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1 Introduction 
Here we construct nuclear distorted waves using the high-energy approximation (НБА) in quasi-
clamcal (QC) scattering on the optical ( complex) potential. The method can be applied under 
the conditions kR > 1 and E > V. In sec.2, the main attention is paid to peculiarities coming 
from the imaginary part of a potential. Thai, the so-called effective potential appear», inherent 
in the three-dimensional quasi-dsssicsl wave fnnctioM. In principle, it can be parametriied 
independently of the primary input potential, and the corresponding QC-diitorted wave» may 
be applied then to describe the nuclear collision proceaiea in the framework of the distorted 
wave Born approximation (DVVBA). Note that anally the one-dinw—innal quasi-dassical ap
proximation is uaed for calculationi of the partial phases in conaiderating the light- and heavy 
ion collisions with nuclei. In this сак the claaaical deflection angle tarna oat to be a necessary 
.tribute of the QC-theory (see, e.g.[l]). Instead, the three-dimensional НБА is adjusted for 
calculating the hadron- and electron-nuclear scattering [2-5]. In the coasideiation of the latter 
processes the straight-line trajectories as integration paths are usualy used. In Sec.3 we try to 
join both these methods, where a simple way is developed to include a distortion of the straight 
line trajectories. In sec.4 we obtain an explicit form for the three-dimensional distorted waves 
when both the Coulomb and nuclear potentials are included, and the method is developed for 
calculating the typical matrix dements, appearing in considerations of various reactions in the 
framework of DWBA. Thus, we avoid the traditional partial wave decompositions, for which in 
this case a very large number of terms is to be indnded. This gives aa the possibility to obtain, 
in the framework of DWBA, analytical expressions for qualitative physical estimations and for 
a quantitative comparison with experimental data. 

2 Quasi-clauwka for the Optical Model 
We start with the wave equation 

A* + Kt* = 0, Ki = ki-0 (2.1) 

with the complex potential V included as blows 
2m 

0 = U + iu,= 2£V, V = V + iW. (2.2) 
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The solution of eq.(2.1) is written in the form 

* = ue'*, S = S, + i$>. (2.3) 

Substituting (2.3) into (2.1), equating to zero separately the real and imaginary parts of eq.(2.1), 
and calcalating the current change along a path, one can obtain the following equations 

?S , (r ) = K\, (2.4) 

VstfSi = i«», (2.5) 

f J = u3[i, - VVstfSAc-35', (2.6) 
where 

J W ^ e " 2 * , (2.7) 

«J = k7 - V„ я2. = u>«, (2.8) 

0t = U + (9S3)2 + x3, шс = -ш + хи (2.9) 

x = 2 u + Д5, . , . (2.10) 
u 

In the case of a real potential, when W=0, we have 5= St = S, 5j=0, and then we obtain the 
known expressions [6] for the wave function, the action function and the current conservation 
law: 

* = ue , s , (2.11) 

(tfS)2 = k2 - V, (2.12) 

f j = u s i , = 0 , (2.13) 

j = u3tfS. (2.14) 

Note that eq.(2.13) is a result of equality to «его of the imaginary part of the wave equation in 
the case of the real potential. This means that the current is conserved if an absorption along 
the path is absent. 

A simple way to decouple eqs.(2.4) and (2.5) is to assume the imaginary pait of a potential 
being small as compared with its real part |W| < |V|. Then, we can suppose that x\ ~ 0 (see 
eq.(2.13)), and instead of eqs.(2.4)-(2.6) we obtain the following oet of equations: 

tfStf = *a - £/., (2.15) 

tfS^Sj = - i u . , (2.16) 

^ 7 = А и - а д . (2.17) 

In the case of basic conditions of HEA the decomposition of S in small Vr]E can be realized 
fromeq.(2.15). Thus, 

r f 
S, ~ So + f[k - ±U.{r -ks)]ds = Sf--^f P«(f - ks)ds, (2.18) 

2 



where к = к/к and S0 = кта is determined in the asymptotic» so that to compensate the 
contribution of the constant —kr0(ro —» со), and integration runs along the trajectory of 
motion. Substituting the solution (2.18) into (2.16), one gets: 

> * - Й / - « С • ka)ds (2.19) 

Now let ия obtain the amplitude u of the wave function (2.3). For this aim we use the law 
(2.17) of changing the current: 

^ u 2 t f e ~ № = urtiae-2Sa, (2.20) 

where К — S\ is the local momentum at the point f. Wc consider the change of a flux 
moving from — oo to the center of scattering. In our case of НЕЛ we can select for the path of 
motion a straight line along the oz-axis with an impact parameter p. Then we use the Gauas-
Ostrogradsky theorem for a transformation of (2.20): 

I и2(ЙК)с-^<и=: f^ue'^'dV, (2.21) 
(S) (V) 

where integration in the left- and the right-hand side of eq.(2.21) is done over the surface and 
volume of a tube of the flux, respectively, and ft is the normal vector to the surface of the tube. 
One can note that everywhere along the straight line we have Д К . Therefore a contribution 
to the left integral occurs only from the left Д> and the right D sides of the current tube, 
where Kn = ±1. In the right integral of (2.21) we write the volume element using the average 
surfaces of the sides Д, and D, that is dV = (D)dz = [(Д, + D)/2]dz Thus, we get: 

- ^e-M'(-»>Z>0A + jDe-^'K = f u
2 o « - № ^ ± ^ ^ . (2.22) 

— C O 

The relation of Do/D can be obtaiaed by using the momentum conservation law 

Pok = pKmpkU-^). (2.23) 

from which it follows that 

Do/D = podpoivlpdpdv s 1 - | | ( 1 + * ) , (2.25) 

°° + D=D[l~^(l+z)) = Dl. (2.26) 
2 l 4E 

Denoting У = u'De-^K, we rewrite (2.22) in the form 
Ж 

- У( -оо ) + Y = J u^Ydz. (2.27) 
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Solving equation with the boundary condition! uj = 1, e "•<-«>) = ] »od taking account of 
If К =s 1/k, we have 

У(г) = У ( - о о ) е х р 4 (o/dz) , (2.28) 

from which there follow» the final result: 

« = l - ^ « . (2.29) 

Thua, gathering together eqa.(2.3),(2.18),(2.19) and (2.29), we can write the three-dimensional 
quasi-classical wave function in the caw of scattering in the field of a nuclear optical potential 
as follows: 

oo eo 

» = (1 - JL)exp{i£r-- JL J Up- ks)d, + Jbj-'if- b)d,}, (2, 30) 

Now one can write down the in and out three-dimensional quaai-claiieical wave functions in the 
high-energy approximation, using the time reverse relation: 

*<->*(?, £) = ¥(+>(?;-£). (2.31) 

This permits us to write distorted waves in the form 

о о 
«j.+ ) = exp[ik\?i --Г- f V(r + ks)ds + J - f W(f+ ks)d>], (2.32) 

—04 —OO 

oo oo 

»(,">* = exp[-»'br< - - i - / V[r + ks)d> + ^- f W{f+ ks)ds], (2.33) 
*' . nVf J hVf J 

о о 
We omit here the index e in the real part of a potential, having in mind that this potential 
is selected specially for quasi-classical calculations. Then, we omit also the preexponential 
functions because of their small contribution in the case of nuclear collisions, for which we 
intend to apply this method. It is interesting to note that according to (2.31), the •'"'-function 
itself has an opposite sign of the imaginary part of the complex potential, as compared with 
the one in • ( + ' . which means the increase in the flux when going back to the scattering center. 

Usually, these expressions for *'*' are obtained using the prescription, when in quasi-
classical wave functions for the real potential the latter is changed to the complex one, and the 
amplitude pre-exponential factor is taken to be unity. However, we see that, first, the form of 
eq.(2.30) is right if the absorption term of a potential W is small as compared with its real 
part V,. Then, in (2.30) one should use an effective real part of the potential, indused by 
the imaginary part of the initial potential. In the general case the action function has to be 
obtained by solving the coupled channel equations (2.4), (2.5) and the dependence of S on V 
and W will be non-linear ( see, e.g. [7]).Thus, we conclude that the potentials usually used in 
quasi-classical scattering on nuclei should not coincide with those in the initial wave equation. 
By the way, this fact has no serious meaning, if the Ve-potentials is calculated directly from the 
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scattering data in the framework of quasi-classics. Then, these effective potentials will also be 
appropriate in calculating other processes, if one uses the corresponding quasi-classical distorted 
waves. Second, the pre-exponential factor in (2.30) makes small alternations in the final results 
and can be omitted in nuclear scattering, where we have to use the phenomenological effective 
potentials. But in those cases, where exact real potentials can be introduced, e.g. the Coulomb 
potentials of nuclei, this factor is necessary to take into account. In [8] this factor was introduced 
in a pheuomenological way for discribing the electron scattering on nuclei, where it makes 
correction to form factors sometimes about 30% of their value. 

3 Distorted Trajectory Approximation 

The HEA-calculations usually start with expressions for wave functions in typical forms (2.32), 
(2.33), where integration is supposed to run along the straight line t.ajeclories, parallel to the 
momentum of a particle in asymptotic» £(||dz). However this latter suggestion doesn't follow 
automatically from the basic condition E ;» V of HEA. Indeed, one can learn from mechanics 
that in this case trajectories deflect near the scattering center by angles of the order VjE. The 
means that in the phase (2.18) the correction appears of the order k(V/E) to the momentum of 
a particle near the most important point of contribution f. This additional term is comparable 
in magnitude with the same order terms (hv)~: J Vds, which present in (2.32), (2.33) as a 
result of an expansion of 5 in VjE in (2.18). The most distorted trajectory goes through the 
so-called external turning point 9r of the closest approach of scattered particles. At this point 
the trajectory is parallel to the local momentum £к, directed at the angle вс/2 with respect to 
к in the asymptotics. Here 0C £f \V\/E ie the corresponding deflection angle in aaymptotics at 
the end of motion. Then we can write 

fc* = £ -& /2 , (3.1) 

where fc repreeents the momentum transfer in the classical motion. The quantity i * is obtained 
from the conservation law of angular momentum: 

pk ~ ЭМ*, (3.2) 

where p ~ Scoe(Sc/2) is the impact parameter. So, we have 

ks = kcoe(Sc/2), 7c/2=rfcsin(Sc/2). (3.3) 

Now, simplifying the problem, we select a new path of integration along the straight line parallel 
to the momentum £R. Then, eq.(2.18) has to be rewritten in the following form: 

5, = S0 + kt,F- k~?a - J - / V(F- %\,)da. (3.4) 

Now we show that the effect of the trajectory distortion can be neglected in the last term of 
(3.4) containing the integral of V. For this aim we take into account that the main contribution 
to the integral comes from the upper limit at the point of the closest approach г ~ 3c. Also, in 
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the case of small classical angles we can use the small parameter qcjk ~ V/E < I in further 
expansions: 

I - ^ fc/2 „ t qc _ . . 
Km ~ —.i i • • . ~ К — rrrQc, (3.5) 

y/& + <& y/k^Tq} U4" l ' 
V(r - km») ~ V(#) + f^RVfo = V(R) + ™ & f c S . (3.6) 

where we denote я = r — ks, R = Ё/R, qc = qjqc- Note that near the point r ~ S we have 
s/R < 1 and rXk, which permits us to write Rqc s 1 and R7 ~ r2 + s2. Then, substituting 
dV/dR = (dV/ds)(R/s) into (3.6), we obtain from eq.(3.4) in the region of the closest-approach 
point r ~ 3? 

J V(r - £,)& ~ J V(r- h)d, + J|rV(r). (3.7) 

It is clear that the last term here can be neglected, since q. ~ k(V/E) and its total contribution 
Mofanorderof(V/£)J. 

Now, using eqs.(2.3),(2.10),(3.4) and (3.7), we can write the in and out QC-wave functions 
in the high-energy approximation with the trajectory distortion included. For this aim we 
direct the Oz-axie parallel to these momenta, and change variables f = p + z, s = г - A, 
where p"X ?. Thus, we can write 

*£> = exp[.S; + i(k - Ц)?, -j~j V(y/fyj + X*)d\ + ~ j W{y/fZ + V)d\], (3.8) 
— DO — O O 

O d OO 

*<f >' = «rft^ - Ц%, + Цф, -jL-J V(JP* + X)a\ + ± J W(yf?, + \*)dX\. (3.9) 
•t 'i 

For a Coulomb field these integrals will give the logarithmic contribution — r) In 2kzt, at large 
z„ where r) = ZiZ2e2/hv. Therefore it is convenient to select the constant 

So = n)a2kzo at го —too, (3.10) 
so that to have the usual plane waves in the asymptotics. One should remind that if necessary 
one can include in (3.8),(3.9) the flux factor (1 - V/4E), as it was done in (2.30). Note that 
QC-distorted waves in the form (3.8),(3.9) are inherent in the heavy ion collisions, where the 
classical deflection angle вс is really observed in experimental data as the so-called limited 
angle of a Coulomb deflection. In principle, other trajectories for which в < 0C should be also 
taken into account. Moreover, the incident particle can deflect at the same classical angle 0e, 
corresponding to the "nuclear" trajectory of motion with the radius of the closest approach Шк, 
smaller than the S, inherent in a limited Coulomb trajectory. However, it is clear, first, that 
contributions of these "nuclear" trajectories seem to be negligible because of the strong nuclear 
absorption in this region. Second, the probability to find a particle out of any classical trajectory 
is a quantum effect and in quasi-classical conditions this probability has to be exponentially 
small. Thus, usually these comparably small effects cannot be important in the classical region 
of motion at в < flc. The only place where they give the main effect is the region out of the 
limited trajectory, inhere"'. in the given potential of scattering, i.e. at angles в > 6C. 
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4 Transition Matrix Elements in Quasi-Elastic Approximation 

Based on the QC-dietorted waves (3.8),(3.9) we show how one can calculate typical matrix 
elements of the nuclear scattering processes and direct reactions having the following form: 

1 = J <fr*<kr>*d(F)*£> = y<i?0(f)exp{;4(f», (4.1) 

* = £ / ? + Ф(г), Ф = Ф<+) + *(,_), Ф ^ ^ Ф ^ + Ф ^ ' . (4.2) 
Here the nucle&r and tbe Coulomb put* of the whole phase «re: 

DO OO 

•£' = ~ JVN(v/^7A»)<tt, 9f) = vin2kzo-~jVc(y/^T^)dX, (4.3) 
*z TZ 

where kz0 -* oo, the effective momentum transfer qtj = q — qZ with q\\fc, q,j = 2k(a — atc), 
a = sin(0/2), and ccc ~ V{Ri)/2E, taken at the radius Я, of the limited trajectory of motion. 
In HEA it is natural to use the quasi-elastic approximation working well when the energy loss 
is very small, as compared with the collision energy, so one can take Et a Ef and k{~ kj. 

We write the transition operator in the general form: 

6ft = l\r)J®{r)YuW (4.4) 

with the typical Fermi-like functions usually used in many practical calculations 

/(r) = ( l + e x p ~ ) - 1 , /»(p) = ̂ , 2 = 1,2,3..., (4.5) 

where R and a correspond to the radius and the "surface thickness" of an interaction. For 
example, in the case of elastic scattering we have [3,9] L = 0, J = 0, P(r) — 1; for in
elastic scattering with the collective state excitations there are various combinations of fc = 
0,2,3,4, / = 1,2, P(T) = 1,1/r; for direct one nucleon transfer reactions one may иле 
L > 1, / = 1, P(T) = l/г. Thus, we consider the typical form: 

t = J drP{r)fW(r) ехр{«Ф(г-)}г-ш(г), (4.6) 

and first calculate the QC-phaaes (4.3). For this aim we take into account that the high-
energy scattering is mainly sensitive to the internal and surface region of interaction, the fact, 
which permits us to use simplified potentials in (4.3). Namely, instead of the nuclear Woods-
Saxon potential we take its expansion [10] in the diffuseness parameter a, and for the Coulomb 
potential we use only its inride-of-Д expression: 

V„ =* VK = V0 {в(й - г) - j a ¥ ] ' ( r - R) -...}, (4.7) 

Vo =* Va = \VB(3 - i l ) , VB = ^ g f l . (4.8) 
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Substituting (4.7) into (4.3) and expanding, in p/Rv, the result of integration of VN we get: 

Ф<?> = -BvyiQ - ? ± ze(y/Rb - /* - ж) + t^^L-[! + в(г - у/1% - „>)]} ~ 

Neglecting terms with (a/Ry)2 which are usually small in absolute values, we obtain: 

Ф—г^-ш** (410) 

Here the large dimeusionleea parameter (j(> 1) is introduced to fit the mentioned expansion 
1 — plj2dR\ to the initial expression ^ 1 — р*/Щг in the most important region near the radius 
irjLeraction. 

Aa to the Coulomb phase we follow the prescription of ref.(4], supposing 

oo 

r) In 2kz0 = T- / Vc(X)d\, at kz^-* oo (4.11) 
0 

with V(7, the exact Coulomb field of the spread nuclear charge. Indeed, in the lower limit 
integral (4,11) has to be zero (since Vc a t small r looks hke (4.8)), and at large Л we have the 
true logarithmic behaviour. Then, tm bet itu ting (4.11) into (4.3), we obtain: 

oo oo 0 

*j?> = jr; J Vc(X)dX - i - J Vc(v̂ "+A*)dA = ~ j Vc(^T^)d\ + 4Ф<±>, (4.12) 
0 TZ - *Z 

where 
oo 

**g° = J^jlVcM - Vc(y/?TV)]d\. (4.13) 

To calculate (4.13), we expand Ус{%/р* + A7) in powers of small p, 

W F + * ) = KKA) + f ™ + ..-. (4.H) 
and use the estimation from [4]: 

о 

Bearing in mind the smallness of p/R, we neglect this term in the first stage. Thus, 

*« = -£}Kyfir+w = ?B°(*-£)*±*>jL, *> = £ . (4.i6) 
T2 
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Then inserting relations г = (£r)/fc and p2 = r1 - (£r) 2 / i 3 in (*-Щ and (4.16) we obtain 
the whole phase in (4.2): 

Ф = £ , ? + 2ao + | - ( £ - fc,)r + ^[(A.f)2 + fai?} + ^[(k\r)3 - (£,?)>], (4.17) 

where сц are the known functions of r and parameters of potentials: 

Selecting axes o^||if and <зх||л = к, + к/, we obtain the scalar products in (4.17) 

k^r = кт(±ац + Vl-aPy/l-fcoep), (4.19) 

where /i — cos 0, and в, ф are the angles of r in a spherical coordinate system. So, 

Ф = 2аъ + р~ц + п1цг + сцх3 + m(1 -д2)сов2(Р + сг^(1 - J U 2 ) C O S V (4-20) 

with /?, с and n expressed through a^, giving the forms: 

0 = gr = ?«,r + 2*s<*r, fc = - [ B v + B c (3 - ^ - ) ] , 

"'=-жг^>3- «* = - ш { 1 - ^ - (421) 

Now one can see that integrand (4.6) contains, in the exponent, a typical power dependence on 
the variables r and y. with a large argument q,/r. Keeping in mind that df = -T2drdndip, we 
integrate in (4.6) over dp by parte, retaining only the lower order term in i/qcfR: 

I = J^ехр[.Ф(г,ц,})]YuM a -i^^YuM | = 

= -i exp(2iao + inO^+'fr, (P) - ( - l ) L / ( - ) (r . (?)]Уи(1), (4.22) 
where 

^ | = « 2 Й М , Д ( ± ) = ,9 + З с 1 ± 2 п 1 , * ( ± ) = 2 ( „ 2 ± c 2 ) . (4.23) 

Then, the integration over dip can be performed with the help of a table integral: 

/ 
dx 2* 

a2 + (6 2 -a 2 ) cos J s : ab' (4.24) 
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Thus, eq.(46) is transformed to the one-dimensional integral: 

CO 

! = У " Й Г Р ( Г ) / < ' ) ( Г ) / ^ + ' И - ( - 1 ) ^ - > ( Г ) } П 0 ( 1 ) , (4.25) 

where 

The root singularities in the denominator are situated far from the radiuB of interaction Я, 
namely, at r , = Ц^-R with Ai, the atomic number of a projectile, E, the energy in MeV, and 
R in / m . However, a t this distances the Fermi-like /^'(rj-functions in the integrand decrease 
very fast. This forces us to introduce a prer-ription when the integration in (4.25) should be cut 
off at distances less than r , . For this aim we use the properties of the functions / ( , | ( r ) on the 
complex r-plane, where they have polee near the radius of nuclear interaction at r* = R ± ixn 
with z n = iro(2n + 1 ) and n = 0,1,2 

For example we consider in some details the case, corresponding to elastic scattering, when 
L = 0, 1=0, P(r) — 1. (For ал exact amplitude of scattering one needs to take P(r) = 
—т/2тгйгУоо). I" this, case we have the simple poles of / ( r ) in r*, the integration contour for 
r* should be selected in the first quadrant of the complex plane, going along the imaginary axis 
and then over the circles of an infinite radius. The same contour, but in the fourth quadrant, 
must be used in the case of r~. Thus, the result is expressed through a sum of the corresponding 
residues at the above-mentioned poles: 

oo 

t = - 2 « а У м ( 1 ) £ { * < + > ( г ; Г ) + l*-4r;)}. (4.27) 
n=0 

In practice, for the typical nuclear parameters it is usually enough to take into account only a 
couple of poles a t r * = Я ± t'i0 nearest to the real axis ("two-pole approximation"), since, in 
principle, every next pair of poles contributes approximately an order smaller than the previous 
one. In many cases the ^-function in the denominator of /** ' can be presented as exp(T«) 
with к а Пг/(РТ) , because other terms in £ usually occurr to be negligible. Then, expanding 
the functions in small (xn/R) 

qr = qR±. iqzn, ф = 2ao + r»i = <fi(R) ± гхлф'ш у = Ci - tie = y(R) ± ix„y'R, (4.28) 

and using the relations 

X > P H 2 " + 1W = ^ E ( 2 n + l ) e x p H 2 n + , ) , ] = « j l L L , (4.29) 
№=0 n = 0 

we sum up all the terms in (4.20) to obtain 

tirafl. 
q 

l та , , . , f .KVHiUQ) е - « я + ^ я ) ) -I 

-Г**1 + Ф^{4ЫМ1 + * + ФЯ+'<^9+й-м}- <4-30) 

where , „ __ 
{ a ( 1 - , • = ) / ( ! + i ~ ) . (4.31) 
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In a qu ditative consideration one can put f ~ 1, since the interaction radius R a usually larger 
than та . If at the same time (ф'/ira) < l , » t can bring the »inh(raqcf) out of the wave 
brackets and obtain at large *aqef. 

t ~ e—«*<—««' сое{дД + y'R), (4.32) 

where a - sin(#/2). We see that the elastic amplitude t is decreasing with the angle of 
scattering as an exponential function [11] with a slope determined by the thickness parameter 
a of a surface of an interaction. Simultaneously it oscillates with a frequency depending mainly 
on the radius parameter Я. This is a typical behaviour [or the so-called Fraunhofer diffraction 
scattering on nuclei. However, for large (ф'/та) only one term of (4.30) gives contribution, and 
in this case no oscillations will appear. So, 

|t|2 ~ e-««*<—«•>. (4.33) 

Under some conditions this land behaviour is observed in the heavy ion elastic scattering at 
angles 0 larger than 0C, the limited deflection angle. 

In other cases, when /'''(r) takes place in the integrand, the pole method can also be applied 
to obtain simple analytical expressions for the corresponding matrix elements. 

5 Conclusion 

It is clear that the consideration of high-energy processes in the language of nuclear potentials 
needs adequate methods of their description. The method developed here takes account of some 
specific features of nuclear collision processes including the heavy-ion reactions, as compared 
with those suggested for scattering on nuclei of fast electrons [4,5] and protons [12]. The resulte 
obtained can be summerieed as follows: 

1. The three-dimensional quasi-classics is adopted for constructing nuclear distorted waves 
using the high-energy approximation, when the conditions fci? > 1, E > |V|, в > 8C ~ 
(1/4Я), (| V | / £ ) are fulfilled. 

2. The complex nuclear potential is transformed, in the corresponding eikonal-like QC-
distorted waves, into an effective potential which may be selected independently of the initial 
one for the description of experimental data. Then, based on the idea of the distorted wave 
Born approximation, the obtained distorted waves may be used for further applications in other 
direct channels, e.g., for inelastic scattering and nucleon transfer reactions. 

3. An important role is established of a deflection of the trajectory of motion from the 
straight lines, usually used as paths of integration, and the prescription of introducing the 
deflection angle вс is suggested. This effect is most significant in heavy-ion collisions, and can 
change the corresponding cross sections in orders of value. 

4. A method ш developed for calculations of the matrix elements for typical direct processes 
including the calculations of QC-phases and integrations over the angular and r-variables in 
analytic form. This gives a possibility both for the qualitative analysis of main physical features 
of processes and the quantitative fit to experimental data. 

5. The method cay be applied for scattering angles в > вс, forbidden in the classical 
mechanics. Therefore, in this region all the cross sections fall down with angles as an expo
nential function having a slope determined by the "diffuseneas* parameter of the surface of an 
interaction potential. 
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