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lllttpOKOB M.H. E4-94-4 
KeaHTOBOe peTpOCKa3a11tte H npttHl.lttn npH'mHHOCTH 

KeaHTOBall MexamtKa llBJilleTCll <jlaKTHqeCKH npeACKa3aTCJibHOH HayKOH. Ho KBaHTOBOe pe­
TpOCKa3a11tte TOJKe MOJKeT OKa3aThCll HYlKllblM, HanpttMep AJ!ll 3KCnepttMeHTaJlhHOH nposepKM 
CnpaBeAJIHBOCTM ypae11eHMll lllpeAMill'Cpa AJ!ll HaXOJKAeHMll npOWJIOH BMIIOBOH <jlyHKI.IMM, eCJIM 
3aAaHO HaCTOlll.l~ee COCTOllHMe. IloKa3aHO, 'ITO B peTpOCKa3aTCJihHOM aHanore npeACKa3aHMll KBaH­
TOBOe H3MepeHMe AOJIJKHO 6h1Tb 33Me11e110 APYniM <jltt3tt'leCKMM npo1.1eccoM, Ha3B3HHblM peTpOM3-
MepentteM. 8 3TOM npo1.1ecce peAYKI.IHll BOJIHOBOH <PYHKI.IMM B co6CTeeHHhle eeKTOpa M3MeplleMOH 
11a6J110AaeMOH AOJIJKHa npOHCXOAHTb B o6paTHOM HanpaBJieHMM BO speMeHH no cpaeHeHMIO C 06h1q­
HOH peAYKI.IHeH. IlpttMepbl TaKMX npo1.1eccoe Hett3BeCTHbl. Eonee TOl'O, MOJKHO noKa3aTh, qTO OHH 
3anpe11.1e11bl nptt111.1ttnOM nptt'IHHHOCTM, yrneplKAalOII.IMM, 'ITO 6yAy11.1ee co6hlTMe He MOJKeT BJIMllTb 
Ha 6onee paHnee. Il03TOMY nptt111.1ttn nptt'IHHHOCTM npttBOAHT K Hepeantt3yeMOCTM KBaHTOBOl'O 
peTpOCKa3aHHll. IloKa3aHO, 'ITO nOAXOA K peTpOCKa3aHMIO, npeAJ!OlKeHHblH paHee BaTaHa6e. M 

EeJlhHH<jlame, AOJIJKeH paccMaTpttBaTbCll TOJlhKO KaK 11eyAOBJ1eTeopttTeJ1hHblH 3p3al.l peTpOCKa3a­
HHll. 

Pa6oTa BhlnOJIHella B Jla6opamptttt Teopern'leCKOH <jJM3HKH HM. H.H.Eoron!06oea OHSIH. 
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Quantul)) l))echanics is factually a predictive science. But quantul)) retrodiction l))ay also be 
needed, e.g., for the expcril))cntal verification or the validity or the Schroedinger equation for the wave 
function in the past if the present state is given. It is shown that in the retrodictive analog or the 
prediction the l))easurcl))ent l))USt be replaced by another physical process called the 
retrol))easurel))ent. In this process, the reduction or a state vector into eigenvectors or a l))easured 
observable must proceed in the opposite direction of time as compared to the usual reduction. Examples 
or such processes arc unknown. Moreover, they arc shown to be forbidden by the causality principle 
stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be 
unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and 
F.llclinfantc must be considered as an unsatisfactory ersatz or rctrodicting. 
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l. Introduction 

The existing quantum theory is factually the science which predicts the 
future, the past being given [ l ]. The determination of the past if the future is 
given (retrodiction) meets troubles in the framework of quant~m theory, though 
the Schroedinger equation allows one to find the wave function 1/'(t)/provided 
the state vector ·1110(1

0
) is given, for both cases t > t

0 
and t < t0 · [2,3 ). As· an 

' , - . •' ; 

example of troubles one can mention the Born probabilistic interpretation of the 
wave function. This interpretation deals with probabilities of future accidental 
events (the quantum event is the appearance of an eigenvalue· 'of the measured 
observable). Meanwhile retrodiction should deal with the past accidental 
happenings. · · · · · . 

Really, the quantum retrodiction should be based on some new additional 
postulates. For example, it is natural to take it for granted that quantum retro­
diction must also be a statistical theory dealing with probabilities fo~ happe­
nings in the past (retroprobabilities). Some other suppositions will be fntrodu-
ccd below in sect.3. , · 

There exist several approaches to the quantum retrodiction problem, e.g., 
see [ 1,4,5,6, 7 ). They will be discussed in sections 3 and 4. 

In order to avoid misconceptions let us stress that the problem is not directly 
related to the Tor CPT reversibilities [ 4) because the latter are assertions about 
some predictive amplitudes. 

A natural question may arise: is the quantum retrodiction really needed?. 
The answer is that the retroexperiment can verify hypotheses about evolution 
backwards in time. The validity of the Schroedinger equation for the retrodic­
tion is only one of the hypotheses of that type. There are suggestions [8,9, 10 I to. 
use other microscopic equations which prefer a direction of time and can explain 
the origin of the «time arrow>> [ 11, 12, 13 ). They imply quantum irreversibility 
which is not related to the known irreversibility of the measurement process, 
e.g., see I 14) and I l ) ch.3.4. 

A well-known example of statements determining the <<time arrow» is the 
causality principle (CP). Its general formulation is «the later events cannot 
influence the earlier ones>> or «the cause must preceed the effect», e.g., see [15] 
(for a more detailed form of the principle see sect.5 below). To verify (or falsify) 
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the principle, one must realize the experimental situation when the cause (the 
event which can be varied at our will) is in the future with respect to the effect. If 
CP is valid, then the cause variations cannot result in variations of the earlier 
effect. This experimental situation means a retrodiction problem. 

Let us note that CP has been used in ref. ( 15 I when discussing the usual 
prediction (in ➔ out) problems. It has been shown in ( 16] that in this case the 
mathematical consequences derived from CP in ref. ( 15 I can be obtained 
starting from other preconditions not including CP. This means that dispersion 
relations can be obtained without using CP. So their verification does not imply 
CP verification. 

The paper is organized as follows. 

At first, the scheme of prediction is discussed in sect.2 because the analogy 
with the prediction i~ guiding for discussion of the retrodiction in sect.3. The 
main conclusion of the discussion is that the quantum retrodiction needs a 
physical process called the "retromeasurement" instead of the usual measure­
ment. The examples of this process are unknown·and some general principles 
(CP being the example) forbid its realization. But a realizatioq of the quantum 
retrodiction is declared in the literature ( 1,4 ). Sect.4 shows that this approach 
must be considered as an unsatisfactory ersatz of the retrodiction. Nevertheless, 
the ersatz gives an· idea of the notion of retroprobability. Sect.5 gives an 
illustration of the retroexperiment which would be needed for the CP 
verification. 

My conclusion is presented in sect.6. 

2. Quantum Prediction 

The quantum prediction problem may be separated into three st~ges, sec 
Fig.I. . . 

(a) The preparation of the initial state which takes place in the time interval . 
(t.', t.), t.' < t .. In this interval the physical system S under consideration• 

I I I I 

a b ·c 
, 
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I 
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Fig. I. Prediction. (a) preparation; (b) evolution t/J(f) = U(t, t;) 1/'r t > t;; (c) measurement ·that 

reduces 1/'(1t) to 1/), the arrow shows the time direcHon of the reduction 

2 

interacts with a preparing device. At the moment t., the interaction ceases, the S 
I 

state becoming1p. at t .. 
. I I 

. (b) Evolution in the interval (t;, 9, ti< t1 according to the Schroedinger 

equation i a, v•(t) = H tp(t) under the condition tp(t = t0) = 1/Jr In the interval S . 

is isolated in the sense that its Hamiltonian H does not depend upon variables 
describing the preparing and measuring (see below) devices. 

(c) The measurement of an observable Fat tr The system S begins to 

interact with the measuring device at t1 and._this interaction ceases at tj. The 

result of the measurement is the reduction oftp(t1) an eigenstate 1/) of the ob­

servable. 

Quantum mechanics pos_tulates that the probabilityof observing _I/) is equal 
to 

P(j - i) = 1(/ ltp(9 )1
2

• (1) 

This prediction means that if one deals with the ensemble of N. identical .. ' , ; . , . . . , . . . . I 

systems prepared in the state tpi' then the number of systems observed in 1/) 

will be 
N.(/) = P(j - i)N .. 

I . I 
(2) 

More precisely, N.(j)/ N, tends to I(/ IV•(t
1
) )I 2 when N. ➔ oo in the sense of the 

I I I 

law of large numbers, see, e.g., I 17 I ch.6.4. and ch.8.4; 
The following comments will be of importance for the discussion of the 

retrodiction. 

· 2.1. The preparation may be realized by a measurement of an observable 1 
complemented by the selection of the systems Sin a distinguished/ eigenstate 
Ii) = 1''·· .. 

I 

2.2. The reduction to I/) occurs after t
1

. At t
1

and immediately before t1 the 

system Sis described by the vector tp(t} = _U(t1 , t;)l/Jr The state of the system 

in the interval (ti' tj) is determined by the interaction with the measuring 

device. The probability to find the state I/) depends on the wave·f~nction which 
S had before the measurement (e.g., on the state Ii ) if t

1 
= ti). 

2.3. Eq. (I) is valid under the natural assumption that a measurement does 
not discriminate some eigenvalues/ of the observable F, i.e. the efficiency of I 
measuring is equal to 100%. If a certain eigenvalue/ is not registered, then the 

measured number Ni(/) would be zero irrespective of the value of I ( / I tp( 9 ) I 2• 

3 
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Fig.2. Retrodiction. (a) retroparation'; (b) retroe~olution 11,(t) = U,(t, 1t) y,
1

, t < t
1

; (c) retromea­

surement that reduced 11,(t.) to Ii), the arrow sho~ the time direction ·or the retroreduction 
I . 

3. Quantum Retrodiction 

By analogy with the prediction one may separate the retrodiction into the 
following stages: 

a) Retroparing the state ip1at the moment 1
1

. This replaces the preparation 

in prediction, Belinfante [ l ) calls it the «postparing». The interaction of the 
related device with Stakes place in the interval (t

1
, t1). 

· b) Retroevolutiori of the isolated system S from t
1 

to ti according to an 

equation describing the backward-in-time evolution: 1/'(t) = U,(t; 9 t
1

, t < t
1

. 

c) Retromeasurement of an observable /. The system S interacts with the 
related device in the interval (t.', t.). The device pointer takes the definite 

I I 

position <<i>> before the moment t .. This result of the retromeasurement means 
I 

that the (retro)reduction has happened in the/ eigenstate Ii). The frequency 
(or retroprobability) of the result must be determined by the S state 
1/J(t;) = U,(t;, 9 ip1 at the moment tt In other words, the frequency is 

determined by future state of the system. Remind that the frequency of the 
usual measurement reduction is determined by the previous S state, see 
sect.2.2. 

Before giving the definition of the probability of past events, / must make 
some preliminary notes. 

3.I: Retroexperiment must• have one impor-tant distinction from the 
prediction experiment. A prediction can be verified by future experiments (the 
observable measuring). They can be realized when an experimenter lives till the 
moment 11 . But the retrodiction needs fixing !he later state ifj, · the earlier S 

state being the subject of the retrodiction. Meanwhile, only the past and the 
present are available for us, we view the future as nonexisting yet. So one must 
consider both the later state ip I and the earlier Ii) as being in our past. When 

retrodicting one must deal with the recording (or the protocol) of an experiment 
which has already been completed. 

4 

3.2. l suppose that the result of the rctroprcparation or rctromcasurcment is 
described by usual kct vector. It is a natural supposition if one uses the same 
Schroedinger equation (which is the equation for a ket vector) both for the 
forward-in-time and backward-in-time evolutions. Aharonov and Vaidman [7) 
adh~rc io another approach: they USC a bra vector in order to describe the state 
determined by the measurement of an observable Bat the moment 11 (as will be 

noted below in scct.3., this must be a re~romeasurement). 
3.3. The rctromcasurcmcnt process (c) can be used for the rctroparing (a}. 

For this purpose, the retromeasurement of an observable F must be 
supplemented by a selection of a certain eigenstate 1/) which would be .the 
rctropared state 1/-'t. 

·The state 1/) selected at the moment t
1

must determined the past history of 

the system S, i.e., for times _I< 1
1

. Meanwhile, the usual measurement docs not 

determine the system's past state vector. On the contrary, the frequencies of the 
reduced states arc determined by the past state, sec scct.2.2. 

This note has a direct relation to the series of papers by Aharonov ct al. 
devoted ·10 the discussion of the system· S which is both preselected and 
postselectcd by ideal measurements of an observable A at the moment t. and an 

I 

observable Bat the moment 1
1

, e.g., sec (6, 7 ). As is stated above, the second 

measurement cannot determine the S state in the interval (ti, t/ It is just the 

retromcasuremcnt which is needed for the postselection. 

Let us mention that one cannot independently fix the S state vector v•(t) at 
the moment 11 if it was fixed at another moment ti: v1(t} is determined by 1/-'(ti) 

and the Schroedinger equation. 
3.4. Now let us give the experimental definition of the rctroprobability 

R(f-+ i) by analogy with the definition (2) for the predictive probability. 

Using the protocol of the rctrocxperimcnt (sec section 3.1) one must deter:.: 
mine the number N

1 
of the systems S which were postparcd in the state 

1''t = I/). Then, one must pick out from this ensemble those systems S which 

have been rctroreduced to the state Ii) at tr This gives the number Nf i) (let us 

stress once more that retroreduction in the state Ii) is not the preparation of the 
state). R(/-+ i) is defined as · 

R(/-+ i) = N ji)I NI" (3) 

One may postulate by analogy with (l) that the theoretical counterpart of 
the ratio (3) is given by 

5 



1i 

Rth(/➔ i) = I ( i ly1(t;) )I 2 = I ( i I U,(t;, t
1
) 1/)1 2, (4) 

where U is the operator of the evolution backward in time. If the retroevolution r 

is supposed to be governed by the Schroedinger equation, then U = 
, . , r 

= exp(-iH(t. - t
1
) ). 

, I 

3.5. In order to elucidate the approach to retrodiction under discuss,ion, let 
us imagine a Being which belongs together with his experimental devices to the 
world the' entropy of which increases in the direction from the (human) future to 
the (human) past ( 18 ). For the Being his devices arc usual measurement devices 
but they realize retromeasurements in our world. The Being perceives the 
system S evolution from 11 to t; as evolution in the forward direction of his time 

arrow, so the human retroexperiment is the predictive experiment for the Being. 
By the way, Being's devices without the Being seem to be sufficient for the 
retroexperiment realization. 

3.6. I carynot suggest a human realization of the physical process of 
retromeasurcment. Moreover, the existence of a process like that is forbidden 
by some general principles, the causality principle being one of them. Indeed, 
the frequency N1 (i) of the observable I eigenvalue <<i>> is determined in the 

retromeasurement by the future state vector1P(t;) = U,(t;, t
1
) 1/'i. So the cause of 

the observed value of N1 (i) (the value being the effect). is in future. With varying 

,P 1 , N1 (i) varies. This is forbidden by CP, see the Introduction*. 

The increasing entropy. law may be another principle forbidding the 
retromeasurement. The usual measurement is an irreversible process I l, 14 ), 
the retromeasurement is a process which is inverse in time and its realization 
needs something like Maxwell's demon. 

So one may conclude that quantum retrodiction construc~ed by analogy with 
prediction is unrealizable. 

4. An Ersatz of Quantum Retrodiction 

Contrary to the conclusion of the previous section, it has been stated in 
I 1,4 I that quantum retrodiction is possible in some cases. I am going to argue 
that the statement is based on an approach which can be considered as an 
unsatisfactory ersatz of retrodiction. The approach can be presented as follows. 

*Note that here I have applied CP to the evolution of the system S coupled with the 
retromeasurement device in the interval (t/, t;>. Meanwhile when talking in the Introduction about the 

Cl' verification I had in mind its application to the (retro)evolution of the isolated system S. 

6 
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Consider Neumann's ensemble of N systems S. Its state at the moment t.is 
l 

described by the density matrix 

" p(t;) = L P; li}(i I, L P; = 1, (5) 
i i . 

where eigenstates Ii ) of an observable I constitute a complete set. The average 
number of the ensemble systems which are in the state Ii} is N. = p. N. The 

, l l 

observable Fis measured at the moment t1 . Let N1 be number of cases when F 

assumes the eigenvalue/. One has 

NI= NL 1(/ I U(tl, f;)li }1
2
pi = L N/f), 

i i 

(6) 

where N;(/) is defined by eq. (2). N/1) is the number of systems reducing to I/) 

under the condition that initially these systems have been in Ii}; According to 
I 4] · and [ 1 I ch.2.6, the retroprobability of the transition from If} to Ii} is 
defined as · 

R'(/ ➔ i) = N;(f)f NI= Ni P(/ E-- i) [ 7 Ni P(/ E-- J) ]-
1

• (7) 

Let us stress that R'(/ ➔ i) is defined by using predictive probability P(/ E-- i) 
and the numbers N. = pN. The retroprobability R, see eq. (3), coincides with 

I I 

R' only ifone assumes that N Ji) = N;(f), N ji) being defined in sect.3.4. 

So, R' is determined by the operator U(t
1

, I;) of the evolution forward in 

time, while R is determined by the operator U,(t;, 9 of t~e backward-in-time 

evolution, see eq. (4). As has been stated in the Introduction, the purpose of 
retrodiction should be to verify hypotheses on U ; R' cannot serve the purpose. 

' r - r 

Watanabe has shown [5 I that R' has another deficiency which d.oes not 
allow one to consider R' as a satisfactory analog of the predictive probability. He 
has pointed out that P(/ E-- i) is determined only by the choice of states Ii.}, I/} 
and the Hamiltonian Hof the Schroedinger equation. But R'(/ ➔ i) does not 
share this property; it depends not.only on 1/), Ii} and the dynamics but also 
on p. which can be varied arbitrarily. Watanabe has concluded that <<quantum 

l 

physics is irretrodictable», though his criticism refers only to the described 
ersatz of the retrodiction. 

Let us illustrate his criticism by one example. Let all probabilities pi be zero 

with the exception of one, p. (which is then equal to 1). Then, it follows from 
J 
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• 
eq. (7) that R' (f-+ J) = 1 for any/, i.e. R' (f-+ J) does not depend on fas well as 
on the dynamics. 

The analogue of R' from the classical probability theory may be of interest; 
R' is analogous ·to the so-called a posteriori probability which depends on the 
choice of a priori probability Pr The assumed equality Nf_i) = N/f) leads to the 

equation 

.. R'(f-+ i)N/ N = P(f ~ i)N/ N 

which is the known Bayes' equality for conditional probabilities, e.g., see [ 19 ]. 
So, th_e assumption Nf_i) = N/1), _which is the basis of the ersatz, can be formu-

lated as follows. Consider P(f ~ i) as a conditional probability of /, given i. 
Then, the retroprobability R' is assumed to be the conditional probability of i, 
given/. 

,There is only one case when R' takes a reasonable value. The case can be 
described as follows. _One must suppose at first that the retroevolution is deter­
mined by the usual Schroedinger equation 

Uit;, ~1) = exp[-iH(ti- t1)J = u-1(t1 , t;) = u\t1 , 9. (8) 

Then, the theoretical definition (4) of the retroprobability leads to the equality 

Rth(f-+ i) = 1(/ IU(t1 , 91i)1 2 = P(f~ i). (9) 

The equality is consistent with (7) only if Ni = N1 = ~ Ni P(f ~ J). This is 
J 

realized only in the case when allp. (and N.) are supposed to be equal [1 ]. This 
I I· 

second supposii' .. 11 was formulated by Watanabe as «a priori equal probability 
for each initial state» [ 4 ]. Belinfante calls it <<the garbling condition>> [ 1 ]. The 
supposition seems to be artificial. It has sense only if the sets of eigenvalues i 
and fare discrete and finite. If i assumes infinitely many discrete values, the 
supposition together with I P; = I leads to a senseJess consequence: P; = 0 for 

i 
all i. 

5. Verification of the Causality Principle 

Though retroexperiments seem unexecutable, see sect.3, I shall illustrate 
here how one would verify the causality principle CP. I have in mirid the form of 
CP which has been used in [15]. The cause and effect are supposed to be loca­
lized in finite four-dimensional regions of the Minkowsky space. An external 
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Fig.3. Retroexperiment. M
1 

is the four-dimensional region of the external 

current localization. M, is the four-dimensional region of the retromeasu­

rement localization. The past light cone of M1 is shaded 

. • 
current J , µ = 1,2,3,4, plays the role of the <<cause>>. It is localized in a three­

µ 

dimensional volume v
1 

and is turned on at the moment t1 and is turned off at 

t
1

' ,·see fig.3. The current J can emit and absorb photons. No-photon state 
µ . 

Io) is fixed (retropared) at the moment 11 . A retromeasure?1ent ot'the photon 

number (<<effect») is executed at the moment t .. If the current J is weak, then 
I /I . 

mainly one-photon states Ii) = I k, e) give contribution to the number (k and 

e are photon momentum and polarization). 

Let us describe the execution of the retroexperiment. At t. the pointer of the 
I 

retromeasurement device shows the photon, presence. Later in the interval 

(t
1

, t/) the current JI' acts. Only those cases are selected in which the photon 

state is Io) at the moment t1 . 

The _current J cannot in_f_ luence the future (moment t.) state because the . ,, . r 
state is fixed to be Io). If JI' is not turned on in (I J' t />, then photons arc absent 

9 



• at the moment t .. The current turning on is therefore the cause of the photon 
I 

possible appearing at t .. 
I 

Let us suppose first that the retroevolution is governed by the electrody­
namical Schroedinger equation and find ensuing consequences. The retroproba-

bility R = I ( ke I U(t;, t1) Io) 12 to have the state Ike) at ti is given by the equa­

tion (interaction picture is used) 

t. 
l 2 

R = l(ke ITexp[-i J dtfd 3xJ (x)A (x)lo)I = 
µ /1 

ti 

ti 

= l(ke I -i J dtfd 3xJ
1
/x)A

1
/x)lo)1 2. 

ti 

(10) 

Doubling J gives four times increased R, i.e. in varying the cause the effect µ 

varies: 6R/ 6J ;e 0. The mechanism of the cause action is that J absorbs pho-µ µ 

tons which were detected at tr 

Now let us suppose that CP is valid. Then, oR/oJ must be zero: the cause 
/l 

(current) cannot influence the past effect (photon appearance). The photon 
state at t. must be the same as in the case J = 0, i.e. it must be Io) and R must 

I µ 

be zero at any J value. µ 

Variants of the retroexperiment are possible when the retromeasuring 
device is localized in a four-dimensional volume M , see Fig.3. (M must be loca-

r r 

lized in the past light cone of M1 .) For example, photons can be detected by 

means of a localized atom, which at t1 is unexcited and at ti is detected to be in 

an excited state by means ofa device which is localized near the atom. 

6. Conclusion 

I have drawn the conclusion that quantum mechanics is a predictive science 
not only factually but also because its retrodictive analogue seems to be unrea­
lizable. My reasons are as follows. It has been shown in sect.3 that retrodiction 
needs a retromeasurement process which must replace the usual measurement. 
In this process, the reduction of the wave function to an observable A eigenstate 
I a) must proceed in time in the direction opposite to the time arrow: I a) +-1/). 

Meanwhile, in the usual measurement the reduction proceeds in the direction of 

lO 

the time arrnw: 1/J ➔ I a). Frequency of the retroreduced state I a) must be 
determined by the future state vector of the quantum system, whereas frequen­
cy of the usual ·reduction 1/J ➔ I a) is determined by the system's previous state. 

Examples of such a retromeasurement process are unknown. Moreover, its 
realization is forbidden by the causality principle, see sect.3:6. Another trouble 
with the retromeasurement may be illustrated by the note that a usual measure­
ment process is irreversible, _whereas th·e retromeasurement must be a process 
inverse in time. 

The irretrodictability of q~antum mechanics has earlier been declared ,by 
S.Watanabe (61 but his conclusion refers to another approach to the retrodiction 
and was grounded on quite different reasons. This approach must be considered 
as an unsatisfactory ersatz of.the retrodicHon, see sect.4. . .. 

Quantum irretrodictability means that one carinot verify (falsify) hypo'­
theses on laws of quantum evolution in the backward direction of time, the cau­
sality, principle being ihe example of a hypothesis like that, see Introduction. 
The scientific status of the hypothesis may be then questioned.- I have in mind 
K.Popper's principle stating that a hypoth~sis may be considered as being a scien­
tific.: one (i11 contrast to some religious statements) only if it can be falsified [20 ]. 
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Note added in proof 

Arguments have been presented recently by Y.Aharonov and L.Vaidman 
(Phys. Lett. A 178, 38 ( 1993)) in favour of a Gedanken measuring process which 
does not lead to the wave function reduction. The process allows one to measure 
the system wave function (i.e. its module and phase), the function remaining the 
same before and after this measurement. For other examples of non-perturbing 
detectors see, e.g., papers by M.Scully et al. (Nature, 351, 111 (1989)) and 
S.Haroche (Europhys.News 24, 51 (1989)) and references therein. 

· This sort of measurement allows the setting of both the prediction and the 
retrodiction problems in a s~milar manner as in classical mechanics: find 1/J(t) at 
t > t0 and t < t0 , 1jJ(t0) being given, and compare this 1/J(t) with the measured 

wave function. The wave function measurement is the same for both the pre­
diction and retrodiction because the wave function does not alter. So this non­
perturbing measurement would allow the realization of the retrodiction. 
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