


1 Introduction

The standard way to consider one-nucleon transfer reaciions is 1o vee the DBWA-method
where the basic ingradient of the theory is the dislorted waves introduced in in- snd out-channcle
of a reaction. In the case of heavy ior collisions at comparatively high emcrgies E > |V, several
simplifications can be done from the beginning. The first one is the quasi-elastic consideration
which usea the same elastic channel parameters for in- and out-distorted waves. It comes true
if the energy loss in a reaction occurs very small as compared with kinetic energies of colliding
nuclei, e.g. E, 53 Ep = E, AE < E. The other approximation is the quasi-classical calculati
of distoried waves. Indeed, the main condition of quasi-classics kR > 1 is usually working
well for heavy-ion scattering. However, the traditional methods utilise the QC-distorted waves,
expanding them in sets of partial waves and then applying the WKB-method to calculate
every purtial phase. This way is not convenient at high energies since ome needs to take into
account bundreds of partial waves. This arises difficulties in numerical calculations of a large
number of matrix elements with furtber summing them up in the reaction amplitude and
troubles in scarching for the physica of the reaction mechaniom. This latter i because of the
hidden dependence of an amphitude on input parameters of potentiale in the case of numerical
calculations operating with a Jot of partial waves. To avoid these difficulties, we apply the HEA-
method developed for calculations of the three-dimensional quasi-clnssical wave functions and
for the corresponding matrix elements with these functions included {1,2]. The method can be
applied under the conditions kR > 1, E > V and 6 > 0. o |V|/E, where 0. in the classical
deflection angle. This latter is introduced to include distortion of the straight-line trajociories




of motion, the important point in investigating heavy-ion collisons. On the whole, this gives
us the possibility to avoid complicated numerical calculations and to obtain, in the framework
of the DWBA, analytical expressions for qualitative physical estimations and for a quantitaive
comparison with experimental data.

2. Differential cross section

We consider the reaction a4+ A —+ b+ B where s = z 4+ 6, B = A+ z and the transferred
particle z is proposed 10 be spink The cotresponding cross section and the amplitude in the
sero-range approximation are as follows:
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depends on the structure of an incident particle, ¢y, is the seperation caergy of a nucleon z in
the incident a and R;(r) is the radial wave function of the z-particle in the final nucleus B.
This function has the asymptotic behaviour exp(—x;r)/r and goes 1o the constant aa r —» 0. A

slope in asymptotics is determined by «; depending on a seperation emergy ¢; :

x = \f2moafR .

. We have emphasised that the main eflect in heavy-icn reactions comes from the region near
the interaction radive. This means that the behaviour of the function R; at r < R is of no
imporiance, and ope can select it in the form

where
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is the symmetrised Fermi-function having the asymptotics exp(—a;r)/r and being a conetant at
= 0. The "diffusencss” parameter of the transition region is to be taken o; = x;'. The constant
Nx can be obtained by chaging variables z = 1 + cosh(r/a;)/ cosh(R/a;) in the normalization
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Neglecting here the terms cosh™(//a;) as compared with I, we reduce the latter integral to
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So,we get N; = Ba; = \/6/xs.
The symmetrized Fermi-function has the same behaviour as the usual Fermi-function in the

the table one:

region r ~ R and we use it in our further consideration.

In formula (1) we include only one term with m = 0 since the other terms with m # 0 may
be neglected because of additional fast oecillations in integrands as compared with the first
one. Ineerting (3) into (2), we get an amplitude of the typical form inherent in HEA. Moreover,
here we can use the quasi-elastic approximation because the loss of energy in the reaction is
comparatively small and E, ~ Es. Thus, the QC-distorted waves in our case are cakculated as in
the elastic channel and have the form [1]:
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In the quasi-elastic kinematics it is convenient to select the coordinate system so that the
axes were directed aa follows: oz{|7 and oz}| K = K, + k‘,. This allows u» to write the product
¥ ¥ in the following form [1,2):
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Here f, ¢ and n are the kmown functions expressed through r, p of the potential

a = ain(6/2), and a; = #in(0./2) = F[V(R) + Vo(R) + iW(R;)], taken at the radius R, =
ro.(A:I S+ A;l ’) of the external limited trajectory of motion. For example,
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and Vo = —|Vpl, Wo = —|Wy| are the depthe of the real and imaginary parts of the potentials.



We can see that now the integrand (2) contains in the exponent a typical power dependence
on the variables r and u. Keeping in mind that dF = —r?drdudp, we first integrate in (2) over
du by parts peglecting in it the term baving the smallness (R)™2. Then, the result can be
presented as follows:
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Then, the integration over d@ is performed with the help of a table integral. Thus, we can

write the amplitude (2) in the form of a one-dimensional integral
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with £, the functions of the parameters of the potentiale, o« and a.:
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Integrals of the type (13) can be calculated in the amlyhcal form if one uses on the complex
r-plane the second order poles of the derivative df, /dr displayed in the region of the nuclear
surface at r¥ = Rtix{2n+1)a;, where n = 0, 1, 2... It is easy to show that the main contribution
to (13) is coming from two poles closest 1o the real r-axis. Then, the final expression for the
differential croes section is derived as follows:
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To the aim of a qualitative consideration, we can rewrite this expression keeping only the
main terms in the real and imaginary paris of the amplitude. In the case of heavy ion reactions
we have a large value kR, and the terms depending on this p ter irfluence mainly the
form of the differntial cross section. On the other hand, the other terma depending on the
parameters of the potentials and o, determine mainly the absolute value of the cross section.
So, Lo present the result more clearly, we separate these dependences in the following obvious

form:
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f W, is large so that exp[47a;BY R/ Ry + 4R(kIma. — B¥ a)] € 1, then only the first term
gives contribution to (18). Then
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One can see that the cross section decreases with the scatiering angle as an exponential func-
tion, which falls down depending on  thickness parameter a;. The magnitude of the latter is
determined by the binding energy of the transferred nucleon in the final nuclens B. We sce
that the absolute value of the cross section i with the classical deflection sngle.

If Wo @ comparatively small, both the terms in vertical brackets in (18) become important,

50 we have
L~ expl-¥{, )] exp[45¥, Ru]x
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{ [cos®(2k R{c — Rea.)) + sink*(2xay BY R Ry + 2R(kIma. ~ B¥a))], foroddl.
In this case, the cross section decreases as an exponential function and simultaneously oacillates
with a freqnency depending on the radiue parameter R, and a.. We have already analysed
the dependence of the transfer reactions on the imaginary part of the nuclear potential in the
previous paper [3]. Now we paid more attention to a very interesting dependence on the claseical
deflection angle o, which is really observed in heavy-ion experiments, as the so-called limited
angle of a Coulomb deflection.

(21)



3.Numerical Calculations and Conclusion

We have calculated the differential cross section (17) for the reaction of the proton strip-
ping from C to the ground state of *?Bi and #Si and also stripping from !0 to the

"

ground state of #Si as well as for the pick-up of one tron from the ground
state of *Pb to the hole state (2f;;) of ®'Pb. Solid lines in Fig. 1 show the calcu-
lated differential cross secti as functi of the angle ¢ in comparison with experimental
data from [4] for the reactions (a) 3C +%* Pb = 1B+ Bi at £ = 600MeV and (b)
3C +7 Al = 1B +3 5 at E = 600MeV. In Fig.2 the compasison is made for the reactions
(c) O+ Si = V"O+P S at E = 352MeV (5] and (d) *He +*® Pb = *He +%7 Pb at
E = 41.5McV [6]. The corresponding calculations have been performed with the following
parametrs: {a) Vp = 50MeV, Wy = 38MeV, a; = 0.6fm, ro = 1.2fm; (b} Vo, = 50MeV, Wy =
19,a1 = 0.4fm, rq = 1.2fm; (c) Vo = 50MeV, Wy = 15MeV, a; = 0.5fm, ro = 1.2fm; (d)
Vo = 50MeV, Wy = 3MeV,a; = 0.5fm, ry = 1.25fm. In all the cases, we have taken the
spectroscopic factors equal to 1. The values D, and a. were calculated according to formulae

in the text.One can mention that for explanation of experimenial data at various bombarding
energies from 50MeV to 600MeV the main effect comes from changing the depth of the imag-
inary part of the potential Wy from 3MeV to 38MeV and thickness parameter o; changing

in the limits of 0.5 + 0.6fm. Figs. 1 and 2 show the agr t of our ions with ex-

perimental data presented both in absolute values and im the form of angular dieributions. At

higher energies, the reaction is characierited by a simple exponential angular distribution. At
the energy decrease the diffraction-like picture in angular distribution appears according to
equationi (21). From Fig.3 we see that the results of cakulations are very sensitive to the
choice of the parameter o, and a small deviation of the trajectory radius parameter ry, leads to
a significant change of the differential cross section in its absolute value. Thus,when 6. changes
with respect to Ref. = 0.027 (solid line) and Ref. = 0.018 (dashed line) the cross section is
changed approximatly one third order of its value.

One can see that the DWBA calculations with the quasi-classical distorted waves obtained
in the framework of HEA give good ag t with experimental data at energies begining
from 10MeV per nucleon and higher. The abeolute values of theoretical cross sections pre-
sented are shown without any renormalization factors, which means that the theory haa rather

good prediction poesibilities. We can summarixe that investigations of heavy ion-collisions,
e.g. simple transfer reactions, in the quantum region of scattering angles ¢ > 6., outside the



Fig.1 Angular distributions for the stripping reactions {a) 2C +2* Pb = B 4% Bj,
E = 50MeV/n; (b) ¥C +77 Al = "B+ Si, E = 50MeV/n. Solid lines are the theoretical

calculations, squared points are the experimental data from [4]
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Fig.2 Angular distributione for the proton stripping in (c) 120 +* 8i = "0+¥® S, E =

352MeV; and for the neutron pick up reaction (d) He +°% Pb = ‘He +%7 Pb, E = 47.5MeV.

Solid lines are the theoretical calculation, squared points are the experimental data from [5,6].



limited trajectories of motion, are very sensitive to the precise siructure of a nucleus-nucleus
interaction. For instance, the slope of curves with ¢ feels the "thickness” of the acting region
in the channel (Fig.3). I¢ may be used also for searching the "halo” diwtributions of nuclei in
the radioactive beams which now become available. We hope that the HEA-method suggested
can be successfully used in both the qualitative and quantitative analysis of dﬁut reactions.
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Fig.3 Influences of the classical angle 6. introduced on the absolute value of the cross section
and of the thickness parameter a; on the form of the angular distribution. The solid line is the
calculation for the reaction (b) with R, for ro = 0.17 fm, the dashed line corresponds to the
same reaction but for ro; = 1.2fm. The solid line with stars is the calculation for the latter

case but at a lasger thickness parameter a; = 0.6 fm.
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