] (14) 
AL/m 1 7r(2L + l) ,\LI dr ,\£/ Im , 

Q~11m(r) = (2,\ + 1) 
,\(2,\ - 1) . 47r 
7r(2L+ 1) · ( 2£+ 1) 

r oo 

· [Mi~1r-(L+l) J n1m(r1)rt+Ldr1 + Mif1rL J n1m(r1)rt-L-1tlr1]. (15) 

0 r 

Here, C{:{µ, is the Clebsch-Gordan coefficient. Expressions for Mi21 are 

given in the Appendix. 

Expression (13) has a clear physical meaning. The coupling of the 

,\µ excitation with the spherical ( l = 0) and deformed ( l = 2, 4, 6, ... ) 

parts of the single-particle potential (and density) leads to the appear­

ance in the residual interaction of the family of modes with the moments 

I ,\ - l I ~ L ~ ,\ + l. The parity of these modes coinsides with the 

parity of,\. Expression (13) shows that due to the self-consistency, the 

residual interaction takes into account all the deformation distortions of 

the single-particle potential and density. The terms (14) and (15) repre­

sent the contributions of the Coulomb exchange and correlations and of 

the direct Coulomb interaction, respectively. 

6 
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The corresponding expression for the inverse strength constant (11) is 

rather cumbersome. It is presented in the Appendix. It should be noted 

that in any case the best way to calculate the strength constant is the 

direct numerical integrating by exp. (11). 

For clusters of spherical shape (l = m = O, L =,\)expressions (9) and 

(11) are drastically simplified: 

r 

Q~~(r) = -\[Y,\µ(!1) +d· Y,\t(n)] · [d;o;,\-i _\-r-(,\+1) /no(r1)r~idr~] (~6) 
o' 

and 
00 

1 2 ( ) j[dno dVo 2( )] 2,\ ~-;:µ.d = -2).. d ,I+ 8µ,o dr dr + 47rn0 r r dr, (17) 
0 

where no(r) = n0o(r)2Yoo = noo(r)/-Jir (the same for. Vo(r)). 

If all collective strength is assumed to be concentrated in one state 

(one-pole approximation), we. can get from eqs. (9);· (U)'and (12) the 

estimation 

w2 = (w(o))2 + J ('\1Q,\µ,(r))
2 

• no(r)dr (lS) 
,\µ. ,\µ f Q,\µ(r) "v f(r) · "yno(r)dr. 

where W,\µ. and wi~ are the energy of the collective state and its unper­

turbed value, respectively. The expression for the square of the single­

particle matrix element in (12) was obtained through t!J.e energy weighted 

sum rule for th~ operator (16). Using the step approximation n0(r) = 

n00(r - R) for the density, the oscillator form Vo(r) = -1/2 • w5r2 for 

the single-particle potential and the estim:ation wi0) = -\wo for the unper­

turbed energy,. we obtain the simple expression for excitation energy of 

the E,\ resonance in spherical.dusters: 

W,\ = ✓ 2).. ~ 1 w'fi + w5>-.(,\ - 1) (19) 

where Wp = 4w~e2. is the plasma frequency. Neglecting the first (Coulomb) 

term in (19) one gets the estimation for isoscalar giant resonances in 
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atomic nuclei: w~ =·w0 J.,\(.,\- 1). Expression {19) is in good agreement 

with the previous estimations obtained within the sum rule approach 

(SRA) [15,19] in spite of some difference in the ,\ dependence of the 

second term ( in [19] the ~ 2/5(2,\ + 1)(.,\ - 1) dependence takes place). 

2.3 Strength function method 

For clusters with a large number of .electrons a direct solving of the RPA 

equations can be very time consuming. This is especially true for de­

formed clusters where the number of states of a given multipolarity can 

be very large. On the other. hand, for these systems we do not usually 

need a detailed information about all the states since, as a rule, experi­

mental data provide only some averaged characteristics. For investigation 

of C_E in these systems the strength function method is very useful. Using 

this method we can avoid finding roots of the secular equation {12) but 

get information about CE through the strength function [42,45] · 

bm(E,\µ,w) = Lwf B(E,\µ,gr --l-Wt)p(w-wt) {20) 
t 

with the weight function 

1 Ll 
p(w - ~t) = 21r (w - Wt)2 + {Ll/2)2· (21) 

I 

Here, B(E,\µ,gr - wi) is the reduced probability of the E,\µ transition 

from the ground state to the one-phonon state with excitation energy Wt• 

The quantity Ll is an averaging parameter. It is easy to see that for m=l 

the strength function (20) has a form similar to the photo-absorption 

cross section for El resonance. Following ref. [45],. where· the strength 

function method was considered for atomic nuclei, one can get a quite 

general expression for the strength function of E,\ excitations in metal 

clusters [42]: 

l zmx (z . ~2 ) ) 

bm(E~,w) ~ ;;{Im(X(z)- ,.,;, =+<A/
2 

8 

' l 
\ 
l 
\ 

' 

( 
c-1r+1 - 1 )) 

+Ll L(P~~)2fkk' (w + fkk')2 + (13./2)2 + (w- fkk•)2 + (Ll/2)2 
k<k' 

(22) 

where 
X(z) = 2 L <. k'l~lk > ~~tfkk' 

kk' fkk' - Z 

(23) 

and p~:, is the single-particle matrix element for the standard operator 

of the E>.µ transition. Expression (22) is valid for m=0,1,2 and 3. It is 

easy to see that we do not need any one-phonon excitation energies and 

wave functions for calculation of the strength function (22). We do not 

need also any iteration procedures. As a result, one can get averaged 

characteristics of E,\ excitations without time consuming calculations. 

3 Results of calculations and discussion 

3.1 Details of calculations 

The calculations within the GVPM have been performed for neutral 

spherical (Na8 , Na20 , Na40) and deformed (Na10, Na1s, Na25) clusters. 

The El resonance was considered for all these clusters. The E2 and E3 

resonances were calculated for N a40 and N a25. 

A mean field was approximated by the Woods-Saxon potential 

Uo 
Vo(r) = -----,--,-,---:- (24) 

1 + exp[(r - R(!1))/ao] 

with R(n) =; Ro(l+.Bo+/32Y20(!1)+/34~0(!1)) and Ro= roN; 13. Here, /32 

and ,84 are the parameters of quadrupole and hexadecapole deformation, 

the parameter ,80 ensures the conservation of the cluster volume. 

The Woods-Saxon potential is known to reproduce rather well the form 

of the single-particle field obtained in the self-consistent calculations for 

a wide group of sodium clusters [29]. This potential was successfully used 

for determining magic numbers [29] and equilibrium deformations [33,34] 

in sodium clusters. In our calculations, the depth and radius parame­

ters of the potential (24) are taken from [29]: U0 = -6e V, r 0 = 2.25.A.. 

9 



The value of diffuseness parameter, a0 = 0.74.A., used in [29] is not suit­

able for our calculations. As has be~n mentioned in [29], at this value 

of ao the potential (24) vanishes faster than in the self-consistent Kohn­

Sham calculations [24], i.e., the diffuseness parameter in [29] is underesti­

mated. Moreover, due to a local density approximation for the Coulomb 

exchange, the Kohn-Sham calculations are also known to underestimate 

the surface diffuseness (in terms of the "spill-out") [23]. In our calcula­

tions the diffuseness parameter ao has to be chosen more carefully since 

this parameter influences the energy positions of E">.. resonances of the 

surface character. After a comprehensive analysis the value a0 = 1.A. was 

chosen. At this value, our calculations reproduce rather well, for exam­

ple, the percentage of the spilled out electrons (19%)_ in Na8 , obtained 

the Kohn-Sham calculations [47] (see Table 1). Diffuseness of the single­

particle potential should not be confused with diffuseness of the density 

of valence electrons in the ground state ( the latter is calculated by exp. 

(2) using the single-particle wave functions of the potential (24) ). For 

N as, N a20 and N a40 this density as well as the single-particle potential 

(24) are presented in Fig. 1. It is seen that diffuseness of the densities is 

smaller than that of the corresponding potentials. For N a40 , the potential 

and density are depicted for three values of the diffuseness: a0 = 1.4, 1.0 

and 0.74.A.. As is seen, the variation of diffuseness in this range does not 

change the density much. 

For deformed clusters, axial quadrupole ">..µ = 20 and hexadecapole 

">..µ = 40 deformations were taken into account. The triaxial quadrupole 

deformation, ">..µ = 22, in these clusters can be neglected [5,10,35]. Both 

prolate (Na10 , Na26) and oblate (Na18) spheroidal shapes were consid­

ered. The parameters of deformation {32 and /34 are given in Table 1. For 

N a10 , these parameters were taken from the Kohn-Sham calculations [48] 

within the structure-averagedjellium model [12]. For Na1a and Na26, the 

deformation parameters were estimated following ref. [10] (see Table 1 

and Appendix in [10]). T~e multipole expansions for potential Vo(r) and 
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Fig. 1.. The density of valence electrons (2) and the Woods-Saxon 

single-particle potential (24) for Na8 ,Na20 and Na40. For Na40 the re­

sults are given· for diffuseness a = 1.4 ( dashed line), 1.0 (solid line) and 

0.74 A (dotted line): 
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Table 1: Deformation parameters /32 and /34 , amount of the spilled ou_t electrons 6N and 

model-independent energy weighted sum rules S(,\ = 1) for clusters under consideration. 

Following (47], 6N was calculated as an amount of electrons (in %) outside the sharp 

jellium border at R = r0N 113 with r0 = 2a.u. = 2.116.A. · 

Cluster Nas Na20 Na40 Na10 Na1s Na26 

/32 0 0 0 0.384 0.23 0.40 

/34 0 0 0 0.212 0.02 0.06 

8N,% 20 13 10 20 14 12 

S(>. = 1), e2eV A.2 21.8 54.5 109 27.3 49.1 70.9 

density no( r) were limited by the terms with l = 0, 2, 4 and 6. The calcu­

lations show that the influence of the terms with l > 6 can be neglected . 

. The completeness of the single-particle basis for the description of EA 

excitations is usually estimated to be sufficient if the model-independent 

energy-weighted sum rule 

· 1i2 2 

S(A) = LWtB(E>.,gr-+ Wt)= -
8 

e >.(2>. + I)2N < r 2A-2 > (25) 
t 7rme . 

is exhausted to a large extent. The radial part r 2A-2 is averaged over 

t_he ground state. The values S(A = 1) · = ::::. 9N for clusters under 
I •· 

consideration are presented in Table 1. In our calculatio~s El excitations, 

in the energy interval 1-6 eV _exhaust practically 100% of the SUI? rule 

(25). E2 and E3 excitations in the same energy interval exhaust 90 -

100%. So, the single-particle basis used in the present calculations is 

quite complete. 

For El excitations the strength functio_n u(El,w)= bm=t(EA,w) was 
·, 

calculated. _This strength functi?n has the same _energy; .m,ultiplier as 

the phot?absorption cross section which is mainly used for experimental 

investigation of the El resonance. So, the strength function .u(El,w) 

is convenient for comparison with experimental. data. This is not the 

case for the E2 and E3 resonances, for the experimental study of which 
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the inelastic electron scattering (e, e') seems to be more suitable. For 

E2 and E3 resonances we calculated the strength function with m = 0. 

The averaging parameter b.. was chosen to be equal to 0.05 eV, which 

corresponds to a thermal energy with T ~ 500K. The value b.. = 0.05eV 

is much smaller than the typical width of the El resonance ( the latter is 

estimated as 10 - 15% of the excitation energy). But so small averaging 

allows one to demonstrate the complicated structure of the resonances 

which often includes more than one collective peak. 

3.2 Main results and discussion 

Main results of the calculations are presented in Figs. 2-9 and Tables 2 

and 3. 

In Fig.2, the radial dependence of the operator (13) (or, in other words, 

of the residual forces) is demonstrated. The Aµ = 10 excitation in the 

deformed N a26 is considered as an example. The parts of the operator 

(13), corresponding to the coupling of the dipole mode with spherical 

(l = 0) and quadrupole (l = 2) terms of the single-particle potential and 

density are depicted. Following the rule I A - l I~ L ~ A+ l, the coupling 

with the terms corresponding to the quadrupole deformation leads to ap­

pearance in (13) of parts with moments L = 2 and 4. For every part of 

the operator (13) the functions Q~£z(r) = (C~~µ, + d(-ItC~~~
1
,)Q~i£rn(r) 

representing contributions of the exchange-correlation· (i=v) and. direct 

Coulomb (i=c) terms, as well as their sum (i=v+c), are presented. It is 

seen that, in spite ofrather large deformation of Na25, the residual inter­

action is mainly determined by the spherical part of the single-particle 

potential and density (see the top of Fig.2). The contribution of the 

exchange-correlation term is much smaller and of the opposite sign as 

compared with the contribution of the direct Coulomb term. The calcu­

lations show also that in all the clusters just the direct Coulomb term 

mainly determines the residual interaction. Deformation corrections pre­

sented in the middle and bottom parts of Fig.2 are in total 10 - 15% 
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Fig.2 Radial dependence of the components Q~£lr) of the operator 

(13): the exchange-correlation part (i = v, dashed line), the Coulomb 

part (i = c, dotted line) and their sum (i = v + c, solid line). See 

comments in the text. 
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of magnitude of the main spherical part. It is seen that the exchange­

correlation term exhibits relatively larger deformation corrections (up to 

50%) than the Coulomb term. The deformation corrections c~used by 

both these terms noticeably compensate each other. This ~eans that 

in metal clusters the influence of deformation distortions should be rela­

tively weaker than in atomic nuclei 1'7here only the term (14) takes place. 

Fig. 2 shows also that the residual interaction· has a long Coulomb tail, 

i.e., takes into account a long-range character of the Coulomb forces. . 
The results of calculations for El excitations'in the ·spherical Na8 , 

N a20 and N a40 are presented in Fig.3 and Table 2. The strength func­

tions <T(El,w) are give~ in Fig.3 for two cases: with and without the 

residual interaction. In the latter case, we have K.>.µ.d = 0 and: El excita-
<;, ~ '; 

tions are determined by pure particle-hole transitions of non-interacting 
, ·,1\.,> "- ,: I'. 

electrons. Then, the El resonance lies in the region 1.0:-1.5 eV that is . . 
much lower than the experimental value. The energy 1.0-1.5 e V is a 

,)' • ' "' t_ • 

typical energy interval between neigh~oring shells. In other,words, this 

energy corresponds to El transitions with ll.N = l where N: is the princi-
- ,.,., .. ,.-,,\-

pal shell quantum number. The self-consistent residual interaction shifts 

the resonance towards the energy 2.6-3.3 eV. For Nas and Na20 this en­

ergy is a little bit higher. than the experimental values. In accordance 
' ' ' '~i: 

with the experimental data [5,6], our calculatio1;1s give one peak in Nas 

and two peaks in Na20 . As is seen from Fig.3, the ~alcula;tions do not 

reproduce the tendency of approaching the_ classical Mie ene~gy with in­

creasing N 6 • This tendency can be masked by shell effects bu_t it is not the 

main reason in the present calculations. It is more important' here that 

we use for all clusters one and the same averaged diffuseness ,parameter 
. • I 

of the Woods-Saxon P,O.tential. As was mentioned above, this. parameter 

influences much the position of the El resonance and, in principle, has to 

be adjusted for each cluster separately (for example, by calculation of the 

static'dipole polarizability). This'will be done in the subsequent papers. 

Also, the agreement with the experiment can be improved if we take into 
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Table 2: Experimental (5] and calculated within the GVPME and the SRA (10] excitation 

energies {w, in eV) and deformation splittings (ll.w, in eV) of the El resonance. For the 

GVPM the energy centroids of the resonance are given 

Cluster Na8 Na20 Na40 Na10 Na1s Na26 

We;r;p 2.59 2.67 2.72 2.02,2.67 2.56,2.94 2.29,2.93 

WGVPM 3.04 2.94 2.64 2.58,3.32 2.86,3.26 2.65,3.32 

WSRA 2.77 2.94 3.05 2.28,3.03 2.79,3;18 2.50,3.24 

AWe;r;p - - - 0.65 0.38 0.64 

AWGVPM - - - 0.74 0.40 0.67 

·AWsRA - - - 0.75 0.39 0.74 

account the volume (bulk) part of the residual interaction. T~is can be 

done by the replaceme'nt of the external field /(r) = rAYfin) by the fi~ld 

f(qr) ~ h(qr)Yf~(n) where q determines the proportions between bulk 

and surface excitations [43]. Following [23] the coupling of surface and 

volum~ excitations should lead to some ·decreasing the e
1

nergy of the El 

resonance. In spite of some shortcomings of the present calculations, one 
' t1 . 

should note that the agreement of our results with the experimental data 
I • 

for spherical clusters is quite satisfactory. In any case, this agreement is 

not worse than in the calculations within other models. 

The results of calculations of El excitations in th~ deformed N a10 , 

N a1s and N a26 a.re exhibited in Figs.4-6. In Table 2 these results a.re 

compared with the available experimental data and the results obtained 

in thefr~ework of the sum rule approach (SRA)[lO]. As is seen from 

the figures, the deformation of clusters leads to a quite common picture. 

Namely, in Na1~ and Na26 , that have a prolate quadrupole deformation, 
•t 

the small peak corresponding to vibrations of electrons along the z-axis 

of the sph_eroid has lower energy as compared with the· large peak cor­

responding to vibrations of electrons along the x- and y-axes. In the 

cluster with oblate'deformation, Na18 , the opposite picture takes plac~. 
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Due to the deformation splitting, resonances in N a18 and N a2s demon­

strate the substantial Landau damping. 'Table 2 shows that for small 

deformed clusters the GVPM calculations also give somewhat overesti­

mated energies of the El resonance. But note again that taking into 

account the the volume part of the residual interaction should improve 

the agreeme~t with the experiment. The description of the deformation 

splitting is rathernice although this seems to be mainly a merit of the 

single-particle schem.e. The comparison in Table 2 of the GVPM and SRA 

results iJ?-dicate that these models provide more or less the same quality 

of description of excitation energies and deformation splittings of the El 

resonance. Nevertheless, the GVPM has an important advantage. This 

model can describe not only these two characteristics but also the Landau 

damping, i.e., fragmentation of the collective strength over many peaks. 
• • . . i . 

Our results for N a18 and !" a26 show that the Landau damping is a quite 

general property of El excitations beginning from rather. small clusters. 

Without doubt, this pr~perty should. be taken i~to account for correct 

comparison with experimental data. (It is to be noted that f~agmenta-
' ' ' 1 . . ' ~ ' '" ! . 

tion of the El resonance can be calculated also within other approaches: 

self-consi~tent model of W.Ekardt [14], full: RPA [17,18] and local RPA 

[9-U,23]. But the calculations within these approaches are much mo.re 

time consuming; especially for large and deformed clusters.) 

It is interesting to estimate the collectivity of the states forming the El 

resonance. The large value of reduced transitio~ probability B( El, gr -t 

Wt) does not always mean the strong collectivity of the state since. this 

large value can. be caused in some cases by a single (but strong) single-. . . 

particle matrix ele~ent. To est.imt1:te the c~llectivity, the structure the 

state should be also considered. From a general point of view it is. clear 

that the larger. number of particle-hole configurations contribute to the 

state, the stronger its collectivity. In Table 3, the structure of the states 

in Na10, Na18 and Nd2s.with maximal B(El) values is presented. It is 

seen that these states exhaust a large amount of the model-independent 
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sum rule S(>.. = 1). They are composed of a large number of particle-hole 

configurations corresponding to AN = 1 and 3 dipole transitions. So, 

these states are really collective. Table 3 also shows that, ·on the average, 
. r; 

the larger a cluster, the stronger collectivity of its states. 

Figs.3-6 show that El excitations have pronounced high-energy peaks 

which are well separated from the main El resonance. These peaks take 

place in all clusters and the larger the cluster, the stronger the peaks. 

This tendency is demonstrated in Fig.3 .for spherical clusters: while in 

Na10 high-energy peaks are absent at all, they appear in Na20 (the ex­

perimental data [5-7) suggest the two-peak structure of the El resonance 

in this cluster) and become very large in Na40 • As is seen from Figs.4-6 

a similar situation takes place in deformed clusters as well. The high­

energy peaks exhaust a·large amount of the sum rule (25). In Na
26 

and 

N a40 the contribution of the peaks at the energy 4.0-4.8 e V into the sum 

rule is 28% and 44%, respectively. This is in some discrepancy with the 

experimental data [7) where for these clusters (but ionized) 80 - 100% 

of the dipole sum rule was observed in the energy interval 2-3.4 eV. The 

coupling with the volume plasmon and the use of a larger averaging pa­

ramet~r A ( corresponding to the realistic width r = 0.15w) should shift 

the dipole strength towards the lower energies and improve the agree­

ment with the experiment. As our estimati?ns show, in this case the 

high-energy peaks remain to lie rather well separated from the main El 

resonance although they will have lower excitation energies. 

The origin of the high-energy peaks is rather clear. They are nothing 

but the AN = 3 branch of El collective excitations. Just due to the 

AN = 3 nature of these peaks· we have the tendency that the heavier 

cluster, the larger their strength. In Table 3, the structure of the high­

energy state with w = 4.31 eV in Na26 is presented as an example. It 

is seen that the large components of this state are mainly formed by the 

particle-hole configurations with AN = 3 while the small components 

determining the collectivity of the state - mainly by configurations with 

22 

AN = 1. The residual interaction shifts the El AN = 1 strength to the 

high-energy region of rather weak particle-hole excitations with _AN = 3 

and promotes in this way the collective high-energy peaks. The long­

range character of the Coulomb forces (furthering the interaction between 

electrons far from each other) also favours the formation of the AN = 
3 branch. This picture is of general character and concerns any E>i. 

excitations. As a result, the E>i. excitations seem to be attractive for 

investigation of the AN shell effects. In particular, the experimental 

observation of the AN = 3 branch of the El resonance could be very 

interesting. This could confirm additionally the existence of shells in 

metal clusters. 

As has been mentioned above, both experimental and theoretical stud­

ies of E>i. excitations with A> 1 are at the initial stage. The E>i.(>i. > 1) 

resonances were calculated within the SRA in [19] and within the fluid­

dynamical approach (FDA) in [21]. In [15] the "scissors" quadrupole 

resonance in deformed clusters was analyzed within the SRA. Due to 

the inherent limitations of the SRA and FDM, these investigations do 

not take into account the fragmentation of the E>i.(>i. > 1) resonances. 

On the other hand, the investigation of the E>i.(>i. > 1) resonances in a 

similar Fermi system, atomic nu~lei, clearly shows that the larger multi­

polarity of the resonance, the stronger its fragmentation. And just the 

large fragmentation is usually the main trouble in experimental search 

for these resonances. Also, due to the shell structure of cluster's mean 

field, the strength of the E>i.(>i. > 1) excitations should be distributed 

between branches with AN == 1, ... , >i. and AN = 0, ... , >i. for odd- and 

even-parity excitations, respectively. It is clear that without taking into 

account these effects it is very difficult to make any realistic predictions 

for E>i.(>i. > 1) resonances. This is just the advantage of the GVPM that 

this model can describe these effects. 

One can estimate a lower limit for multipolarity of collective E>i. ex­

citations: >i. $ 0. 7r~12 N; 13 [19]. For sodium clusters with r0 = 2.25A we 
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Table 3: Energies, B(El) values, contributions to the model-independent sum rule S(A = 
1) and structure (contributions of main particle-hole configurations) of the states with 

maximal B(El) values in Na1o, Na1s and Na26• Particle and hole excitations are classified 

following the convention of Clemenger (28] using Nilsson's asymptotic quantum numbers 

Nn.A. 

Cluster Na10 Na1s Na26 

w,eV 2.31 2.85 3.33 

B(El ), e2 A2 2.3 8.0 4.3 

S(El), % 20 44 19 

000,301 34% 202,303 27% 101,402 19% 

000,311 33% 211,312 21% 101,413 13% 

000,321 27% 101,422 9% 101,400 13% 

101,202 3% 220,330 5% 101,420 9% 

Structure 110,211 2% 220,321 5% 202,303 8% 

(NnzA)h(NnzA)p 110,431 5% 211,312 7% 

202,321 3% 200,301 5% 

211,321 2% 321,422 5% 

w,eV 3.31 3.33 4.31 

, B(El), e2 A2 5.5 1.6 3.6 

S(El), % 63 11 20 

101,202 41% 101,420 28% 110,411 29% 

110,211 3~% 101,440 13% 101,402 22% 

101,200 8% 101,431 9% 000,30118% 

000,321 7% 101,200 5% 202,303 6% 

Structure 220,321 6% 202,301 5% 101,400 5% 

(NnzA)h(NnzA)p 220,301 3% 211,310 4% 211,312 4% 

000,312 1% 202,303 4% 321,422 3% 

000,3011% 101,422 4% 200,301 3% 
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have ,\ ::; l.05.AN; 13• Following this estimation we can consider E2 and 

E3 collective excitations in dusters beginning with Na25. 

In Figs. 7-9 the strength functions b(E>.,w) ·~ bm=o(E>.,w)b1(E>.,w) 

for E2 and E3 excitations in spherical N a4o and deformed N a26 are pre-

sented. For the first time, calculations• of the E2 and E3 resonance; 

were performed taking into account their-fragmentation: As is seen from 

Fig.7, in the spherical Na4o the pure particle-hole E2. and E3 excitations . . . 

demonstrate the particular shell behavior: these excitations are mainly 

formed by E2(b..N = 2) transitions with energy about 2 eV and by 

E3(b..N = l, 3) transitions with ene~gies about 1 and 3 ey. The residual 
: \ i· : ' ' ; 

interaction shifts the strength of these transitions towards higher ener-

gies. As a result, the main E2 and E3 peaks are placed at 3.5 · and 4.1 

eV, respectively. These energies have to be considered as soine maximal 

values sine~ taking into account of the volume parts of E2 and E3 exci­

tations should, ii1 principle, decrease them. The most important point 

is. that the E2 and E3 resonances are not much fragmented so that they 

have a good chance to be measured in the ( e, e') reaction. The E2 and 

E3 resonances in deformed N a26 are exhibited in Figs.8 and 9. These 

resona~ces are more fragmented than their counterparts in N a4o but, 

nevertheless, they remain to be well concentrated. So, the ~earch for the 

E2 and E3 resonances in both spherical and deformed sodium clusters is 
' 

qui~e realistic and is a challenge for experimentalists. 

4 Conclusions 

The generalized version of the vibrating potential model (GVPM) was 

proposed for the description of multipol~ E,\ excitations of the surface 

character in spherical and deformed alkali metal clusters. The model 

seems to be rather optimal in the sense that, on the one hand, it provides 

a microscopical quality of the description ( energy position, fragmenta­

tion, etc.) and, on the other hand, does not need time consuming calcu-
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lations. The fatter is achieved by using the strength function method and 

the separable form of the residual interaction. The use of phenomena-

logical single-particle potentials simplifies the calculations additionally. 

Being self-consintent, the model does not need any adjusting parameters 

and provides rather reasonable predictions. If the Coulomb terms are 
neglected the model can be u~ed for the description of isoscalar giant 

resonances in atomic nuclei. So, the GVPM is convenient for comparison 

of E). excitations in atomic nuclei and metal clusters. 

The results of calculations within the GVPM for El, E2 and E3 res-

onances in spherical and deformed sodium clusters are presented. The 

results for the El resonance are in satisfactory agreement with the avail-
. ' 

able experimental data. In particular, in deformed clusters both energy 
I 

position and deformation splitting are described rather well. The cal-

culations pred~ct a group of high-energy peaks which form the f:lN = 3 

branch of El excitations and are rather well separated from the main El 
resonance. 

Calculations for the E2 and E3 resonances, taking into account their , 

fragmentation, have been performed for the first time. The calculations 

show that E2 and E3 resonances are well concentrated and have a good 

chance to be measured in the ( e, e') reaction. The study of the El, E2 and 

E3 resonances c~n provideyaluable information about different properties 

of metal clusters. The deformation splitting of the El resonance can be 

used for confirmation and detailed investigation of cluster's deformation 

distortions. Also, El, E2 and E3 resonances can be used to study f:lN 

splittings connecting with the shell structure of cluster's mean field. 

In the subsequent papers, the volume E). excitations will be taken into 

account. The corresponding formalism is presented in ref.[43]. 
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Appendix 

After the multipole expansion of the single-particle potential and den­

sity the inverse strength constant (11) can be written as: 

~-;id = - I: I: I)-1 )M ctn~/ c~~ + d( - 1 tcf;;/'!.,J 
Im I'm' LM 

·(L~"l,l'm'(v) + L~"l,l'm'(c)) 

where 
00 

Llml'm'(v) = A(2A - 1)(2>. + 1)
2 

/ drr2>.-2 
>.L 21r(2L + 1) 

. 0 

[ (1) / /d 2 (2) /.d (3) j · Lnll'dn11m1 dr · dVim r · r + L>.Lll'n11m1 • d,Vim r · r + L>.Lll'n11m1 ·Vim, 

00 

Llml'm'(c) _ 8,\(2,\-1)(2,\+ 1)2 /d >. 
>.L - (2£+1)2 rr 

0 
r 

·[L\111,n11m1(r) • n1m(r) · r>. + L\~11,n11m1(r) · r:-(~+l) / n1m(ri) · rf+Ldr1 
. 0 

00 

+L\~11,n11m1(r) · rL J n1m(r1) · r;-L-1dr1]. 
r 

The coefficients used in these expressions and in expressions (14)-(15) 

have the following form: 

Mi~1 = A>.Ll- B>.Ll, 

30 

where 

Mi~1 = l · A>.Lt + (l + 1) · B>.Lt, 

Mir1 = (l + ,\ + L + 1) · A>.Ll + (l - A - L)) · B>.Ll, 

Mif1 = (l + ,\ - L) · A>.Ll + (l - A+ L + 1)) · B>.Ll 

(
l+l >.-1 L) LO 

A>.Ll = v(z + 1)(21 + 3) >- l 
1 

. c1+10>.-10, 

(
l-1 >.-1 L) LO 

B>.Ll = -Jl(2l - 1) A l 1 . C1-10>.-10· 

Further, 
(1) _ (1) (1) 

. L>.Lll' - M>.Ll' • M>.Ll> 
(2) _ (1) (2) (2) (1) 

L>.Lll' - M>.Ll' . M,\L/ - M,\Ll' . M>.Ll 1 

(3) (( ) (1) (2) ) M(2) 
L>.Lll' = 2>. - l M>.Ll' + M>.Ll' • >.LI' 

(4) (1) ( (3) (4)) L).Ll/1 = M,\L/1 •• M,\Ll - M,\Ll . 

(5) _ ((,\ ) (1) (2) ) (3) 
L>.Lll' - - L M>.Ll' - M>.Ll' . M>.Ll' 

(6) (( ) (1) (2) ) (4) 
L>.Lll' = >. + L + 1 M,\Ll' + M>.Ll' • M>.Ll' 

. For spherical systems we have l = m = O, L = ,\ and 

(2) ( 4) 
Buo = Muo = Muo 

' - L(2) - L(3) - L(S) - L(B) - 0 - >.>.oo - >.>.oo - >.>.oo - >.>.oo - . , 

>. 
M (l) - A -uo - >.>.o - (2>. - 1)(2>. + 1)' 

Mi1~ = Auo(2>. + 1) = >.(2>. + 1) 
(2,\ - 1) ' 

>. 
LWoo = Aho = (2>. - 1)(2>. + 1)' 

>. 
LWoo = Aho(2>. + l) = (2A - 1) · 
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HeCTepeHKoB.O., Kn:~ii:HHr B., I'y'AKOB-B.B. .. . E4-94-510 
KomieKTHBHble EA.-B036y~eHml IlOBepxHOCT!J0ro THila .· 
B Cq>epHtieCKHX H ie<t>opMHpOBaHHhIX HaTpHeBhIX KJiaCTepax: ' 
MOAe.Jib BH6pHpyro~ero noTea:a;m1Jia · . . · . . . . 

' ' O6o6~eHa ca~ocorJiaco:sairnm1 MO'AeJib 1m6pHpyro~ero nOTeHIJ;HaJia' (MBII) 
'AJlll OIIllCT!HlUI £A.-B036y~eHHH IlOBepXH0C'IBOIO rnna B MeTaJIJIHtJeCKHX KJiaCTe­
pax · c npaKTH11ecKH . npoH3BOJibHoii:· CTaTH11ecKoii: rie<t>opMa~Heii: (BKJII011a51 
cq>epH11ecKHii: CJiy11aii:). B pac11eTax Mory! 6h1Tb · HcnoJih30BaHhl · mo6hle 0'AH0-
11aCTHtJHhle IlOTeHIJ;HaJihl H IlJIOTHOCTH BaJieHTHhIX ::meKTpOHOB, 'AJl51 KOTOphlx· 
H3BeCTHhl K03q>q>H:a;HeHThl MY JlbTHilOJibHOI'O pa3JIO::>I<eHH51. McnOJib30BaHHhIH B . 
MO'AeJIH_MeTO'A··cHJi:o:eoii: q>yHKIJ;HH Il03BOJI51eT H36e::>I<aTb pemeHH51 ypaBHeHHH 

' . - ~ ; . . ,./ 

'AJl51 Ka~oro COCT051HH51 H TeM caMhIM KaP'AHHaJibHO ynpo~aeT Bhl11HCJieHH51. 
Mo'AeJih HMeeT 'AOCTaT011ao 06~11ii: xapaKTep 11, · eCJIH npeae6pe11b Kyno­

. HOBCKHMH. tJJieHaMH, MO)KeT.IlpHMe~rnTbC51 'AJl51 OilHCaHH~ mraHTCKHX H30CKa-
JI51pHhIX.pe3oHaHCOB B aTOMHhIX 51'Apax. PaCCMaTpHBaIOTC51 pe3yJihTaThl pac11e­

:TOB B paMKax MBIT 'AJl51 El, E2-H E3-B036y~eirnii: B cq>epH'leCKHX (Nag Nazo 
H Na40) H 'Aeq>opMHpoBaHHblX (Na10, Nais H Na26t KJiaCTepax. .. . . • .· . 

Pa60Ta Bhlnonaeaa B Jla6opaTop1111 TeopeTn11ecKoii: q>H3HKH HM. H.H.Boro- . 
mo6oBa OM.SIM. . · . . . . 

Ilpenp11HT 06'he,111aeaaoro iiJic~_11zyTa ll,lepHbIX 11ccJJe):los~a11i1. ,U.y6aa, i 994 

Neste;enkp V.O., Kleinig W., GudkovV;V. . . . . 
Collective Et-Excitations of Surface Character in Spherical _and 
Deforined_Sodium Clu_sters: Vibrating Potential Model _ 

E4-94-510-

. . The self-cons.istenf vibrating potential model (VPM) .is extended for the. 
description of Et surface collective excitations in alkali metaf clusters with 

· _practically any kind of static d'eformation. The case of spherical clusters is also 
covered, Any single~particle potentials and valence electron densities for which 

· ·the coefficients of the multipole expansion are known can be used.within the 
rriidet: The sti:ength functionrriethod incorporated into the model allows one to 
avoid solving the equations for· every state and, as· a result,. simplifies the 
calculations drastically. The model is of a quite general character and can also 
be used for description of isoscalargiant resonances in atomic nuclei if the 
Coulomb terms are neglected. TheVPM is:applied to calculate the El, E2 and 

_ E3 excitatfonsin spherical (Nas, Na20 and Na40) and deformed (Na10, ·Na18 · 
and Na26) clusters. _ . . . . · · _ .. - _ . .. 

. , The ·investigation has. been. performed at the. Bogoliubov Laboratory of 
Theoretical Physks, JINR: · ·- · , • . . . . 
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