

# объединенны̆ ииетитут адерных иселедований <br> <br> дубна 

 <br> <br> дубна}

E4-94-354
S.I.Fedotov, K.A.Gridnev ${ }^{1}$, V.K.Lukyanov

HEAVY-ION ONE-NUCLEON TRANSFER REACTIONS

IN QUASI-CLASSICS AT HIGH ENERGIES

Submitted to «Известия РАН, серия физнческая»
${ }^{1}$ St.Petersburg University, Russia

## 1 Introduction

The stendard way to consider one-necieon transer reactions in to owe the DBWA-method Where the betic ingradient of the theory in the dialorted wavee introduced in in- and out-channele of a reaction. In the cane of heavy ion colliniome at comparatively high energies $E>|V|$, everal simplifications can be done from the beginning. The firt one in the quani-dantic coneideration which usea the ame elactic chanpel parametere for in- and out-dirtorted waves. It comen true if the edergy low in a reaction occurs very amell a compared wilh kinetic eargies of colliding nuclei, e.g. $E_{a} \approx E_{\beta}=E, \Delta E<E$. The other approximation in the quari-clanical calculation of dintorted waven. Indeed, the main comdition of quavi-chmice $k R>1$ in moully working well for heavy-ion acattering. However, the traditional methode ntilise the QC-diatorted wavea, expanding them in mete of partial waver and them applying the WKB-method to calculate every purtial phase. Thin way in not convenieat at high energies cince ome neede to take into account hundreds of partial waves. This arimes dificulties in numerical calculations of a large number of matrix elements with further aumming them up in the reaction amplitude and troubles in searching for the physice of the reaction mechavim. This latter in becance of the hidden dependence of an mplitude on input parameters of potentina in the case of numerical calculations operating with a lot of partial waves. To avoid these difficultien, we apply the HEAmethod developed for calculation of the three-dimemional quai-clamical wave functions and for the corremponding matrix elemento wihl thene fanction included [1,2]. The method can be applied under the conctitions $k R>1, E>V$ and $\theta>\theta_{c} \simeq|V| / E$, where $\theta_{c}$ in the clasical deftection angle. This Intier in introduced to include diatortion of the atraight-lise trajectoriee
of motion, the important point in inveatigatigg heavy-ion collimions. On the whole, this gives us the ponibility to avoid complicated numerical calculationa and to obtain, in the framework of the DWBA, analytical expreasions for qualitative phymical eatimetions and for a quantitaive comparion with experimental date.

## 2. Differential croes section

We conider the reaction $a+A \rightarrow b+B$ where $a=x+b, B=A+x$ and the tranoferred particle $x$ in proponed to be apinlen. The correaponding crom section asd the amplitude in the mero-rage approximation are anfollows:

$$
\begin{gather*}
\frac{d \sigma}{d \Omega}=\frac{m_{a} m_{A}}{\left(2 \pi \hbar^{2}\right)^{2}} \frac{k_{g}}{k_{m}} \frac{2 J_{B}+1}{\left(2 J_{A}+1\right)\left(2 J_{a}+1\right)} \sum_{i} \frac{S_{l}}{2 I+1}\left|\tilde{I}_{l}^{+}\right|^{2},  \tag{1}\\
\tilde{I}_{t}^{\prime}=-D_{0} \int d \vec{r}_{B}^{(-)^{0}}(\vec{r}) \Psi_{a}^{(+)}(r) Y_{4}(r) Y_{t 0}^{*}(\tilde{r}) \tag{2}
\end{gather*}
$$

where

$$
D_{0}=8 \pi \sqrt{\left(m_{a} \hbar^{2} / 2 m_{x} m_{b}\right)^{3} \epsilon_{x b}}
$$

depends on the structure of an incident particle, $C_{s b}$ is the seperation eaergy of a nucleon $x$ in the incident $a$ and $\xi_{l}(r)$ in the radial wave function of the $s$-particle in the find nucleus $B$. This function has the aymptotic behaviour $\exp \left(-\kappa_{y} r\right) / r$ and goea to the conatent as $r \rightarrow 0$. A slope in aymptotics is determined by $\mu_{4}$ depending on a seperation energy $\epsilon_{l}$ :

$$
\mu_{f}=\sqrt{2 m_{\varepsilon} \epsilon / \hbar^{2}}
$$

We have emphasised that the main effect in heavy-ion reactions comes from the region near the interaction radius. Thi mena that the behaviour of the fuaction $\mathbf{3 l}_{4}$ at $r<R$ in of no importance, and one can eelect it in the form

$$
\begin{equation*}
\xi_{t}(r)=N_{r} \frac{1}{r} \frac{d f_{i}\left(r_{i} R_{1} a_{4}\right)}{d r}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{0}=\frac{\sinh \frac{R}{4}}{\cosh \frac{R}{4}+\operatorname{conh} \frac{\pi}{4}} \tag{4}
\end{equation*}
$$

in the aymmetrised Fermi-function heving the aymptotice $\exp (-a, r) / r$ and being a conatant at $r=0$. The "diffecnem" parameter of the tranition region in to be taicen $a_{1}=\kappa_{f}^{-1}$. The conotant $N_{l}$ can be obtained by chaging variablen $x=1+\operatorname{comh}\left(r / a_{1}\right) / \cosh \left(R / a_{i}\right)$ in the mormalization condition:

$$
\begin{equation*}
\int_{0}^{\infty} \operatorname{sr}_{i}^{2}(r) r^{2} d r=N_{i}^{2} \int_{0}^{\infty}\left(\frac{d f_{i}}{d r}\right)^{2} d r=\frac{N_{i}^{2}}{a_{i}} \frac{\operatorname{inh}^{2}\left(R / a_{i}\right)}{\cosh ^{2}\left(R / a_{4}\right)} \int_{0}^{\infty} \frac{\operatorname{inh}^{2}\left(r / a_{4}\right)}{\cosh ^{2}\left(R / a_{4}\right)} \frac{1}{x^{2}} d r=1 \tag{5}
\end{equation*}
$$

Neglecting here the terme $\cosh ^{-1}(R / a)$ a compared with 1 , we reduce the latter integral to the table one:

$$
\int_{1}^{\infty} \frac{x-1}{x^{4}} d x=\frac{1}{6}
$$

So,we get $N_{l}=\sqrt{6 a_{l}}=\sqrt{6 / \kappa_{l}}$.
The symmetrized Fermi-function has the mame behaviour as the ueual Fermi-function in the region $r \sim \boldsymbol{R}$ and we use it in our further coneideration.

In formula ( 1 ) we include only one term with $m=0$ since the other terme with $m \neq 0$ may be neglected because of additional far oocillations in integranda as compared with the firat one. Inserting (3) into (2), we get an amplitude of the typical form inherent in HEA. Moreover, here we can use the quasi-elastic approximation because the loes of energy in the reaction in corrparatively small and $E_{\alpha} \simeq E_{B}$. Thus, the QC-diatorted waves in our case are calculated as in the elastic channel and have the form [1]:

$$
\begin{align*}
& \Psi_{a}^{(+)}=\exp \left[+i\left(\vec{k}_{\alpha}-\frac{\vec{q}_{c a}}{2}\right) \vec{r}-\frac{i}{\hbar v} \int_{-\infty}^{\infty} V\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v} \int_{-\infty}^{m} W\left(\sqrt{\rho^{3}+\lambda^{2}}\right) d \lambda\right]  \tag{6}\\
& \Psi_{B}^{(-)}=\exp \left[-i\left(\vec{k}_{A}+\frac{\overrightarrow{q_{c}}}{2}\right) r-\frac{i}{\hbar v} \int_{1}^{\infty} V\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v} \int_{1}^{\infty} W\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda\right] . \tag{7}
\end{align*}
$$

In the quasi-elantic linematics it in convenjent to select the coordinate system so that the axes were directed an follows: $o x \| \vec{q}$ and $o x \| \vec{K}=\overrightarrow{k_{a}}+\overrightarrow{k_{\beta}}$. Thi allown wo to write the product $\Psi_{-}^{(-)^{*}} \Psi_{o}^{(+)}$in the following form [1,2]:

$$
\begin{equation*}
\Psi_{a}^{(-)^{*}} \Psi_{a}^{(+)}=\exp (i \hat{\Psi}), \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\phi}=2 \bar{a}_{0}+\tilde{\beta} \mu+n_{1} \mu^{2}+c_{1} \mu^{3}+n_{2}\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi}+c_{2} \mu\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi} \tag{9}
\end{equation*}
$$

Here $\tilde{\boldsymbol{\beta}}, \mathrm{c}$ and $n$ are the known functions expresed through $r$, parametera of the potentiala, $\alpha=\sin (\theta / 2)$, and $\alpha_{c}=\min \left(\theta_{c} / 2\right) \simeq \frac{1}{2!}\left[V\left(R_{t}\right)+V_{c}\left(R_{t}\right)+i W\left(R_{t}\right)\right]$, taken at the radius $\boldsymbol{R}_{t}=$ $r_{0}\left(A_{e}^{1 / 3}+A_{A}^{1 / 3}\right)$ of the exterial limited irajectory of motion. For example,

$$
\begin{equation*}
\tilde{\beta}=\tilde{q} r=q_{e f} r+2 k_{s} \alpha r ; \quad q_{e f}=2 k\left(\alpha-\alpha_{c}\right) ; \quad k_{\delta}=-\left[B^{V}+i B^{\omega}+B^{C}\left(3-\frac{r^{2}}{R_{c}^{2}}\right)\right], \tag{10}
\end{equation*}
$$

where

$$
B^{V}=\frac{V_{0}}{\hbar v}, \quad B^{W}=\frac{W_{0}}{\hbar v}, \quad B^{C}=\frac{Z_{1} Z_{2} 2 e^{2}}{R_{C} \hbar v}
$$

and $V_{0}=-\left|V_{0}\right|, W_{0}=-\left|W_{0}\right|$ are the depthe of the real and imaginary parts of the potential.

We can see that now the integrand (2) containe in the exponent a typical power dependence on the variables $r$ and $\mu$. Keeping in mind that $d \vec{r}=-r^{2} d r d \mu d \bar{\varphi}$, we first integrate in (2) over $d \mu$ by parts neglecting in it the term having the smallnesg $(k R)^{-2}$. Then, the result can be presented as follow:

$$
\begin{gather*}
I_{i}=\int_{-1}^{+1} d_{\mu} \exp (i \bar{\Phi}) Y_{10} \simeq-i\left(\left.\frac{\exp (i \phi)}{\partial \bar{\Phi} / \partial_{\mu}}\right|_{+1}-\left.(-)^{\exp (i \bar{\phi})} \frac{\partial \bar{\Phi} / \partial_{\mu}}{}\right|_{-1}\right) Y_{10}(1)= \\
=-i \sqrt{\frac{2 l+1}{4 \pi}} \exp \left(2 i \bar{a}_{0}+i n_{1}\right)\left[I^{(+)}-(-)^{f} I^{(-)}\right] \tag{11}
\end{gather*}
$$

where

$$
\begin{equation*}
f^{( \pm)}=\frac{\exp \left[ \pm i\left(\tilde{\beta}_{n}+c_{1}\right)\right]}{\Delta_{( \pm)} \mp \delta_{( \pm)} \cos ^{2} \bar{\varphi}}, \quad \Delta_{( \pm)}=\tilde{\beta}_{n}+3 c_{1} \pm 2 n_{1}, \quad \delta_{( \pm)}=2\left(n_{2} \pm c_{2}\right) . \tag{12}
\end{equation*}
$$

Then, the integration over $d \bar{\varphi}$ in performed with the help of a teble integral. Thus, we can write the amplitude (2) in the form of a one-dimensional integral

$$
\begin{equation*}
\tilde{T}_{l}^{\pi r}=-i D_{0} \sqrt{6 \pi a_{l}(2 l+1)} e^{2 \omega} \int_{0}^{\infty} \frac{d f_{0}}{d r}\left\{F^{(+)}(r)-(-)^{l} F^{(-)}(r)\right\} d r, \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
F^{( \pm)}(r)=\frac{\exp \left\{ \pm i \phi^{ \pm}\right]}{L^{ \pm}}=\exp \left[ \pm i \phi^{ \pm}\right],  \tag{14}\\
\phi^{ \pm}=\phi^{ \pm}-\ln L^{ \pm}, \quad \phi^{ \pm}=f_{i} r \pm f_{2} r^{2}+f_{g} r^{g}, \quad L^{ \pm}=\sqrt{\left(f_{s} \mp f_{4} r+f_{s} r^{2}\right)\left(f_{i} \pm f_{b} r+f_{7} r^{2}\right)} \tag{15}
\end{gather*}
$$

with $f$, the functions of the parameters of the potentials, $\alpha$ and $\alpha_{c}$ :

$$
\begin{gather*}
f_{1}=2 k\left(\alpha-\alpha_{c}\right)-2\left(B^{V}+i B^{W}+3 B^{C}\right) \alpha_{;} \quad f_{2}=\left(\frac{B^{V}}{R_{V}}+i \frac{B^{W}}{R_{W}}\right)\left(1-\alpha^{2}\right) ; \\
f_{3}=\frac{2 B^{C}}{A_{C}^{2}}\left(1-\frac{2}{3} \alpha^{2}\right) \alpha ; \quad f_{4}=2\left(\frac{B^{V}}{R_{V}}+i \frac{B^{W}}{R_{W}}\right) \alpha^{2} ; \quad f_{5}=\frac{2 B^{C}}{R_{C}^{2}}\left(1-2 \alpha^{2}\right) \alpha ;  \tag{16}\\
f_{6}=2\left(\frac{B^{V}}{R_{V}}+i \frac{B^{W}}{R_{W}}\right)\left(1-2 \alpha^{2}\right) ; \quad f_{7}=\frac{2 B^{C}}{R_{C}^{2}}\left(5-6 \alpha^{2}\right) \alpha .
\end{gather*}
$$

Integrale of the type (13) can be calculated in the andytical form if one usea on the complex $r$-plane the second order poles of the derivative $d f, / d r$ diaplayed in the region of the nuclear eurface at $r_{n}^{ \pm}=R \pm i \pi(2 n+1) a_{4}$, where $n=0,1,2 \ldots$ It is easy to show that the main comtribution to (13) is coming from two potes closest to the real r-axig. Then, the final expression for the differential crom aection in derived afollowa:

$$
\frac{d \sigma}{d \Omega}=6 \pi a_{1}^{3} S_{1} D_{0}^{2} \frac{2 J_{B}+1}{\left(2 J_{A}+1\right)\left(2 J_{\mathrm{a}}+1\right)} e^{4 B^{w^{*}} R_{w}}\left|\left[\frac{d}{d r} \exp \left(i \Phi^{(+)}\right)\right]_{r_{-}}+(-)^{t}\left[\frac{d}{d r} \exp \left(-i \Phi^{(-)}\right)\right]_{--}\right|_{(17)}^{2}
$$

To the aim of a qualitative concideration, we can rewrite thim expremion keeping only the main terms in the real and imaginary parte of the amplitude. In the case of heavy ion reactione we have a large value $k R$, and the terms depending on thim parameter inflnence mainly the form of the differntial crom section. On the other hand, the other terme depending on the parameters of the potentials and $\alpha_{c}$ determine mainly the aboolute value of the crom section. So, to present the renult more clearly, we reparate these dependences in the following obvious form:

$$
\begin{gather*}
\frac{d \sigma}{d \Omega} \sim \exp \left[-\psi\left(\alpha, \alpha_{c}\right)\right] \exp \left[4 B^{W} R_{W}\right] x \\
\left|e^{i 2 h R\left(\alpha-R_{n=c}\right)}-(-)^{\prime} e^{-i 2 h f\left(\alpha-R \alpha_{z}\right)} \exp \left[4 \pi \alpha_{1} B^{V} R / R_{V}+4 R\left(k I m \alpha_{c}-B^{W} \alpha\right)\right]\right|^{2} \tag{18}
\end{gather*}
$$

where

$$
\begin{equation*}
\psi\left(\alpha_{1} \alpha_{c}\right)=4 \pi \alpha_{1} k\left(\alpha-R e \alpha_{c}\right)+4 k R I m \alpha_{c} . \tag{19}
\end{equation*}
$$

If $W_{0}$ is large so that $\exp \left[4 \pi a_{4} B^{V} R / R_{V}+4 R\left(k I n \alpha_{e}-B^{W} \alpha\right)\right]<1$, then onily the firat term. gives contribution to (18). Then

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \sim \exp { }^{-4 \pi c_{1} h\left(\alpha-R_{\left.c c_{c}\right)}\right.} e^{-A k R L m_{c}} e^{4 B^{W} R_{m}} \tag{20}
\end{equation*}
$$

One can see that the crose section decreases with the scatiering angle an an exponential function, which fall down depending on a thicknes parameter a. The magnitude of the latter is determined by the binding energy of the transferred nucleon in the final nuclean $B$. We see that the absolute value of the cromesection increasen with the clamical deffection angle.

If $W_{0}$ in comparatively small, both the terme in vertical breckete in (18) become important, so we have

$$
c \begin{gather*}
\frac{d \sigma}{d \Omega} \sim \exp \left[-\psi\left(\alpha, \alpha_{c}\right)\right] \exp \left[4 B^{W}, R_{W}[\times\right. \\
\begin{cases}{\left[\sin ^{2}\left(2 k R\left(\alpha-R e \alpha_{c}\right)\right)+\operatorname{minh}^{2}\left(2 \pi \alpha_{i} B^{V} R / R_{V}+2 R\left(k I m \alpha_{c}-B^{W} \alpha\right)\right)\right],} & \text { for even } l \\
{\left[\cos ^{2}\left(2 k R\left(\alpha-R e \alpha_{c}\right)\right)+\sinh ^{2}\left(2 \pi \alpha_{q} B^{V} R / R_{V}+2 R\left(k I m \alpha_{c}-B^{W} \alpha\right)\right)\right],} & \text { for odd } l .\end{cases} \tag{21}
\end{gather*}
$$

In thin case, the cromsection decreace an en exponential function and aimultaneoudy oscillates with a freqnency depending on the radive parameter $R, \alpha$ and $\alpha_{c}$. We have already anelysed the dependence of the tranafer reaction on the imaginary part of the nuclear potential in the previous paper [3]. Now we peid more attention to a very intereating dependence on the claseical deflection angle $\alpha_{c}$, which in really observed in heavy-ion experimenta, a the so-called limited angle of a Coulomb deflection.

## 3. Numerical Calculations and Conclusion

We have calculated the differential croes section (17) for the reaction of the proton atripping from ${ }^{12} \mathrm{C}$ to the ground state of ${ }^{209} \mathrm{Bi}$ and ${ }^{28} \mathrm{Si}$ and abo atripping from ${ }^{16} \mathrm{O}$ to the ground state of ${ }^{20} \mathrm{Si}$ as well $a$ for the pick-up reaction of one neutron from the ground state of ${ }^{200} \mathrm{~Pb}$ to the bole state $\left(2 f_{7 / 2}\right)$ of ${ }^{207} \mathrm{~Pb}$. Solid lines in Fig. 1 show the calculated differential crom sectione as functions of the angle $\theta$ in comparieon with experimental dats from [4] for the reactions (a) ${ }^{12} \mathrm{C}+{ }^{200} \mathrm{~Pb} \Rightarrow{ }^{11} B+{ }^{209} \mathrm{Bi}$ at $E=600 \mathrm{MeV}$ and (b) ${ }^{12} \mathrm{C}+{ }^{27} \mathrm{Al} \Rightarrow{ }^{11} \mathrm{~B}+{ }^{28} \mathrm{Si}$ at $\mathrm{E}=600 \mathrm{MeV}$. In Fig. 2 the comparison in made for the reactions (c) ${ }^{18} \mathrm{O}+{ }^{28} \mathrm{Si} \Rightarrow{ }^{17} \mathrm{O}+{ }^{29} \mathrm{Si}$ at $\mathrm{E}=352 \mathrm{MeV}[5]$ and (d) ${ }^{3} \mathrm{He}+{ }^{204} \mathrm{~Pb} \Rightarrow{ }^{4} \mathrm{He}+{ }^{207} \mathrm{~Pb}$ at $E=47.5 \mathrm{MeV}$ [6]. The correaponding calculations have been performed with the following parametre: (a) $V_{0}=50 \mathrm{MeV}, W_{0}=38 \mathrm{MeV}, a_{\ell}=0.6 \mathrm{fm}, r_{0}=1.2 \mathrm{fm}$; (b) $V_{0}=50 \mathrm{MeV}, W_{0}=$ $19, a_{l}=0.4 \mathrm{fm}, r_{0}=1.2 \mathrm{fm}$; (c) $V_{0}=50 \mathrm{MeV}, W_{0}=15 \mathrm{MeV}, a_{l}=0.5 \mathrm{fm}, r_{0}=1.2 \mathrm{fm}$; (d) $\boldsymbol{V}_{0}=50 \mathrm{MeV}, W_{0}=3 \mathrm{MeV}, a_{l}=0.5 \mathrm{fm}, r_{0}=1.25 \mathrm{fm}$. In all the cases, we have taken the spectroscopic factors equal to 1 . The values $D_{0}$ and $\alpha_{c}$ were calculated according to formulae in the text. One can mention that for explanation of experimental data at various bombarding energies from 50 MeV to 600 MeV the main effect comes from changing the depth of the imaginary part of the potential $W_{0}$ from 3 MeV to 38 MeV and thicknese parameter al changing in the limits of $0.5 \div 0.6 \mathrm{fm}$. Figs. 1 and 2 ahow the agreement of our calculations with experimental data presented both in abeolute valuea and in the form of angular diaributions. At higher energies, the reaction is characterised by a simple exponential angular distribution. At the energy decrease the diffraction-like picture in angular distribution appears according to equationi (21). From Fig. 3 we see that the reaulte of calculations are very sensitive to the choice of the parameter $\alpha_{c}$, and a amall deviation of the trajectory radiua parameter $r_{0 t}$ leada to a significant change of the differential crows section in ite abeolute value. Thus, when $\theta_{c}$ changes with respect to $R e \theta_{c}=0.027$ (solid line) and $R e \theta_{c}=0.018$ (dashed line) the crose section is changed approximaty one third order of its value.

One can see that the DWBA calculations with the quasi-classical distorted waves obtained in the framework of HEA give good agreement with experimental data at energies begining from 10 MeV per nucleon and higher. The abeolute values of theoretical crose sections presented are shown without any renormalization factors, which means that the theory has rather good prediction posvibilities. We can aummarise that inveatigations of henvy ion-collimions, e.g. simple tranfer reactions, in the quantum region of scatlering angles $\theta>\theta_{c}$, outride the

Fig. 1 Angular distributions for the stripping reactions (a) ${ }^{12} C+{ }^{208} P b \Rightarrow{ }^{11} B+{ }^{209} B i$, $E=50 \mathrm{MeV} / n ;$; $\mathrm{b}^{12} \mathrm{C}+{ }^{27} \mathrm{Al} \Rightarrow{ }^{12} B+{ }^{24} \mathrm{Si}, E=50 \mathrm{MeV} / n$. Solid lines are the theoretical calculations, squared pointa are the experimental date from [4]



Fig. 2 Angular diatributions for the proton otripping in (c) ${ }^{19} \mathrm{O}+{ }^{28} \mathrm{Si} \Rightarrow{ }^{17} \mathrm{O}+{ }^{29} \mathrm{Si}, \mathrm{E}=$ 352 MeV ; and for the neutron pick up reaction (d) ${ }^{3} \mathrm{He}+{ }^{204} \mathrm{~Pb} \Rightarrow{ }^{4} \mathrm{He}+{ }^{207} \mathrm{~Pb}, E=47.5 \mathrm{MeV}$. Solid lines are the theoretical calculation, equared points are the experimental date from $[5,6]$.
limited trajectories of motion, ase very senaitive to the precine structure of a nuclev-nucleus interaction. For instance, the slope of curvee with $\theta$ feels the "thicknes" of the scting region in the channel (Fig.3). It may be used aloo for searching the "halo" dintributions of nuclei in the radioactive beamm which now become available. We hope that the HEA-method auggeated can be succearfully nsed in both the qualitative and quantitative analyain of direct reactions.


Fig. 3 Influences of the clamical angle $\theta_{c}$ introduced on the absolute value of the crose section and of the thickness parameter of on the form of the angular diatribution. The solid line is the calculation for the reaction (b) with $R_{4}$ for $r_{0}=0.17 \mathrm{fm}$, the dashed line corresponds to the same reaction but for $\mathrm{r}_{0}=1.2 \mathrm{fm}$. The oolid line with atars is the calculation for the latier case but at a larger thickneso parameter $a_{f}=0.6 \mathrm{fm}$.

## References

1. Lukyanov V.K. // Preprint JINR. Dubna. 1994. E4-94-314. •
2. Lukyanov V.K. // Proc.Int.School-Seminar on HI Phys.(Dubna) 1993. E7-93-274. V.2. P. 129.
3. Fedotov S.I.,Lukyanov V.K. // JINR Rap. Comm. Dubna. 4[67]-94
4. Winfield J.S. et al. // Phys.Rev. 1989. V.C39. P. 1395.
5. Fernandes M.A.G. et al. // Phys.Rev. 1986. V.C33. P.1971.
6. Satchler G.R. et al. // Phys.Rev. 1969. V.187. P.1491.
