


1 Introduction

Collectwe excitations (CE) assoc1a.ted w1th surface pla.sma oscllla.tlons are
now a field of extenswe mvestlgatlon in- alkall meta.l clusters (see, for ex-
ample, recent papers [1- 22] and refs. therem) Expenmenta.l data clearly
demonstrate a resona.nce structure of these oscillations [1 -7]. Most of the
expenmental and theoretical mvest]ga.tlons are devoted to the electnc
dipole (E1) resonance. Informa.tlon about electnc resonances of h]gher
multlpola.nty is very scarce ahd hmlted ma.mly by theoretlca.l estimations
[15,19,21,23]. o
Valence electrons in alkali clusters a.re often conmdered as movmg in
the mean field with shells llke in a.tomlc nucle1 [24 25]. . Single-particle
potentlal descnbmg this mean field can be obta.med in the self-consistent
way [26 27) or approxnna.ted by some phenomenologlca.l potential [28-32].
Vibration of the mean field, which is described in terms of re31dual cor-
rela.tlons lea.ds to a.ppea.ra,nce of collectlve EX exclta.tlons It is known
that mvestlgatlon of CE is rather comphca.ted in clusters with open shells,
which possess quadrupole (as well as hexadecapole and octupole) defor-
mation (5-7,28,30-35]. In these clusters deformation spllttmg and Landau

damping can lead to a quite complicated picture of CE when collective .

strength is distributed over many pea.ks. On the other hand, investiga-
tion of CE in deformed clusters is very important: just;,é, deformation
splitting of the El resonance now provides the most reliable informa-
tion about the nia.gnitude of cluster’s deformation. To overcome these
troubles, the random phase approximation (RPA) with residual forces
of the separable form is sultable This approach provides the micro-
scopic accuracy of numerical results without time consuming calculations.
The self-consistent version of this approach, so called vibrating potential
model (VPM)[15,36,37), is especially attractive. In the VPM the form of
residual forces and their strength constants are consistent with the form
of the smgle—partlcle potentlal including all its deformation distortions.
Moreover, the self-consistency condition between variations of the single-
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pa.rtlcle potentla.l a.nd the correspondmg ground state denslty provides '

the ana.lytlca.l expressmn for the strength ‘constants. As a result, the
model has 1o any adJustlng parameters ‘
The VPM was ﬁrstly suggested in nuclear pl’.lySlCS [36 -40]. In [15]

the main equatlons “of the VPM for metal clusters were derlved If the =

: Coulomb terms are neglected the equatlons [15] turn out to be suitable
for the descrlptlon of lsosca.lar glant resonances in atomic nuclei. So,
the model is convement for the comparlson of collectlve excitations 1n

clusters a.nd atomic nuclel Up to now, numerical calculations within the

VPM in both atomic nuclei and metal clusters were limited to the case
of the harmonic osclllator potent1al w1th quadrupole deformatlon (see,
for example, (38 41]) In thls paper, a more genera.l version of the model
(a genera.hzed VPM (GVPM) [42—44]) is descrlbed Usmg the. multipole
expansron of the smgle—pa.rtlcle potential and ground state densrty, we
will obtain equatlons of the GVPM for systems with practically any kind
_ of static deformation. Any s1ngle—pa.rt1cle potentlals and ground state
densities (mcludrng the ones calculated in the framework of the Kohn-
Sham procedure), for which the coefficients of the multlpole expans1on
are known, can be used Wlthln the model. Spherlcal systems are also
covered. " ’ \ o |

Two features of the GVPM s1mpl]fy the calculatlons The first one ls,,
the sepa.rable form of the res1dual interaction. It should be noted that

we use the total (w1thout any truncation) multipole expanslon of the
Coulomb potential, i.e. we completely take into account a long-ra.nge
character of the Coulomb forces. The second feature is the use of the
strength function method [42,45]. This method allows one to avord a
direct solving of the RPA equatlons and to ‘get 'information about CE
through the strength function. ‘As a result, the calculatlons are dra.stlcally
simplified, which is very important for study of CEin la.rge and deformed
clusters. -

In the present paper, the GVPM is described in detail (Sec.2). The
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results of calculations within the GVPM for surface E1, E2 and E3 reso-
nances in spherical (Nag, Nas, Nay) and deformed (Nayo, Naig, Nass)
sodium clusters are presented. For deformed clusters, axial quadrupole
and hexadecapole deformations are taken into account.:Both prolate
(Nayo, Nayg) and oblate (Na,g) shapes are considered. Trla.x1a.l quadrupole
deformation in these clusters is known to be negligible [5, 10 35] A mean
field is approximated by the Woods-Saxon potential. Preliminary simpli-
fied results of the GVPM. calculations for the E1 resonance in spherical
sodium clusters were published in [44]. The results of present calculations

are discussed in Sec.3. Conclusions are given in Sec.4.
2 Generalized vibrating potential model

2.1 Main equations of the VPM A

In this subsection main equations of the VPM [15] are briefly reminded.
We start with the energy functional for a system of N, valence electrons
in the external field of jons

E{n(7,t), 7(F,n(F, t))} = 1/2/T(F t)dr + ‘/"v(i" t)'dr"'

e [ [ @O =m0 - n,(n))dd o

Where A : ' ; " S
rB) =Y IBEE @
Y=Y AvaEor @)

are the ground state.density and kinetic energy density of valence elec-
trons, respectively. Further, n;(¥) is the ionic density in the jellium ap-
proximation, ¢x(7, t) is a single-particle wave function. Summation in (2).
and (3) is performed over all occup1ed gingle-particle levels. The func-
tional (1) includes the kinetic, exchange—correlatlon and Coulomb terms,



respectively. The latter embraces electron-electron (e-€), electron-ion (e-
i) and ion-ion (i-i) interactions. In this section we will keep the convention
e = m, = h = 1 where e and m, are charge and mass of an electron.

., The time dependent single-particle potential is obtained as

HE D6 = 2 ¢f(E s=CEHEaE) @
where o a (37 = malF) o
V( t)——+/ E . ()

If the collective motion results in the density cha.ngmg' én(F,t), the

Hamiltomian (4) can be dividea into the static part

HO(F) - Ty +( )n—ng +/Mdﬁ R (6)

IF— 1"1'
and the time-dependent dynamical pa.r't ’

6n(,t) |

L SH( 1) = (F5)nmnefn(,0) + For i (7)

- 1'
where n(7,1) = no(¥) + 6n(,t) and no(¥) is the static ground state den-
sity. It is seen from (7) that variations of the density and single-particle
potential are consistent.

Tt is convement to express the density variation through the displace-

ment field #(F) as 6n(F,t) = a(t)((V - u)no + @ - Yno) where af(t) i is an
amphtude of the collective motion [15,46]. In the present paper, the sim-
plest case of the irrotational and divergency free collective mode (v x @ =
vi = 0 where @(7,t) = —&(t)@()) is the velocity field) is considered.
The dlsplacement field is chosen as u(1"') v f(7) with f(7) = r"Y/\“(Q)
and Y/\“(Q) Yy, (R)+4d- Y/\“(Q) Here, Y),($2) is the spherical harmonic,
the coefficient d = +1 assures the hermiticity of the Hamiltonian. Then,
the density variation has the form (1) = a(t)(Vf(F) - vno(F)) (for
the sake of simplicity, in this subsection we will omit indices Ay and d).
This kind of collective motion is proportional to vﬂo(f"), i.e. is of the
surface character. ‘
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Due to a considerable electrostatic screening between electron and jon
fields (this is the exact case if the electron density is taken in the jellium
approximation ny = n;) the contribution of a direct Coulomb interaction
to the static single-particle Hamiltonian (6) can be neglected [47] and we
can use for the static single-particle potential the ansatz Vo(7) = (&)n=n,.
Then, substituting the expression for ‘én(7,t) into (7), one gets

SH(7 1) = a()Q(F - ®)

where

o =vw-vre+ [T

Following the condition of consistency between dynamical variations of '

the single-particle potential and density, one can rewrite (8) as

GH (1) =xQ(1)Q(7) (10)
[ Q(F)én(F,t)dF and
= [0 v Q) vI@d = - [ @) v 1) woElar (1)

where Q(t) =

has the me;ming of the inverse strength constant of the residual inter-
action (9). Substituting the Hamiltonian H(7,t) = H(7) + SH(7,1) to
the time dependent Schrodinger equation, one finally gets the dispersion

equation

= QZ <k |Q’k >? (3774 — k! (12)

€ — w} _
where e = € + €p is the energy of a particle-hole excitation, | & >
and ¢ are the single-particle eigenstate and eigenenergy of the static
hamiltonian (6), w; is the root of eq. (12).
Equations (9), (11) and (12), determining the form of residual forces,
strength constant and dispersion equation, form the basis of the VPM
[15]. If one neglects the Coulomb terms, these equations can be used to

study isoscalar giant resonances in atomic nuclei.



2.2 Specification for deformed and spherical clusters

Equations (9),(11) and (12) are too general to be effectivelly used in prac-
tical calculations. One can get more concrete and convenient equations
for deformed (and spherical) clusters [42-44] using the multipole expan-
sion of the single-particle potential Vy(7) = ¥, Zm__, Vim(r)Y2,(2) and
ground state density no(7) = Y, Zm__, num(r)YE (). Omitting tedious
mathematical transformations we present the final expression for the op-
erator (9):

7-") ZYLM(Q) Z( Cil, + d(~ 1)* lmA—u)(QAle(r)+QALIm(r))

(13)
where

A(2A dV1
Afhntr) = 23+ 0y T2 M Tl - M=, ()

A2XA-1) ,  4x

@+ rerrn ¢ L+

)

Ale(T)

: T 0.
-[Mﬁ),r‘(“l)/mm(rl)rl‘”‘drl + M§L),rL/nlm(rl)r;“L‘ldrl]. (15)
0 r
Here, C{;ﬂu is the Clebsch-Gordan coefficient. Expressions for M §£, are
given in the Appendix.

Expression (13) has a clear physical meaning. The coupling of the
Ap excitation with the spherical (I = 0) and deformed (I = 2,4,6,...)
parts of the single-particle potential (and density) leads to the appear-
ance in the residual interaction of the family of modes with the moments
| A= 1]< L £ X+ L The parity of these modes coinsides with the
parity of A. Expression (13) shows that due to the self-consistency, the
residual interaction takes into account all the deformation distortions of
the single-particle potential and density. The terms (14) and (15) repre-
sent the contributions of the Coulomb exchange and correlations and of
the direct Coulomb interaction, respectively.
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The corresponding expression for the inverse strength constant (11) is
rather cumbersome. It is presented in the Appendix. It should be noted
that in any case the best way to calculate the strength constant is the
direct numerical integrating by exp. ( 11) _

For clusters of spherical shape (I = m = 0, L = )) expressions (9) and
(11) are drastically simpliﬁed :

Vo sy r
Q5F) = A3+ a- V@) (52 =m0 [ no(ryyePan] 19)
. 0/
and

L Fdnodvy
mw:-%%a+@@/{“ °+M%umﬂm,a‘un

where no(r) = ngo(r)2Yg = noo(r)/f (the same for Vb(r))
If all collective strength is assumed to be concentrated in one state
(one-pole approximation), we can get from eqs. (9); (11) and (12) the

estimation

(VN mo(PF (is)
TV i@ vm@®dr.

where w), and w( ) are the energy of the collective state and its unper-

wl, = (w“”)z

turbed value, respectively. The expression for the square of the single-
particle matrix element in (12) was obtained through the energy weighted
sum rule for the: operator v(16). Using the step approximation no(r) =
nOG(r -R) for the density, the oscillator form Vo(r) =-1/2 - wjr? for
the single-particle potential and the estimation wf\o) = Awp for the unper-
turbed energy, we obtain the simple expression for excitation energy of

the E) resonance in spherical clusters:

) ‘s A R B SO N
-1 . (19
wy = \/2/\+1wp+w A(X ) ( )

where w, = f"—:g-e-z—‘ is the plasma frequency. Neglecting the first (Coulomb)

_ term in (19) one gets the estimation for isesca.la.r giant resonances in
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\ atomic nuclei: wy = wy/A(A — 1).' Expression (19) is in good agreement
with the previous estimations obtained within the sum rule approach
(SRA) [15,19]-in spite of some difference in the A depéndence of the
second term ( in [19] the ~ 2/5(2) +1)(A ~ 1) dependence takes place).

2.3 Strength fu‘nctioh met'hod

' For clusters with a large number of electrons a direct solving of the RPA
equations can be very time consuming. This is especially true for de-
formed clusters where the number of states of a given multipolarity can
be very large. On the other hand, for these systems we do not usually

need a detailed information about all the states since, as a rule, experi-

mental data provide only some averaged characteristics. For investigation
of CE in these syistems‘ the strength function method is very useful. Using
this method we can avoid finding roots of the secular equka,tion (12) but
get information about CE through the strength function [42,45]‘

bn(EAg,w) = Zw;"B(E/\u,gr — wy)p(w — wy) (20).

with the weight function

'

1 A |
o (w— w2+ (Af2)F

plw —wi) = (21)
Here, B(EAp,gr — w;) is the reduced probability of the EAy transition
from the ground state to the one-phonon state with excitation energy w;.
The quantity A is an averaging pa.ralﬁetef. It is easy to see that for m=1
the strength function (20) has a form similar to the photo-absorption
cross section for E1 resonance. Following ref. [45], where' the strength
function method was considered for atomic nuclei, one can get a quite
general expression for the strength function of E) excitations in metal
clusters [42]: ‘

: v m¥2
b(EX,w) = 1 Im(__z_ﬂi_')
T X(Z) -, K’;pl,d 2=w+iA[2

8

wypen (D™ L :
+A Z(pzy €kk ((w ¥ ) + (B/2)2 + (w— ) + (A/2)2>) (22)

k<k!
A
< K'\Qlk > Pk;fkk’
2 2
€kk' -2

where
(23)

X(@)=2)
kk'

and pzz, is the single-particle matrix element for the standard operator
of the EAy transition. Expression ‘(22) is valid for m=0,1,2 and 3. It is
easy to see that we do not need any one-phonon excitation energies and
wave functions for calculation of the strength function (22). We do not
need also any iteration procedures. As a result, one can get averaged

characteristics of EX excitations without time consuming calculations.

3 Results of calculations and discussion

3.1 Details of 'calculations

The calculations within the GVPM have been performed for neutral
spherical (Nag, Nagy, Nas) and deformed (Najo, Nais, Nayg) clusters.
The E1 resonance was considered for all these clusters. The E2 and E3
resonances were calculated for Nay and Nags.

A mean field was approximated by the Woods-Saxon potential-

Uy
V() = 1+ exp|(r — R(2))/ao)

with R(S2) = Ro(1+ B0+ BaYao(S2) + BsYio(2)) and Ry = roN;/>. Here, £,
and [, are the parameters of quadrupole and hexadecapole deformation,

(24)

the parameter f; ensures the conservation of the cluster volume.

The Woods-Saxon potential is known to reproduce rather well the form
of the single-particle field obtained in the self-consistent calculations for
a wide group of sodium clusters [29]. This potential was successfully used
for determining magic numbers [29] and equilibrium deformations [33,34]
in sodium clusters. In our calculations, the depth and radius parame-
ters of the potential (24) are taken from [29]: Uy = —6eV, ry = 2.25A.
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The value of diffuseness parameter, @y = 0.744, used in [29] is not suit-
able for our calculations. As has been mentioned in [29], at this value
of ag the potential (24) vanishes faster than in the self-consistent Kohn-
Sham calculations [24], i.e., the diffuseness parameter in [29] is underesti-
mated. Moreover, due to a local density approximation for the Coulomb
exchange, the Kohn-Sham calculations are also known to underestimate
the surface diffuseness (in terms of the "spill-out”) [23]. In our calcula-
tions the diffuseness pé,ra.meter ap has to be chosen more carefully since
this parameter influences the energy positions of EX resonances of the
surface character. After a comprehensive analysis the value ap = 14 was
chosen. At this value, our calculations reproduce rather well, for exam-
ple, the percenté.ge of the spilled out electrons (19%) in Nas, obtained
the Kohn-Sham calculations [47] (see Table 1). Diffuseness of the single-
particle potential should not be confused with diffuseness of the density
of valence electrons in the ground state (the latter is calculated by exp.
(2) using the single-particle wave functions of the potential (24)). For
Nag,Nay and Nay, this density as well as the single-particle potential
(24) are presented in Fig. 1. It is seen that diffuseness of the densities is
smaller than that of the corresponding potentials. For Na4, the potential
and density are depicted for three values of the diffuseness: ay = 1.4,1.0
and 0.74A. As is seen, the variation of diffuseness in this range does not
change the density much.

For deformed clusters, axial quadrupole Ay = 20 and hexadecapole
Ap = 40 deformations were taken into account. The triaxial quadrupole
deformation, Ay = 22, in these clusters can be neglected [5,10,35]. Both

- prolate (N a10, Nagg) and oblate (Najg) spheroidal shapes were consid-
ered. The parameters of deformation 8, and 8, are given in Table 1. For
Nay, these parameters were taken from the Kohn-Sham calculations [48]
within the structure-averaged jellium model [12]. For Na;g and Nasg, the
deformation parameters were estimated following ref. [10] (see Table 1
and Appendix in {10]). The multipole expansions for potential Vo(F) and

10

Fig. 1. The density of valence electrons (2) and the Woods—Sa.xon
smgle—pa.rtlcle potentla.l (24) for Nag, N az and Nag. For Nay the re-
sults are given for diffuseness a = 1.4 (dashed llne), 1.0 (sohd hne) and

0 74 A (dotted hne)
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Table 1: Deformation parameters §; and f,, amount of the spilled out electrons §N and
model-independent energy weighted sum rules S(A = 1) for clusters under consideration.
Following {47], 6N was calculated as an amount of electrons (in %) outside the sharp
jellinm border at R = roN'/3 with rq = 2a.u. = 2.116A. ' .

Cluster Nag | Nag | Nagy | Najo | Nais | Nags

B 0] o 0 0384023040
B 0] 0 0 [0.212]0.02 | 0.06
6N, % 20 | 13 [ 10 | 20 | 14 | 12
S(A=1),e2eVA?|21.8| 545 | 109 | 27.3 | 49.1 | 70.9

density no(F) were limited by the terms with [ = 0,2,4 and 6. The calcu-
latlons show that the influence of the terms with / > 6 can be neglected.
The completeness of the single-particle basis for the deSCI']pt]OIl of EA
excitations is usually estimated to be sufficient if the model—mdependent
energy-weighted sum rule- ‘ :

2,2

S(A) = Zth(E,\,gr —w) = h °

,\(2,\ +1)’N < rP-25  (25)
is exhausted to a large extent. The radla.l part r2A-2 is averaged over
the ground state. The values S(A=1) = 8’;,‘;‘ 9N for clusters under
consideration are presented in Table 1. In our calculations E1 excitations,
‘in the energy interval 1-6 eV exhaust practically 100% of the sum rule
(25). E2 and E3 excitations in the same energy interval exhaust 90 —
100%. So, the single-particle basis used in the present calculations is
qulte complete.

For E1 excitations the strength function O’(El w) = bm=1(EA w) was

calculated. This strength functlon has the same energy multiplier as
‘ the photoabsorpt]on Cross sectlon which is mainly used for experlmental
investigation of the El resonance. So, the strength function o(E1,w)

is convenient for comparison with experimental data. This is not the

case for the E2 and E3 resonances, for the experimental study of which -

12
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the inelastic electron scattering (e,e’) seems to be more suitable. For
E2 and E3 resonances we calculated the strength function with m = 0.
The averaging parameter A was chosen to be equal to 0.05 eV, which
corresponds to a thermal energy with T' ~ 500K . The value A = 0.05eV
is much smaller than the typical width of the E1 resonance (the latter is
estimated as 10 — 15% of the excitation energy). But so small averaging
allows one to demonstrate the complicated structure of the resonances

which often includes more than one collective peak.

3.2 Main results and discussion

Main results of the calculations are presented in Figs. 2-9 and Tables 2
and 3.

In Fig.2, the radial dependence of the operator (13) (or in other words,
of the residual forces) is demonstrated. The Ay = 10 excitation in the
deformed Nagg is considered as an example. The parts of the operator
(13), corresponding to the coupling of the dipole mode with spherical
(! = 0) and quadrupole (I = 2) terms of the single-particle potential and
density are depicted. Following therule | A-1|< L g A+1, the coupling
with the terms corresponding to the quadrupole deformation leads to ap-
pearance in (13) of parts with moments L = 2 and 4. For every part of
the operator (13) the functions Q/\L,(r) (C,Lo’;#+ d(— 1)“C,[(;;“#)Qgil);,0(r)
representing contributions of the exchange-correlation: (i=v) and direct
Coulomb (i=c) terms, as well as their sum (i=v-+c), are presented. It is
seen that, in spite of rather large deformation of Nayg, the residual inter-
action is mainly determined by the spherical part of the single-particle
potential and density (see the top of Fig.2). The contribution of the
exchange-correlation term is much smaller and of the opposite sign as
compared with the contribution of the direct Coulomb term. The calcu-
lations show also that in all the clusters just the direct Coulomb term
mainly determines the residual interaction. Deformation corrections pre-
sented in the middle and bottom parts of Fig.2 are in total 10 — 15%

13
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Fig.2 Radial dependence of the components QAL,(r) of the operator
(13): the exchange-correlation part (i = v, dashed line), the Coulomb

part (i = ¢, dotted line) and their sum (i = v + ¢, solid line). See -

comments in the text.
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of magnitude of the main spherical part. It is seen that the exchange-
correlation term exhibits relatively larger deformation corrections (up to

'50%) than the Coulomb term. The deformation corrections caused by

both these terms noticeably compensate each other. This means that
in metal clusters the influence of deformation distortions should be rela-
tively weaker than in atomic nuclei where only the term (14) takes place.
Fig. 2 shows also that the residual interaction has a long Coulbrnb tail,
i.e., takes into account a long-range character of the Coulomb forces.
The results of calculations for El excitations in the spherlca.l Nag,
Nay and Nay are presented in Fig.3 and Table 2. The strength func-
tions ¢(E1,w) are given in Fig.3 for two cases: with and Without the
residual interaction. In the latter case, we have Kiud = 0 and’ El excita-
tions are determined by pure particle-hole transitions of non-mteractlng
electrons. Then, the El resonance lies in the reglon 1. 0 1. 5 eV that is
much lower than the experlmenta.l value. The energy 1.0- 1 5 eV is a
typical energy interval between nelghborlng shells. In other &WOI'dS, thls
energy corresponds to El tra,nsmons with AN = 1 Where N is the princi-
pal shell quantum number The self-consistent re31dua1 1nteractlon shifts
the resonance towards the energy 2.6-3.3 eV. For Nag and Nay this en-
ergy is a little bit higher_than the experimental values In accordance
with the experimental data [5,6], our calculations give one pea.k in Nag
and two peaks in Nag. As is seen from Fig.3, the calculations do.not
reproduce the tendency of approaching the classical Mie eneréy with in-
creasing N.. This tendency can be masked by shell eﬁects butwit'is not the
main reason in the present calculations. It is more important here that
we use for all clusters one and the same "a,vera,ged,Qiﬂusenes:s Jparameter
of the Woods-Saxon potential. As was mentioned above, this parameter
influences much the position of the E1 resonance and, in principle, has to
be adjusted for each cluster separately (for example, by calculation of the

-static dipole polarizability). This will be done in the subsequent papers.

Also, the agreement with the experiment can be improved if we take into
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~Fig.3 The strength functlon o(El,w) for El excitations in Nag, Nago

and Na4o
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GVPM the energy centroids of the resonance are given

Table 2: E)rperimental {5] and calculated within the GVPME and the SRA [10] excitation
energies (w, in eV) and deformation splittings (Aw, in eV) of the E1 resonance. For the

.
. O

.S
(@]

LN
- O

Cluster | Nag | Nagy | Nay Nay - Najg: Nagg
Wezp 2.59 | 2.67 | 2.72 | 2.02,2.67 { 2.56,2.94 | 2.29,2.93
‘wgvpm [ 3.04] 294 | 2.64 5.58,3.32 2.86,3.26 2.65,3.3_2'
wspa | 2.7712.94 | 3.05 |2.28,3.03 | 2.79,3.18 | 2.50,3.24
Awezp - - - 0.65 0.38 0.64
Awgvpm | - - - 0.74 - 0.40 0.67 -
Awsga - - - 0.75 0.39 074 |

G

g

e i,

account the volume (bulk) part of the residual 1nteract10n Th1s can be
done by the replacement of the externa.l field f (F) = r"YA F(Q) by the ﬁeld

f(gr) =] ,\(qr) (Q) where ¢ determmes the proportlons between bulk
and surface excitations [43]. Followrng [23] the coupling of surface and
volume excitations should lead to some decreasrng the energy of the E1
resonance. In spite of some shortcomlngs of the present ca.lculatlons one
should note that the a,greement of our results with the experlmental data
for spherlcal clusters is qu1te satlsfactory In any case this agreement is
not worse than in the calculations within other models. ;

The results of calculations of E1 excltatlons in the deformed Nayy,
Najz and Nags" are exhibited in Figs.4-6. In Tahle 2"these' results are
cdmpared with the available experimental data and the results obtained
in the framework of the sum rule approach (SRA)[10]. As is seen from
the ﬁgures the deformatlon of clusters leads toa quite common plcture
Namely, in N am and Nagg, that have a prolate quadrupole deformatlon,
the small peak corresponding to vibrations of electrons along the z-axis
of the sph_er01d Thas lower energy as compared with the' large peak cor-
responding to vibrations of ‘electrons along thé x- and y-axes. In the

cluster with oblate deformation, Na;s, the opposite picture takes place.
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Due to the deformation splitting, resonances in Najs and Nass demon-
strate the substantial Landau damping. ‘Table 2 shows that for small
deformed clusters the GVPM calculations also give somewhat overesti-
mated energies of the El resonance. But note again that taking into
account the the volume part of the residual interaction should improve
the agreement with the experiment. The description of the deformation
splitting is rather nice although this seems to be mainly a merit of the
single-particle scheme. The comparison in Table 2 of the GVPM and SRA
results indicate that ‘these models provide more or less the same quality
of description of excitation energies and deformation splittings of the E1
resonance. Nevertheless, the GVPM has an important advantage. This
model can describe not only these two characteristics but also the Landau
damplng, i.e., fragmentation of the collective strength over many peaks.
Our results for Na,g and N g6 show that the Landau dampmg isa qulte
general property of El exc1tat10ns beginning from rather small clusters.
Without doubt this property should be taken ‘into account for correct
comparlson with experlmental data (It is to be noted that fragmenta—
tion of the El resonance can be calculated also within other approaches
self—cons1stent model of W. Ekardt [14], full RPA [17 18] and local RPA
[9 11 23] But the calculations within these approaches are much more
time consumlng, especially for large and deformed clusters. )

It is interesting to estimate the collectivity of the states fornung the E1
resonance. The large value of reduced trans1t10n probability B(El, gr —
wy) does not always mean the strong collect1v1ty of the state since this
large value can be caused in some cases by a single (but strong). smgle—
pa.rtlcle matrix element To estimate the collect1v1ty, the structure the
state should be also con51dered From a general point of v1ew it lS clear
that the larger. number of partlcle-hole configurations contnbute to the
state, the stronger its collect1v1ty In Table 3, the structure of the states
in Nayg, Nays and Nage .with maxunal B(El) values is presented It is
seen that these states exhaust a large amount of the model-independent
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sum rule $(A = 1). They are composed of a large number of particle-hole
configurations corresponding to AN = 1 and 3 dipole transitions. So,
these states are really collectlve Table 3 also shows that, on the average,
the larger a cluster, the stronger collectivity of its states.

Figs.3-6 show that E1 excitations have pronounced high-energy peaks
which are well separated front the main El resonance. These peaks take
place in all clusters and the larger the cluster, the stronger the peaks.
This tendency is demonstrated in Fig.3 for spherical clusters: while in
Nay, high-energy peaks are absent at all, they appear in Nay, (the ex-
perimental data, [5-7] suggest the two-peak structure of the E1 resonance
in this cluster) and become very large in Nay. As is seen from Figs.4-6
a similar situation takes place in deformed clusters as well. The high-
energy peaks exhaust a-large amount of the sum rule (25). In N azs and
Nayp the contribution of the peaks at the energy 4.0-4.8 eV into the sum
rule is 28% and 44%, respectlvely This is in some dlscrepancy with the
experimental data [7] where for these clusters (but ionized) 80 — 100%
of the dipole sum rule was observed in the energy interval 2-3.4 eV. The
coupling with the volume plasmon and the use of a larger averaging pa-
rameter A (corresponding to the realistic width T = (. 15w) should shift
the dipole strength towards the lower energies and improve the agree-
ment with the experiment. As our estimations show, in this case the
high-energy peaks remain to be rather well separated from the main E1
resonance although they will have lower excitation energies.

The origin of the high-energy peaks is rather clear. They are nothing
but the AN = 3 branch of El collective excitations.  Just due to the
AN =3 nature of these peaks we have the tendency that the heavier
cluster, the larger their strength. In Table 3, the structure of the high-
energy state with w = 4.31 eV in Nay is presented as an example. It
is seen that the large components of this state are mainly formed by the
particle-hole conﬁguratlons with AN = 3 while the small components
determlmng the collectivity of the state — mainly by configurations with
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AN = 1. The residual interaction shifts the E1 AN = 1 strength to the
high-energy region of rather weak particle-hole excitations with AN = 3
and promotes in this way the collective high-energy peaks. The long-
range character of the Coulomb forces (furthering the interaction between
electrons far from each other) also favours the formation of the AN =
3 branch. This picture is of general character and concerns any EX
excitations. As a result, the E) excitations seem to be attractive for
investigation of the AN shell effects. In particular, the experimental
observation of the AN = 3 branch of the E1 resonance could be very
interesting. This could confirm additionally the existence of shells in
metal clusters. .
As has been mentioned above, both experimental and theoretical stud-
ies of EX excitations with A > 1 are at the initial stage. The EA(A > 1)
resonances were calculated within the SRA in {19] and within the fluid-
dynamical approach (FDA) in [21]. In [15] the "scissors” quadrupole
resonance in deformed clusters was analyzed within the SRA. Due to
the inherent limitations of the SRA and FDM, these investigations do
not take into account the fragmentation of the EA(A > 1) resonances.
On the other na.nd, the investigation of the EA(A > 1) resonances in a
similar Fermi system, atomic nuclei, clearly shows that the larger multi-
polarity of the resonance, the stronger its fragmentation. And just the
large fragmentation is usually the main trouble in experimental search
for these resonances. Also, due to the shell structure of cluster’s mean
field, the strength of the EX(X > 1) excitations should be distributed
between branches with AN = 1,..,\ and AN = 0,..., A for odd- and
even-parity excitations, respectively. It is clear that without taking into
account these effects it is very difficult to make any realistic predictions
for EA(XA > 1) resonances. This is just the advantage of the GVPM that
this model can describe these effects.
One can estimate a lower limit for multipolarity of collective E/} ex-
citations: A < 0.7ri/? /3 (19]. For sodium clusters with ro = 2.254 we
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Table 3: Energies, B(E1) values, contributions to the model-independent sum rule S(A =
1) and structure (contributions of main particle-hole configurations) of the states with
maximal B(E1) valuesin Najo, Najg and Nags. Particle and hole excitations are classified
following the convention of Clemenger [28] using Nilsson’s asymptotic quantum numbers

Nn,A.
Cluster Nayg Nais Naog
w, eV 2.31 2.85 3.33
B(E1), e2A2 2.3 8.0 4.3
S(E1), % 20 44 19
' 000,301 34% | 202,303 27% | 101,402 19%
000,311 33% | 211,312 21% | 101,413 13%
000,321 27% | 101,422 9% | 101,400 13%
101,202 3% | 220,330 5% | 101,420 9%
Structure 110,211 2% | 220,321 5% | 202,303 8%
(Nn A)p(Nn,A), 110,431 5% | 211,312 7%
202,321 3% | 200,301 5%
211,321 2% | 321,422 5%
w, eV 3.31 3.33 4.31
B(E1), e?A? 5.5 1.6 3.6
S(E1), % 63 11 20
101,202 41% | 101,420 28% | 110,411 29%
110,211 30% | 101,440 13% | 101,402 22%
101,200 8% | 101,431 9% | 000,301 18%
000,321 7% | 101,200 5% | 202,303 6%
Structure 220,321 6% | 202,301 5% | 101,400 5%
(Nn,A)n(Nn,A), | 220,301 3% | 211,310 4% | 211,312 4%
000,312 1% | 202,303 4% | 321,422 3%
000,301 1% | 101,422 4% | 200,301 3%
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have A < 1.054N, 1/3 I‘ollowing this estimation we can consider E2 and
E3 collective exc1tat10ns in clusters beginning with Nas. V
In Figs. 7-9 ‘the strength functions b(E/\ w) = bnoo(EX, w)bl(E/\ w)
for E2 and E3 excitations in spherlcal N dg and deformed N age are pre-
sented. For the first time, calculations of the E2 and E3 resonances
were performed taking into account their fragmentatlon As is seen from
Fig.7, in the spherical Nagp the pure partrcle—hole E2 and E3 excitations
demonstrate the particular shell behavior: these excrtatlons are mainly
formed by E2(AN = 2) transmons with energy about 2 eV and by
E3(AN =1, 3) transitions with energles about 1 and 3eV. The remdual
interaction shifts the strength of these tra.nsmons towards hlgher ener—
gies. As'a result, the main E2 and E3 peaks are placed at 3.5 and 4.1
eV, respectlvely ‘These energies have to be consrdered as some maxnnal
values since taklng into account of the volume parts of E2 and E3 exc1-
tations should, in prlnCIple, decrease them. The most 1mportant pomt
is.that the E2 and E3 resonances are not much fragmented so that they
have a good chance to be measured in the (e,é') reacti'on“ The E2 and
E3 resonances in deformed Nays are exhibited in Flgs 8 and 9. These
resonances are more fragmented than thelr counterparts in N aq but, -
nevertheless they remain to be well concentrated. So, the search for the
E2 and E3 resonances in both spherical and deformed sodlum (;lllSterS’]S

quite realistic and is a challenge for experimentalists.

4 'Conclusions

The generalized version of the vibrating potentlal model (GVPM) was

proposed for the description of multipole E excitations of the surface
character in spherical and deformed alkali metal clusters. The model
seems to be rather optimal in the sense that, on the one hand, it provides
a microscopical quality of the description (energy position, fragmenta-
tion, etc.) and, on the other hand, does not need time consuming calcu-

25



lations. The latter is achieved by using the strength function method and
the separable form of the residual interaction. The use of phenomeno-
logical single-particle potentials simpliﬁes the calculations additionally.
Being self-consintent, the model does not need any adjusting parameters
and provides rather reasonable predictions. If the Coulomb terms are
neglected the model can be used for the description of isoscalar giant
resonances in a.tomlc nuclei. So the GVPM is convenient for comparison
of EX excitations in atomic nuclei and metal clusters.

The results of calculatlons within the GVPM for El, E2 and E3 res-
onances in spherlca.l and deformed sodium clusters are presented. The
results for the E1 resona.nce are in sa.tisfa.ctdry agreement with the avail-

able experlmenta,l data. In partlcular, in deformed clusters both energy

posmon and deformation spllttmg are described rather well. The cal-

culations predlct a group of high-energy peaks which form the AN = 3
branch of El excitations and are rather well separated from the main E1
resonance.

Ca.lcula.tlons for the E2 and E3 resona.nces ta.kmg into account their
fra.gmenta.tlon have been performed for the first time. The calculations

show that E2 and E3 resonances are well concentrated and have a good

chance to be measured in the (e, ¢') reaction. The study of the E1, E2 and

E3 resonances can provide valuable information about different properties
of metal clusters. The deformation sphttlng of the E1 resonance can be
used for confirmation and detailed 1nvest1gatlon of cluster’s deformation
distortions. Also, E1, E2 and E3 resonances can be used to study AN
splittings connecting with the shell structure of cluster’s mean field.

In the subsequent papers, the volume EX excitations will be taken into

account. The corresponding formalism is presented in ref.[43].
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Fig.7 The strength function b(E\,w) = bp=o(EA,w) for E2 and E3
excitations in Nas. The results obtained with (solid line) and without

(dashed line) the residual interaction are presented.
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Appendix

After the multipole expansion of the single-particle potential and den-
sity the inverse strength constant (11) can be written as:

Kypd = —ZZZ( nMciy (cit My d(- 1 CiM)

Im I'm'" LM
(lel m (u) + Lf\rzl m’(c))

where

LIml’i'n’(vu) — A(2’\ - 1)(2’\ + 1)2 /d
AL 2m(2L + 1)

[LAL,,.dnzrm//dr -dVipfdr -7 +LE\L),,,ny r-dVlm/dr r+LE\L)u,np 1o Viml,

Lt _ 8A(2A — 1)(2X + 1)2/d \
(2L +1)?

-[L?L)",npmr(r) My (r) - ™+ LgsL)“,npm:(r) . f,"(.LH)/nIm(rl) . r1+Ldr1

0
0

+LE\6L)11'nl'm’(7') 'fL/nzm(h)-ri\'L’ldrl].

r

The coefficients used in these expressmns and i in expressmns (14)- (15)

have the followmg form
M§1L), = Axpi — B,
30

M3 =1- A+ (1+1)- By,
/\L,_(l+/\+L+1) Aypi+ (1= X— L))+ By,
M3 =(+X-L)- A+ (@-X+L+1)) By

where
A =V(I+ D)2 +3) ( oA ] f) - Clor-105
Bypi = m <l /\1 /\—l— ! f) 'ClL—olo,\—lm
Further,

1 1
L = M M),
2 1
Ly = M, - M3 - M, - MY,
2
LALII’ =((2A - )M (IL)I’ §L)I') M,\Lh

3 4
Lidy = Mg (M3~ M{P).

2 3
LALII' (A-L)M (IL)I' - §L)I') §L)I’
2 4
L = (A + L+ )M, + M) - M3,
_ For spherical systems we have I =m =0, L = A and
Buo = M3 = M3}

3 5 _ (6 _
= LE\Z,\)oo = LE\,\)oo = LE\,\)oo = LE\,\oo =0,

0
Miyo = Axo = \/(2/\ D@1

A(2) +1)
) - e - D
W) 42 A
AX00 Ao = (2,\ _ 1)(2,\ + 1)’

A
L = Ahe(2A + 1) = o
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Hecrepenxo B. O Knemmr B., I‘ynxon 'B.B.
| Konnekrusshle El Boa6yxnenm nonepxnocmom HOA T
:B c(bepnuecxnx " ne(bopmnponannux Hannenux eracTepax : { S
'Moz(e.nb Bn6pnpyromem TOTeHIMANA TR ST :

0606meHa CAMOCOI/IACOBAHHAS MOIleJIb Bn6pnpyromero no'remma.rra (MBH)

= ,vzum ormcannerl-Bos6yxnemm TOBEPXHOCTHOTO THIIA B META/LTMYECKHX KJ1ACTe-
-| pax’ ¢ IpaKTHYECKH nponanonbnon ‘cTaTHuecKo# . nedhopmanmeit (meoqasr
] cheprueckuit caryyait): B pacuerax MOTYT GHTb MCIIO/Ib30BAHKL JIIO0BIE OXHO-

'UACTHUYHBIE TIOTEHIUAH ¥ TUIOTHOCTH BAJIEHTHHIX J/IEKTPOHOB, VIS KOTOPHIX:
M3BECTHH xoatb(bnunem‘m MYJIbTHIIO/ILHOTO Pa3AOXEHUS. I/Icnonbsonannbm B”
- MOZIEJIM_METON. CHJIOBOM (byHKumr TIO3BOJISET n36eXaTh pemeHus ypaBHeHnn

1 IS K&)KI(OIO COCTOHHPISI M TCM ‘caMhbiM KalePIHaJIbHO ynpomae'r BHIUYHNCJICHHUA.

*| Moziestb - MMeeT {OCTaTOUHO. 0Bt XapakTep M, €CIu. npene6peqb KyJI0-
| HOBCKMMH. WICHAMH, MOXET IIPUMEHATBCS JUIS OMTMCAHUA THFAHTCKUMX M30CKa-

27 °| JISIpHBIX. PE30HAHCOB B ATOMHEIX SApax. PaccmannBalo'rca PE3yJIbTAaTH pacye--

“|.ToB B pamMkax MBI mist El; E2-u E3-po3byxnenmii B c(bepnuecxnx (Na8 Na20
" Na40) u nedpopmuposanukx (Najq, Najgu Na,¢) xnacrepax. -

- |+ Pabora Bbmo.rmena B JIa6opaTopnn Teope'rnqecxon dmsnxn PIM H H Boro—f V
i ‘mo6ona OI/ISII/I Lk ; L ,

Nesterenko V. O., Klemlg W., Gudkov V. e E4 94 510 _

| Collective EA-Excitations of Surface Character 1n Spher1cal and
’}Deformed Sodrum Clusters Vlbratlng Potentlal Model ‘

: _The self—consxstent v1bratlng potentlal model (VPM) is extended for the
y ?descnptron of EA surface collectlve excitations in alkali: metal clusters with -
| practlcally any kind of static deformatron ‘The case of spher1cal clusters is also
: ,covered ‘Any sxngle-partlcle potentrals and valence electron densities for which
jthe coefficients of the multxpole expansion are known can be used ‘within the
, ,model The strength function method 1ncorporated mto the model allows one to-
“avoid- solv1ng the equations for: every state and ‘as a result, snmpllfles the’
calculatrons drastxcally The model is of a qulte general character and can also
“|-be: used for description - of isoscalar giant resonances in atomic nuclei if the
‘Coulomb terms are neglected The VPM is. -applied to calculate the E1, E2 and
| E3 excitations in spherrcal (Na8 Na20 and Na40) and deformed (Nalo, Nal 8
' and Na,g) clusters.
R '}"»The 1nvest1gatron has been performed at the Bogohubov Laboratory of
Theoretxcal Physrcs J INR i L
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