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1 Introduction 

The standard way to coeaider oae-aacleoa transfer teactioaa i* to пае the DBWA-metbod 
where the bank ingradient of tbe theory hi the distorted wave» introduced in in- and out-channel» 
of a reaction. In the caae of heavy ion соШаюва ai comparatively high energies E > | V|, levenl 
amplifications can be done from the beginning. The feat one ia tbe quasi-elastic conaideration 
which uaea tbe same elaatic channel parameter* for in- and out-dnrtorted wavea. It come* true 
if the energy loa* in a reaction ocean very «па! aa compared with kinetic energie* of colliding 
nuclei, e.g. Eata Ef = E, A£ < E. The other approximation i* tbe quasi-classical calculation 

of diatorted wave*. Indeed, the main coaditioa of qaaai-claaaica kR > 1 ia amally working 

weO for heavy-ion ecatteriag. However, tbe traditional method* utilise tbe QC-diatorted wavea, 

expanding them in acta of partial wave* and then applying tbe WKB-method to calculate 

every partial phaae. Thi* way it not convenient at high energie* aiace one need* to take into 

account hundred* of partial wave*. This ariae* difficulties in numerical calculations of a large 

number of matrix element* with farther summing them ap in the reaction amphtude and 

trouble* in searching for tbe physics of the reaction mechaaiam. This latter is Ьесашк of the 
hidden dependence of aa amphtude on input parameter* of potentials ia the сам of numerical 
calculation* operatiag with a lot of partial wavea. To avoid these difficulties, we apply the HEA-
metbod developed for calculation» of tbe three-dimensional qaaaj-claaairal wave fanctioas and 
for tbe correaponding matrix dement* with theae function* included [1,2]. Tbe method can be 
applied under tbe condition* kR > 1, E > V aad в > вс =• \V\/E, where вс i* the classical 
deflection angle. Thi* Utter i* introduced to include di*tortioa of tbe «traight-line trajectorie* 



of motion, the important point in investigating heavy-ion collisions. On the «hole, thia gives 
us the possibility to avoid complicated numerical calculations and to obtain, in the framework 
of the OWBA, analytical expressions for qualitative physical estimations and for a quantitaive 
comparison with experimental data. 

2. Differential cross section 

We consider the reaction a + A —» b + В where a = x + 6, В = A + x and the transferred 
particle x ia proposed to be spinless. The corresponding cross section and the amplitude in the 
aero-range approximation are as follows: 

ia_ _ m.m, k, 2JB + 1 у S, ^ 2 
aXl (2тЙ2)П.(2Уд + 1)(2/.+ 1 ) ^ - 2 / + 1 | ' '" l ' 

ff=-DoJ o¥t<-,*(f)*<.+>(f)*(r)y^(r), (2) 

where 

Da = 9*y(mJi2f2mImt)i€xi 

depends on the structure of an incident particle, с,ь ia the sepcralion energy of a nucleon x in 
the incident a and Sti(r) is the radial wave function of the x-particle in the final nucleus B. 
This function his the asymptotic behaviour exp(-Kir)/r and goes to the constant aa r ~» 0. A 
slope in aaymptotica ia determined by KI depending on a separation energy и : 

к, = yjim^ult? • 

. We have emphasised that the main elect in heavy-ion reactions cornea from the region near 
the interaction radius. This means that the behaviour of the function S; at г < Я is of no 
importance, and one can select it in the form 

, u . „ l d/,(r,g,ai) 
S|(r) = JV,- — , (3) 

where 
sink-2 

Л = с « * ± + с о * - ( 4 ) 

ia the symmetrised Fermi-fuaction having the aaymptotica exp(—oir)/r and being a constant at 
r = 0. The "dinwseneaa" parameter of the traasitioa region ia to be taken <x =/cf'. The constant 
Ni can be obtained by chaging variables z = 1 + coah(r/oi)/cosh(A/ai) in the normalization 
condition: 

Л Л V <H соЛЦЯ/а,) Jo со*а(Я/о,)*4 W 
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Neglecting here the tern» сошЬ'1 (R/щ) at compared with 1, we reduce the latter integral to 
the table one: 

Г 
So,we get Ni = л/Sat = y/6/iu. 

The symmetrized Fermi-function ha» the same behaviour as the usual Fermi-functioa in the 
region г ~ Я and we use it in our further consideration. 

In formula (1) we include only one term with m = 0 since the other terms with тфО may 
be neglected because of additional fast oscillations in integrands as compared with the first 
one. Inserting (3) into (2), we get an amplitude of the typical form inherent in HEA. Moreover, 
here we can use the quasi-elastic approximation because the loss of energy in the reaction is 
comparatively small and E„ m Ee. .Thus, the QC-distorted waves in our case are calculated as in 
the elastic channel and have the form [1]: 

« * 
•1*» = «Ф[-И(£, - Цу- JL j V{y/fTv)d\ + i- j w{y/^T^)d\], (6) 

—со —oo 

eo «да 

*<,->* = expH(*, + **•)?-•£-{ V{y/?Tv)d\ + i - J W(y/pT»)dX}. (7) 
j t 

In the quasi-elastic kinematics it is convenient to select the coordinate system so that the 

axes were directed as follows: oz||f and ox\\K = ka + kp. This allows us to write the product 

*5ГГ*1+) in the following form [1,2]: 

•1
e-)"»L*) = exp(i*), (8) 

where 
Ф = 2oo + fin + пщг + clti3 + n,(l - и1) cosJ <p + c3/*(l - n1) cos2 <p. (9) 

Here 0, с and n are the known functions expressed through r, parameters of the potentials, 
a = sin(0/2), and ac = ain(0c/2) = &[V(Rt) + K{R,) + iW(R,)], taken at the radius Л, = 
'•«(•̂ i + Л.)!') of the external limited trajectory of motion. For example, 

T2 
0 = qr = qtfr + 2k,ar; q,f = 2k(a - ac); к, = -[Bv + iBw + Bc(3 - -=-)], (10) Kc 

where 
Bv = — Bw = — B': 

hv' hv' Rchv 
and Vo = - | Vol, №0 = —I Wbl are the depths of the real and imaginary parts of the potentials. 
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We can see that now the integrand (2) contains in the exponent a typical power dependence 
on the variables г and /i. Keeping in mind that df = -r'drdiidip, we first integrate in (2) over 
dfi by parts neglecting in it the term having the smallness {kR)~2. Then, the result can be 
presented as follows: 

» - 7 * - * * * - - < ( ^ - H ^ > . > . 

where 

= - Y ~ « Ч К 2 Й 0 -r m,) !^' - ПР-П. (H) 

^ ± ) = expfty.-t-Ci)] д Да + З с 1 ± 2 „ ^ = 2 ( „ 2 ± с ) . (12) 

Then, the integration over dip is performed with the help of a table integral. Thus, we can 
write the amplitude (2) in the form of a one-dimensional integral 

Co 

T? = -iD^y/^^T+iy7- J ^Ы*\г) - С-)'*4"'!»}*, (13) 

where 
/<*)(г) = 2Р^!1=ехр[±,Ф*]> 

I (14) 

**=ф*-1пЬ*, * * = / , r ± / , r * + / , r » , i * = yJUi *f*r + ff'W, ±/«r +/7r«) (15) 

with / , the functions of the parameters of the potentials, a and arc: 

DV aw 
h = 2*(or - ac) - 2(BV + iBw + 3B<>; Д = ( § - + t £ - ) ( l - aJ); 

A « | ( i - | ^ л = 2С + С)<,г; Л"^1-3^)*. (16> 
/ . = 2 ( ^ + . ^ ) ( 1 - 2*'); /7 = f | - ( 5 - tk»s)«. 

Integrals of the type (13) can be calculated in the analytical form if one uses on the complex 
г-plane the second order poles of the derivative df,/dr displayed in the region of the nuclear 
surface at r* = Я±йг(2п+1)а|, where n = 0,1,2... His easy to show that the main contribution 
to (13) is coming from two poles closest to the real r-axis. Then, the final expression for the 
differential cross section is derived as follows: 

; = в ' « И Щ ^ | [i-^H^+^ls^-^l-da_ 
dU 

'(17) 
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To the aim of a qualitative consideration, we can rewrite this expression keeping only the 
main terms in the real and imaginary parts of the amplitude. In tbe case of heavy ion reactions 
we have a large value kR, and the terms depending on this parameter influence mainly the 
form of the differntial cross section. On the other hand, the other terms depending on the 
parameters of the potentials and ac determine mainly the absolute value of the cross section. 
So, to present the result more clearly, we separate these dependences in the following obvious 
form: 

^ ~ехр[-»Чс»,сО]ехр[4ви,Яи']х 

e.MKa-lbm.) _ (_)<е-й**<»-л~.>ехр[4!га)В1'Я/Дг + 4Щ1тас - Bwa)] I , (18) 

where 
\fr(a, ac) = 4*<ч*(а - Reae) + 4kRImatc. (19) 

If W0 is large so that exp[4*a,BvR/Rv + 4R(kImac - Bwa)\ < 1, then only the first term 
gives contribution to (18). Then 

One can see that the cross section decreases with the scattering angle as an exponential func
tion, which falls down depending on a thickness parameter a/. The magnitude of the latter is 
determined by the binding energy of the transferred nucfeon in the final nucleus B. We see 
that the absolute value of the cross section increases with the classical deflection angle. 

If W'o is comparatively small, both the terms in vertical brackets in (18) become important, 
so we have 

— ~ exp [-#*, ae)] exp [4BW, Rw] X 

([m2(2kR(a-ReaJl) + mBb2(2ira,BvR/Rv + 2R(kImac-Bwa))], for even I 
\ [cos2(2fcJl(a - Деас)) + tub2{2*atBv R/ Rv + 2Щк1тас - Bwa))], for odd I. 

In this case, the cross section decreases as an exponential function and simultaneously oscillates 
with a frequency depending on the radius parameter A, a and ac. We have already analysed 
the dependence of the transfer reactions on the imaginary part of the nuclear potential in the 
previous paper [3]. Now we paid more attention to a very interesting dependence on the classical 
deflection angle ac, which is really observed in heavy-ion experiments, as the so-called limited 
angle of a Coulomb deflection. 
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3- Numerical Calculation» and Conclusion 

We have calculated the differential crosa aection (17) for the reaction of the proton atrip-

ping from aC to the ground atate of 2 MBi and aSi and alao «tripping from "O to the 

ground state of " S i aa well aa for the pick-up reaction of one neutron from the ground 

atate of mPh to the hole atate (2/7 / 2) of x,Pb. Solid lines in Fig. 1 «how the calcu

lated differential сгом aectiona aa functiona of the angle в in comparison with experimental 

data from [4] for the reactione (a) aC +*» Ph =* nB +™ Bi at E = SOOMeV and (b) 
aC + " Al ^ nB +n Si at E = 60Ше1Л In Fig.2 the comparison ia made for the reactions 

(c) " 0 +" Si =s- " 0 + a Si at E = 352MeV [5] and (d) 3Be +20* ГЬ =*• *He +207 Pb at 

E — 47.5AfeV [6]. The correaponding calculationa have been performed with the following 

parametrs: (a) V0 = SOMeV, W0 = 38AfeV, at = 0.6/m, r0 = 1.2/m; (b) V„ = 50AfeV, W0 = 

19, a, = 0.4/m, r0 = 1.2/m; (c) V0 = 50AfeV, W0 = 15MeV, a, = 0.5/m, r0 = 1.2/m; (d) 

Vo = 50MeV, W„ = 3MeV, t» = 0.5/m, r0 = 1.25/m. In all the caaes, we have taken the 

spectroscopic factors equal to 1. The valuta Д> and ac were calculated according to formulae 

in the text.One can mention that for explanation of experimental data at various bombarding 

energiea from SOMcV to 600McV the main effect cornea from changing the depth of the imag

inary part of the potential W0 from 3ileV to 3$McV and thickneaa parameter at changing 

in the limits of 0.5 4- 0.6/m. Figs. 1 and 2 ahow the agreement of our calculationa with ex

perimental data presented both in absolute values and in the form of angular diaributiona. At 

higher energies, the reaction is characterised by a simple exponential angular distribution. At 

the energy decrease the diffraction-like picture in angular distribution appears according to 

equationi (21). From Fig.3 we see that the results of calculations are very sensitive to the 

choice of the parameter <*« and a small deviation of the trajectory radios parameter r« leads to 

a significant change of the differential cross section in its absolute value. Thua.when Sc changes 

with respect to RtiQ = 0.027 (solid line) and Ясвс = 0.018 (dashed line) the croaa section is 

changed approximatly one third order of its value. 

One can see that the DWBA calculations with the quasi-classical distorted waves obtained 

in the framework of НБА give good agreement with experimental data at energies begining 

from lOMeV per nucleon and higher. The absolute values of theoretical cross sections pre

sented are ahown without any renormahsation factora, which means that the theory has rather 

good prediction possibilities. We can summarise that investigations of heavy ion-collisions, 

e.g. simple transfer reactions, in the quantum legion of scattering angles в > вс, outside the 
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Fig.l Angular distributions for the stripping reactions (а) "С +20» Pb *> " S +3 0 9 fit, 

E = 50MeV/n; (b) 13C +3 7 Al => UB + M Si, E = SOMeV/n. Solid Unes are the theoretical 

calculations, squared points are the experimental data from [4] 
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Fig.2 Angular distributions for the proton stripping in (c) "O + M St => "O +3» St, E = 

352WeV; and for the neutron pick up reaction (d) 3Яе +*» РЬ^*Не +*" РЬ, Е = 47.5JtfeV. 

Solid lines are the theoretical calculation, squared points are the experimental data from [5,6]. 



limited trajectories of motion, are very sensitive to the precise structure of a nucleus-nucleus 
interaction. For instance, the slope of curves with в feels the "thickness" of the acting region 
in the channel (Fig.3). It may be used also for searching the "halo" dirtributions of nuclei in 
the radioactive beams which now become available. We hope that the НЕЛ-method suggested 
can be successfully used in both the qualitative and quantitative analyser of direct reactions. 

I I I I I 1 I I I | I I I I 1 I I I I | I I I 1 l l I I l I I 1 I I t I I I I | I I I ' I I M I J ! » I U 

ю-'1 i i 7 , \\ ' 

^c.m.(deg.) 
Fig.3 Influences of the classical angle ве introduced on the absolute value of the cross section 

and of the thickness parameter Щ on the form of the angular distribution. The solid line is the 
calculation for the reaction (b) with Д» for rot = 0.17/m, the dashed line corresponds to the 
same reaction but for rot = 1.2/m. The solid line with stars is the calculation for the latter 
case but at a larger thickness parameter <n = 0.6/m. 
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