

объединенный институт Адөриых исөледованй

 дубна

 дубна}

E4-94-314
V.K.Lukyanov

NUGLEAR DISTORTED WAVES
IN HIGH-ENERGY APPROXIMATION

Submitted to «Ядерная физика»

1 Introduction

Here we conatruct nuclear dietorted waven unaig the high-emergy approximation (HEA) in quaiclassical (QC) ecattering on the optical (complex) potential. The method cas be appliod under the conditione $k R>1$ and $E>V$. In mec.2, the mein attention is peid to peculiaritien coming from the imaginary part of a potential. Thm, the so-called effective potential appeara, inherent in the threedimentional qum-clecrical wave function. In prisciple, it cas be parametrised independently of the primary input potential, and the comreeponding QC-diotorted waven may be applied then to deacribe the nuclear collivion procemes in the framework of the dintorted wave Born approaimation (DWBA). Note that unnally the one-dimenional quan-claceical approximation in used for calculation of the partial phoes in coniderating the light- and beavy ion collinions with nuckei. In thie case the clevical deflection angle turn out to be a necemary atribute of the QC-theory (wee, e.g.[1]). Inotead, the three-dimenional HEA im adjwited for calculating the badron- and electron-naclear scattering [2-5]. In the comidenation of the letter procemes the atraight-line trajectorice at integration patim are unully ued. In Sec. 3 we try to join both these methods, where a simple way is developed to include a dirtortion of the otraight line trajecteries. In sec. 4 we obtain an explicit form for the three-dimencional divorted waves when both the Coulomb and nuclesr potenting are included, and the method in developed for calculating the typical metrix elemente, appearing in comideratione of varione reactions in the framework of DWBA. Thus, we avcid the tractitional partial wave decomporitions, for which in thin care a very large number of terme in to be incleded. Thin gives mo the pomibility to obtain, in the framework of DWBA, anelytical expreeions for quelitetive physical eatimatione and for a quantiative comparicon with experimental data.

2 Quasi-clasaics for the Optical Model

We start with the wave equation

$$
\begin{equation*}
\Delta++K^{2}=0, \quad K^{2}=k^{2}-0 \tag{2.1}
\end{equation*}
$$

with the complex potentinl $\overline{\mathrm{V}}$ included $=$ followe

$$
\begin{equation*}
\theta=U+i \omega=\frac{2 m}{\hbar^{2}} D, \quad \nabla=V+i W . \tag{2.2}
\end{equation*}
$$

The nolution of eq.(2.1) in written in the form

$$
\begin{equation*}
=u e^{i S}, \quad S=S_{1}+i S_{2} . \tag{2.3}
\end{equation*}
$$

Subatituting (2.3) into (2.1), equaling to sero separately the real and imaginary parts of eq.(2.1), and calculating the current change along a path, one can obtain the following equations

$$
\begin{gather*}
\vec{\nabla} S_{1}(r)=\bar{\kappa}_{1}^{2}, \tag{2.4}\\
\vec{\nabla} S_{1} \vec{\nabla} S_{2}=\frac{1}{2} \vec{\kappa}_{2}^{2}, \tag{2.5}\\
\vec{\nabla} \vec{j}=u^{2}\left[x_{1}-2 \vec{\nabla} S_{1} \vec{\nabla} S_{2}\right]^{-2 S_{2}}, \tag{2.6}
\end{gather*}
$$

where

$$
\begin{align*}
& \vec{j}=u^{2} \vec{\nabla} S_{1} e^{-2 S_{2}}, \tag{2.7}\\
& \bar{\kappa}_{1}^{2}=k^{2}-U_{e}, \quad \bar{\kappa}_{2}^{2}=\omega_{e}, \tag{2.8}\\
& \nabla_{c}=U+\left(\bar{\nabla} S_{2}\right)^{2}+x_{2}, \quad \omega_{c}=-\omega+x_{1}, \tag{2.9}\\
& x_{1,2}=2 \frac{\vec{\nabla} u \vec{\nabla} S_{1,2}}{u}+\Delta S_{1,2} \tag{2.10}
\end{align*}
$$

In the cane of a real potential, when $W=0$, we have $S=S_{1}=S, S_{2}=0$, and then we obtain the known expreaions [6] for the wave function, the action function and the current conservation law:

$$
\begin{gather*}
\bar{W}=u e^{4}, \tag{2.11}\\
(\vec{\nabla} S)^{2}=k^{2}-U, \tag{2.12}\\
\vec{\nabla} \vec{j}=u^{2} x_{1}=0, \tag{2.13}\\
\vec{j}=u^{2} \vec{\nabla} S . \tag{2.14}
\end{gather*}
$$

Note that eq.(2.13) is a reault of equality to sero of the imaginary part of the wave equation in the case of the real potential. This means that the current is conserved if an aboorption along the palh ia abeent.

A simple way to decouple eqs.(2.4) and (2.5) is to assurre the imaginary part of a potential being small es compared with ite real part $|W|<|V|$. Then, we can suppose that $x_{1} \simeq 0$ (see eq.(2.13)), and instead of eqa.(2.4)-(2.6) we oblsin the following oet of equations:

$$
\begin{align*}
& \left(\vec{\nabla} S_{1}\right)^{2}=k^{2}-U_{e} \tag{2.15}\\
& \vec{\nabla} S_{1} \vec{\nabla} S_{2}=-\frac{1}{2} \omega, \tag{2.16}\\
& \vec{\nabla} \vec{j}=u^{2} \omega e^{-2 S_{2}} . \tag{2.17}
\end{align*}
$$

In the case of basic conditions of HEA the decomporition of S in amall V_{e} / E can be realized from eq.(2.15). Thus,

$$
\begin{equation*}
S_{1} \simeq S_{0}+\int_{\overrightarrow{F_{0}}}^{\vec{r}}\left[k-\frac{1}{2 k} U_{c}(\vec{r}-\hat{k} s)\right] d s=\vec{k} \vec{r}-\frac{1}{2 k} \int_{\hat{\vec{r}}}^{\vec{r}} U_{c}(\vec{r}-\hat{k} s) d s, \tag{2.18}
\end{equation*}
$$

where $\hat{k}=\vec{k} / k$ and $S_{0}=\vec{k} \vec{r}_{0}$ is determined in the asymptotics so that to compensate the contribution of the constant $-\vec{k} \vec{r}_{0}\left(r_{0} \rightarrow \infty\right)$, and integration runs aloug the trajectory of motion. Substituting the solution (2.18) into (2.16), one gets:

$$
\begin{equation*}
S_{2} \simeq-\frac{1}{2 k} \int_{\hat{\vec{r}}}^{\vec{j}} \cdot \omega(\vec{r}-\hat{i} s) d s \tag{2.19}
\end{equation*}
$$

Now let us obtain the amplitude u of the wave function (2.3). For this aim we use the law (2.17) of changing the current:

$$
\begin{equation*}
\vec{\nabla}_{u^{2}} \overrightarrow{\mathrm{~K}}^{\prime} e^{-2 S_{3}}=\omega u^{2} e-2 S_{2}, \tag{2.20}
\end{equation*}
$$

where $\vec{K}=\vec{S}_{\mathrm{l}}$ is the local momentum at the point $\overrightarrow{\mathrm{r}}$. We consider the change of a flux moving from $-\infty$ to the center of acatcering. In our case of HEA we can select for the path of motion a straight line along the oz-axio with an impact parameter ρ. Then we use the GauspOstrogradsky theoreni for a transformation of (2.20):

$$
\begin{equation*}
\int_{(S)} u^{2}(\vec{K} \tilde{r}) e^{-2 S_{s}} d s=\int_{(V)} u^{2} \omega e^{-2 S_{2}} d V, \tag{2.21}
\end{equation*}
$$

where integration in the left- and the right-hand inde of eq.(2.21) in done over the auriace and volume of a tube of the flux, respectively, and \vec{n} is the normal vector to the auriace of the tube. One can note that everywhere along the straight line we have $\vec{\rho} \perp \vec{K}$. Therefore a contribution to the left integral occurs only from the left D_{0} and the right D siden of the current tutre, where $\ddot{K} \ddot{n}= \pm 1$. In the right integral of (2.21) we write the volume element using the average surfaces of the sides D_{0} and D, that in $d V=\langle D\rangle d_{2}=\left[\left(D_{0}+D\right) / 2\right] d z$. Thus, we get:

$$
\begin{equation*}
-u_{0}^{2} e^{-2 S_{2}(-\infty)} D_{0} k+u^{2} D e^{-2 S_{2}} K=\int_{-\infty}^{\pi} u^{2} w e^{-2 S_{3}} \frac{D_{0}+D}{2} d x \tag{2.22}
\end{equation*}
$$

The relation of D_{0} / D can be obtained by using the momentum conervation law

$$
\begin{equation*}
\rho_{0} k=\rho K \simeq \rho k\left(1-\frac{V_{e}}{2 E}\right), \tag{2.23}
\end{equation*}
$$

fron: which it follows that

$$
\begin{gather*}
d \rho_{0}=\left(1-\frac{V_{e}}{2 E} x\right) d \rho, \quad x=1+\frac{p}{V_{e}} \frac{\partial V_{e}}{\partial \rho} \tag{2.24}\\
D_{0} / D=\rho_{0} d \rho_{0} d \varphi / \rho d \rho d \varphi \simeq 1-\frac{V_{e}}{2 E}(1+x) \tag{2.25}\\
\frac{D_{0}+D}{2}=D\left[1-\frac{V_{e}}{4 E}(1+x)\right]=D t \tag{2.26}
\end{gather*}
$$

Denoting $Y=u^{2} D e^{-25} K$, we rewrite (2.22) in the form

$$
\begin{equation*}
-Y(-\infty)+Y=\int_{-\infty}^{s} \omega \frac{l}{K} Y d z \tag{2.27}
\end{equation*}
$$

Solving equation with the boundary conditione $u_{0}^{2}=1, e^{-2 S_{1}(-\infty)}=1$ and taling account of $l / K \simeq 1 / k$, we have

$$
\begin{equation*}
Y(z)=Y(-\infty) \exp \left(\frac{1}{k} \int_{-\infty}^{:} \omega d z\right) \tag{2.28}
\end{equation*}
$$

from which there follows the final result:

$$
\begin{equation*}
u=1-\frac{V_{c}}{4 E} x \tag{2.29}
\end{equation*}
$$

Thum, gathering together eqg. (2.3), (2.18),(2.19) and (2.29), we can write the three-dimensional quani-clanical wave function in the cane of acattering in the field of a nuclear optical potential as follows:

$$
\begin{equation*}
=\left(1-\frac{V}{4 E}\right) \exp \left\{i \vec{k} \vec{r}-\frac{i}{2 k} \int_{0}^{\infty} U(\vec{r}-\hat{k} s) d s+\frac{1}{2 k} \int_{0}^{\infty} \omega(\vec{r}-\hat{k} s) d s\right\} \tag{2.30}
\end{equation*}
$$

Now one can wrike down the in and out three-dimencional quasi-classical wave functions in the high-energy approximation, using the time reverse relation:

$$
\begin{equation*}
\Psi^{(-)^{*}}(\vec{r}, \vec{k})=\Psi^{(+)}(\vec{r},-\vec{k}) \tag{2.31}
\end{equation*}
$$

This permile as to write distorted waves in the form

$$
\begin{align*}
& \Psi_{k_{i}}^{(+)}=\exp \left[i \vec{k}_{i} \vec{r}_{i}-\frac{i}{\hbar v_{i}} \int_{-\infty}^{0} V(\vec{r}+\hat{k} s) d s+\frac{1}{\hbar v_{i}} \int_{-\infty}^{0} W\left(\vec{r}+\hat{k}_{s}\right) d s\right] \tag{2.32}\\
& \Psi_{k_{r}}^{(-)}=\exp \left[-i \vec{k}_{f} \vec{r}_{f}-\frac{i}{\hbar v_{f}} \int_{0}^{\infty} V\left(\vec{r}+\hat{k}_{s}\right) d s+\frac{1}{\hbar v_{j}} \int_{0}^{\infty} W\left(\vec{r}+\hat{k}_{s}\right) d s\right], \tag{2.33}
\end{align*}
$$

We omit here the index e in the real part of a potential, having in mind that this potential is selected specially for quasi-clasical calculations. Then, we omit also the preexponential functions because of their small contribution in the case of nuclear collisions, for which we intend to apply this method. It is interesting to note that according to (2.31), the $\boldsymbol{\Psi}^{(-)}$-function iteelf has an opposite sign of the imaginary part of the complex potential, as compared with the one in $\Psi^{(+)}$, which means the increase in the flux when going back to the scattering center.

Usually, these expressions for $\Psi^{(\pm)}$are obtained using the prescription, when in quasiclassical weve functions for the real potential the latter is changed to the complex one, and the amplitude pre-exponential factor is taken to be unity. However, we see chat, first, the form of eq.(2.30) in night if the aboorption term of a potential W is amall as compared with its real part V_{e}. Then, in (2.30) one should use an effective real part of the potential, indused by the imaginary part of the initiad polential. In the general case the action function has to be obtained by eolving the coupled channel equations (2.4), (2.5) and the dependence of S on V and W will be non-linear (see, e.g. [7]).Thus, we conclude that the potentiale usually used in quasi-classical scathering on nuclei should not coincide with those in the initial wave equation. By the way, this fact hat no serious meaning, if the V_{z}-potentials is calculated directly from the
scattering data in the framework of quasi-clessics. Then, these effective potentials will also be appropriate in calculating other processes, if one uses the corresponding quasi-classical distorted waves. Second, the pre-exponential factor in (2.30) makes emall alternatione in the final resulta and can be omitted in nuclear acattering, where we have to use the phenomenological effective potential. But in those casen, where exact real potentials can be introduced, e.g. the Coulomb potentials of nuclei, this factor is necessary to take into account. In [8] thin factor was introduced in a pheuomenotogical way for discribing the electron ecattering on nuclei, where it makes correction to form factors sometimes about 30% of their value.

3 Distorted Trajectory Approximation

The HEA-calculations usually start with expressions for wave functions in typical forms (2.32), (2.33), where integration is supposed to run along the struight line t.ajectories, parallel to the momentum of a particle in asymptotics $\vec{k}(\| \hat{x})$. However this latter suggestion docen't follow automatically from the basic condition $E>V$ of HEA. Indeed, one can learn from mechanics that in this case trajectories deflect near the scattering center by anglea of the order V / E. Thin means that in the phase (2.18) the correction appears of the order $k(V / E)$ to the momentum of a particle near the most important print of contribution \vec{r}. This additional term is comparable in magnitude with the same order terms ($h v)^{-1} \int V d s$, which present in (2.32), (2.33) as a reault of an expansion of S in V / E in (2.18). The moet distorted trajectory goes through the so-called external turning point $\$$ of the closeat approsch of scattered particles. At this point the trajectory is parallel to the local momentum $\vec{k}_{\vec{k}}$, directed at the angle $\theta_{c} / 2$ with reapect to \vec{k} in the asymptotics. Here $\theta_{c} \simeq|V| / E$ is the corresponding deflection angle in asymptotics at the end of motion. Then we can wrile

$$
\begin{equation*}
\vec{k}_{s}=\vec{k}-\vec{g}_{c} / 2 \tag{3.1}
\end{equation*}
$$

where \vec{q}_{c} representa the momentum transfer in the classical motion. The quantity $k_{\mathbf{R}}$ is obtained from the conservation law of angular momentum:

$$
\begin{equation*}
\rho k \simeq 9 k_{k_{n}} \tag{3.2}
\end{equation*}
$$

where $\rho \simeq \mathfrak{F} \operatorname{coe}\left(\theta_{c} / 2\right)$ is the impact parameter. So, we have

$$
\begin{equation*}
k_{R}=k \cos \left(\theta_{c} / 2\right), \quad q_{c} / 2 \simeq k \sin \left(\theta_{c} / 2\right) \tag{3.3}
\end{equation*}
$$

Now, simplifying the problem, we selert a new path of integration along the straight line parallel to the momentum \vec{k}_{f}. Then, eq. (2.18) bas to be rewritten in the following form:

$$
\begin{equation*}
S_{1}=S_{0}+\vec{k}_{x_{r}} \vec{r}-\vec{k} \vec{r}_{0}-\frac{1}{\hbar v} \int_{\vec{r}_{0}}^{\dot{r}} V\left(\vec{r}-\widehat{k}_{\overrightarrow{2}} s\right) d s \tag{3.4}
\end{equation*}
$$

Now we ahow that the effect of the trajectory diatortion can be neglected in the last term of (3.4) containing the integral of V. For this aim we take into account that the main contribution to the integral comes from the upper limit at the point of the cloeest approach $\bar{r} \sim \boldsymbol{B}$. Aloo, in
the case of small classical angles we can use the small parameter $q_{c} / k \simeq V / E \ll 1$ in further expansions:

$$
\begin{gather*}
\hat{k}_{R}=\frac{\vec{k}}{\sqrt{k^{2}+q_{c}^{2}}}-\frac{\vec{q}_{c} / 2}{\sqrt{k^{2}+q_{c}^{2}}} \simeq \hat{k}-\frac{q_{c}}{2 k} \widehat{q}_{c} \tag{3.5}\\
V\left(\vec{r}-\hat{k}_{\mathrm{z}} s\right) \simeq V(\vec{R})+\frac{q_{c}}{2 k} \vec{\nabla}_{R} V \hat{q}_{c} s=V(\vec{R})+\frac{q_{c}}{2 k} \frac{d V}{d R} \hat{R}_{\hat{q}_{c}} s \tag{3.6}
\end{gather*}
$$

where we denote $\vec{R}=\vec{r}-\hat{k} s, \hat{R}=\vec{R} / \boldsymbol{R}, \hat{q}_{c}=\vec{q}_{c} / q_{c}$. Note that near the point $\vec{r} \sim \vec{R}$ we have $s / R \ll 1$ and $\vec{r} \perp \widehat{k}$, which permits us to write $\widehat{R} \hat{q}_{c} \simeq 1$ and $R^{2} \simeq r^{2}+s^{2}$. Then, substituting $d V / d R=(d V / d s)(R / s)$ into (3.6), we oblain from eq.(3.4) in the region of the ciosesl-approach

$$
\begin{equation*}
\int_{\vec{r}_{0}}^{\dot{r}} V\left(\vec{r}-\widehat{k}_{s}\right) d s \simeq \int_{\vec{r}_{0}}^{\dot{r}} V\left(\vec{r}-\hat{k}^{\prime} s\right) d s+\frac{q_{c}}{2 k} r V(r) . \tag{3.7}
\end{equation*}
$$

It is clear that the last term here can be neglected, since $q_{c} \simeq k(V / E)$ and its total contribution is of an otder of $(V / E)^{2}$.

Now, using eqs.(2.3),(2.10),(3.4) and (3.7), we can write the in and out QC-wave functions is the high-energy approximation with the trajectory distortion included. For this aim we direct the $0 x$-axis parallej to these momenta, and change variables $\vec{r}=\vec{\rho}+\vec{z}, \quad s=z-\lambda$, where $\vec{\rho} \perp \vec{x}$. Thus, we can write

$$
\begin{align*}
& \Psi_{h_{i}}^{(+)}=\exp \left[i S_{0}^{i}+i\left(\vec{k}_{i}-\frac{\vec{q}_{a}}{2}\right) \vec{r}_{i}-\frac{i}{\hbar v_{i}} \int_{-\infty}^{s_{i}} V\left(\sqrt{\rho_{i}^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v_{i}} \int_{-\infty}^{x_{i}} W\left(\sqrt{\rho_{i}^{2}+\lambda^{2}}\right) d \lambda\right], \tag{3.8}\\
& \Psi_{k_{j}}^{(-)}=\exp \left[i S_{0}^{\prime}-i\left(\vec{k}_{f}+\frac{\vec{q}_{c f}}{2}\right) F_{f}-\frac{i}{\hbar v_{j}} \int_{i_{f}}^{\infty} V\left(\sqrt{\rho_{f}^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v_{f}} \int_{i_{t}}^{\infty} W\left(\sqrt{\rho_{f}^{2}+\lambda^{2}}\right) d \lambda\right] . \tag{3.9}
\end{align*}
$$

For a Coulomb fiek these integrals will give the logarithmic contribution $-\eta \ln 2 k z_{0}$ at large z_{0}, where $\eta=Z_{1} Z_{2} e^{2} / \mathrm{hv}$. Therefore it is convenient to select the constant

$$
\begin{equation*}
S_{0}=\eta \ln 2 k z_{0} \quad \text { at } \quad z_{0} \rightarrow \infty, \tag{3.10}
\end{equation*}
$$

so that to have the usual plane waves in the asymptotics. One should remind that if necesary one can include in (3.8), (3.9) the flux factor ($1-V / 4 E$), as it was done in (2.30). Note that QC-distorted waves in the form (3.8),(3.9) are inherent in the heavy ion collisions, where the classical deflection angle θ_{c} is really observed in experimental data as the so-called limited angle of a Coulomb deflection. In principle, other trajectories for which $\theta<\theta_{c}$ should be also taken into account. Moreover, the incident particle can deflect at the aame classical angle $\boldsymbol{\theta}_{c}$, correaponding to the "nuclear" trajectory of motion with the radius of the closest approach $\left\{_{N}\right.$, amaller than the $\$$, inherent in a limited Coulomb trajectory. However, it is clear, first, that contributions of these "nuclear" trajectories seem to be negligible because of the strong nuclear absorption in this region. Second, the probability to find a particle out of any clasacal trajectory is a quantum effect and in quasi-clasaical conditions thie probability has to be exponentially small. Thus, usually these comparably small effecis cannot be important in the claseical region of motion at $\theta<\theta_{c}$. The only place where they give the main effect is the region out of the limited trajectory, inherer: in the given potential of ecattering, i.e. at angles $\theta>\theta_{c}$.

4 Transition Matrix Elements in Quasi-Elastic Approximation

Based on the QC-distorted waves (3.8),(3.9) we show how ope can calculate typical matrix elements of the nuclear acatiering processea and direct reactions having the following form:

$$
\begin{gather*}
t=\int d \vec{r} \Psi_{k j}^{(-)} \hat{O}(\vec{r}) \Psi_{i_{i}}^{(+)}=\int d \vec{r} \hat{O}(\vec{r}) \exp \{i \Phi(\vec{r})\}, \tag{4.1}\\
\tilde{\Phi}=\vec{q}_{e f} \vec{r}+\Phi(\vec{r}), \quad \Phi=\Phi_{i}^{(+)}+\Phi_{j}^{(-)}, \quad \Phi^{(\pm)}=\Phi_{N}^{(\pm)}+\Phi_{C}^{(\pm)} . \tag{4.2}
\end{gather*}
$$

Here the nuclear and the Coulomb parta of the whole phase are:

$$
\begin{equation*}
\Phi_{N}^{(\pm)}=-\frac{1}{\hbar v} \int_{\mp 2}^{\infty} V_{N}\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda, \quad \Phi_{C}^{(\pm)}=\eta \ln 2 k z_{0}-\frac{1}{\hbar v} \int_{\mp 2}^{\infty} V_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda, \tag{4.3}
\end{equation*}
$$

where $k z_{0} \rightarrow \infty$, the effective momentum transfer $\vec{q}_{c f}=\vec{q}-\overrightarrow{q_{c}}$ with $\vec{q} \| \vec{q}_{c}, g_{e f}=2 k\left(\alpha-\alpha_{c}\right)$, $\alpha=\sin (\theta / 2)$, and $\alpha_{c} \simeq V\left(R_{1}\right) / 2 E$, taken at the radius R_{1} of the limited trajectory of motion. In IIEA it is natural to use the quati-eisetic approximation worling well when the energy loen is very small, as compared with the collinion energy, so one can take $E_{i} \simeq E_{f}$ and $k_{i} \simeq k_{f}$.

We write the transition operator in the general form:

$$
\begin{equation*}
O(\vec{r})=P(r) f^{(l)}(r) Y_{L O}(\hat{r}) \tag{4.4}
\end{equation*}
$$

with the typical Fermi-like functions usually used in many practical calculations

$$
\begin{equation*}
f(r)=\left(1+\exp \frac{r-R}{a}\right)^{-1}, \quad f^{(l)}(r)=\frac{d^{d} f}{d R^{d}}, \quad l=1,2,3 \ldots, \tag{4.5}
\end{equation*}
$$

where R and a correspond to the radius and the "surface thickness" of an interaction. For example, in the case of elastic scattering we have $[3,9] L=0, l=0, P(r)=1$; for inelastic scattering with the collective state excitations there are various combinations of $L=$ $0,2,3,4, l=1,2, P(r)=1,1 / r$; for direct one nucleon tranefer reactions one may use $L \geq 1, l=1, P(r)=1 / r$. Thus, we consider the typical form:

$$
\begin{equation*}
t=\int d \vec{r} P(r) f^{(i)}(r) \exp \{i \tilde{\Phi}(\tilde{r})\} Y_{L 0}(\tilde{r}), \tag{4.6}
\end{equation*}
$$

and first calculate the QC-phases (4.3). For this aim we take into account that the highenergy scattering ie mainly sensitive to the internal and surface region of interaction, the fact, which permits us to use simplified potentials in (4.3). Namely, ingiead of the nuelear WoodrSaxon potential we take its expansion [10] in the diffuseness parameter a, and for the Coulomb potential we use only its inside-of- R expreasion:

$$
\begin{gather*}
V_{N} \Rightarrow \tilde{V}_{N}=V_{0}\left\{\Theta(R-r)-\frac{\pi^{2}}{6} a^{2} \delta^{(1)}(r-R)-\ldots\right\} \tag{4.7}\\
V_{C} \Rightarrow \tilde{V}_{C}=\frac{1}{2} V_{B}\left(3-\frac{r^{2}}{R_{C}^{2}}\right)_{2} \cdot V_{B}=\frac{Z_{1} Z_{2} e^{2}}{R c} \tag{4.8}
\end{gather*}
$$

Subatituting (4.7) into (4.3) and exparding, in ρ / R_{V}, the result of integration of \hat{V}_{N} we get:

$$
\begin{gather*}
\Phi_{V}^{(\pm)}=-B^{v}\left\{\sqrt{R_{V}^{2}-\rho^{2}} \pm z \Theta\left(\sqrt{R_{V}^{2}-\rho^{2}}-z\right)+\frac{\pi^{2}}{6} \frac{a_{v}^{2} \rho^{2}}{\left(R_{V}^{2}-\rho^{2}\right)^{3 / 2}}\left[1+\Theta\left(z-\sqrt{R_{V}^{2}-\rho^{2}}\right)\right]\right\} \simeq \\
\simeq-B^{V}\left[R_{V} \pm z-\frac{\rho^{2}}{2 d \overline{R_{V}}}\left(1+3.29 \frac{a_{v}^{2}}{R_{V}^{2}}\right)-2.46 R_{V} \frac{a_{v}^{2}}{R_{V}^{2}}\left(\frac{\rho}{R_{V}}\right)^{4}\right], \quad B^{V}=\frac{V_{0}}{\hbar v} . \tag{4.9}
\end{gather*}
$$

Neglecting terms with $\left(a / R_{V}\right)^{2}$ which are usually small in abmolute values, we obtain:

$$
\begin{equation*}
\Phi_{V}^{(\pm)}=-B^{V}\left[R-\frac{\rho^{2}}{2 d R_{V}} \pm z\right] . \tag{4.10}
\end{equation*}
$$

Here the large dirneusionlesm parameter $d(>1)$ is introduced to fit the mentioned expansion $1-\rho^{2} / 2 d R_{V}^{2}$ to the initial expression $\sqrt{1-\rho^{2} / R_{V}^{2}}$ in the most important region near the radius interaction.

As to the Coulomb phase we follow the prescription of ref.[4], supposing

$$
\begin{equation*}
\eta \ln 2 k z_{0}=\frac{1}{\hbar v} \int_{0}^{\infty} V_{C}(\lambda) d \lambda, \text { at } \quad k z_{0} \rightarrow \infty \tag{4.11}
\end{equation*}
$$

with V_{C}, the exact Coulomb field of the spread nuckear cbarge. Indeed, in the lower limit integral (4.11) has to be zero (since V_{C} at small r looks like (4.8)), and at large λ we have the true logarithmic behaviour. Then, subotituting (4.11) into (4.3), we obtain:

$$
\begin{equation*}
\Phi_{C}^{(\pm)}=\frac{1}{\hbar v} \int_{0}^{\infty} V_{C}(\lambda) d \lambda-\frac{1}{\hbar v} \int_{\mp z}^{\infty} V_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda=-\frac{1}{\hbar_{21}} \int_{\mp z}^{0} V_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda+\delta \Phi_{C}^{(\pm)}, \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \Phi_{C}^{(\pm)}=\frac{1}{\hbar v} \int_{0}^{\infty}\left[V_{C}(\lambda)-V_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right)\right] d \lambda . \tag{4.13}
\end{equation*}
$$

To calculate (4.13), we expand $V C\left(\sqrt{\rho^{2}+\lambda^{3}}\right)$ in powers of small ρ,

$$
\begin{equation*}
V_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right)=V_{C}(\lambda)+\frac{\rho^{2}}{2 \lambda} \frac{\partial V_{C}}{\partial \lambda}+\ldots \tag{4.14}
\end{equation*}
$$

and use the estimation from [4]:

$$
\begin{equation*}
\delta \Phi_{C}=\frac{\rho^{2}}{2 \hbar \nu} \int_{0}^{\infty} \frac{1}{\lambda} \frac{\partial V_{C}}{\partial \lambda} d \lambda \simeq \eta \frac{\rho^{2}}{8}\left\langle\frac{1}{r^{2}}\right\rangle . \tag{4.15}
\end{equation*}
$$

Bearing in mind the amallness of ρ / R, we neglect thin term in the first stage. Thus,

$$
\begin{equation*}
\Phi_{C}^{(\pm)}=-\frac{1}{\hbar v} \int_{\mp 2}^{0} \tilde{V}_{C}\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda=\mp B^{C}\left(3-\frac{\rho^{2}}{R_{C}^{2}}\right) z \pm B^{c} \frac{z^{3}}{3 R_{C}^{2}}, \quad B^{C}=\frac{V_{B}}{\hbar v} . \tag{4.16}
\end{equation*}
$$

Then inserting relations $z=(\vec{k} \vec{r}) / k$ and $\rho^{2}=r^{2}-(\vec{k} \vec{r})^{2} / k^{2}$ in (4.10) and (4.16) we obtain the whole phase in (4.2):

$$
\begin{equation*}
\tilde{\Phi}=\vec{g}_{f f} \vec{r}+2 a_{0}+\frac{a_{1}}{k}\left(\vec{k}_{i}-\vec{k}_{f}\right) \vec{r}+\frac{a_{2}}{k^{2}}\left[\left(\vec{k}_{i} \vec{r}\right)^{2}+\left(\vec{k}_{f} \vec{r}\right)^{2}\right]+\frac{a_{3}}{k^{3}}\left[\left(\vec{k}_{i} \vec{r}\right)^{3}-\left(\vec{k}_{f} \vec{r}\right)^{3}\right], \tag{4.17}
\end{equation*}
$$

where a_{n} are the known functions of r and parameters of potentiak:

$$
\begin{equation*}
a_{0}=-B^{v} R_{V}+\frac{B^{v} r^{2}}{2 d R_{V}}, \quad a_{1}=-\left(B^{\nu}+3 B^{C}\right)+\frac{B^{c} r^{2}}{R_{C}^{2}}, \quad a_{2}=-\frac{B^{V}}{2 d R_{V}^{2}}, \quad a_{3}=-\frac{2 B^{C}}{3 R_{C}^{2}} . \tag{4.18}
\end{equation*}
$$

Selecting axes $o z \| \vec{g}$ and $o x \| \vec{R}=\overrightarrow{k_{i}}+\overrightarrow{k_{f}}$, we oblain the scalar products in (4.17)

$$
\begin{equation*}
\vec{k}_{(g)} \vec{r}=k r\left(\pm \alpha \mu+\sqrt{1-\alpha^{2}} \sqrt{1-\mu^{2}} \cos \bar{\varphi}\right), \tag{4.19}
\end{equation*}
$$

where $\mu=\cos \dot{\theta}$, and $\bar{\theta}, \bar{\varphi}$ are the angles of $\overrightarrow{\mathrm{F}}$ in a spherical coordinate aystem. So,

$$
\begin{equation*}
\dot{\Phi}=2 a_{0}+\bar{\beta} \mu+n_{1} \mu^{2}+c_{1} \mu^{3}+n_{2}\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi}+c_{2} \mu\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi} \tag{4.20}
\end{equation*}
$$

with $\tilde{\beta}, c$ and n expresed through a_{n}, giving the forms:

$$
\begin{array}{cc}
\tilde{\theta}=\tilde{q} r=q_{C f} r+2 k_{\delta} \alpha r, & k_{\delta}=-\left[B^{V}+B^{C}\left(3-\frac{r^{2}}{R_{C}^{2}}\right)\right], \\
n_{1}=-\frac{B^{V}}{d R_{V}}(\alpha r)^{2}, & n_{2}=-\frac{B^{V}}{d R_{V}}\left(1-\alpha^{2}\right) r^{2}, \tag{4.21}\\
c_{1}=-\frac{4 B^{C}}{3 R_{C}^{2}}(\alpha r)^{3}, & c_{2}=-\frac{4 B^{C}}{R_{C}^{2}}\left(1-\alpha^{2}\right) \alpha r^{3} .
\end{array}
$$

Now one can see that integrand (4.6) contains, in the exponent, a typical power dependence on the variables r and μ with a large argument $q_{e f} r$. Keeping in mind that $d \vec{r}=-r^{2} d r d \mu d \bar{\varphi}$, we integrate in (4.6) over $d \mu$ by parta, retaining only the lower order terna in $1 / g_{e f} R$:

$$
\begin{align*}
I & =\int_{-1}^{+1} d \mu \exp [i \dot{\Phi}(r, \mu, \bar{\phi})] Y_{L}(\mu) \simeq-\left.i \frac{\exp (i \tilde{\Phi})}{\partial \tilde{\Phi} / \partial_{\mu}} Y_{L D}(\mu)\right|_{-1} ^{+1}= \\
& =-i \exp \left(2 i \hat{a}_{0}+i n_{1}\right)\left[\kappa^{(+)}(r, \bar{\varphi})-(-1)^{L} \Gamma^{(-)}(r, \bar{\varphi})\right] Y_{L 0}(1) \tag{4.22}
\end{align*}
$$

where

$$
\begin{equation*}
I^{(\pm)}=\frac{\exp \left[\pm i\left(\tilde{\beta}+c_{1}\right)\right]}{\Delta_{(\pm)} \mp \delta_{(\pm)} \cos ^{2} \bar{\varphi}^{\prime}}, \quad \Delta_{(\pm)}=\tilde{\beta}+3 c_{1} \pm 2 n_{1}, \quad \delta_{(\pm)}=2\left(n_{2} \pm c_{2}\right) . \tag{4.23}
\end{equation*}
$$

Then, the integration over $d \bar{\varphi}$ can be performed with the help of a table integral:

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d x}{a^{2}+\left(b^{2}-a^{2}\right) \cos ^{2} x}=\frac{2 \pi}{a b} \tag{4.24}
\end{equation*}
$$

Thus, eq.(4.6) is transformed to the one-dimensional integral:

$$
\begin{equation*}
t=\int_{0}^{\infty} d r P(r) f^{(l)}(r)\left\{F^{(+)}(r)-(-1)^{\left.L^{(}-2\right)}(r)\right\} Y_{L 0}(1) \tag{4.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.F^{(\pm)}(r)=\frac{r}{\tilde{\tilde{q}}(\pm)} e^{e^{\left(2 e_{n}+n_{1}\right)} e^{ \pm\left(\tilde{r}+c_{1}\right)},} \quad L \pm\right)=\frac{1}{\tilde{\tilde{\beta}}} \sqrt{\Delta_{(\pm)}\left(\Delta_{(\pm 1} \mp \delta_{(\pm)}\right)} . \tag{4.26}
\end{equation*}
$$

The root gingularities in the denominator are situated far from the radius of interaction R, namely, at $r_{1}=\frac{1, E}{20} R$ with A_{1}, the atonic number of a projectile, E, the energy in MeV , and R in $f m$. However, at this distances the Fermi-like $f^{(l)}(r)$-functions is the integrand decrease very fast. This forces us to introduce a pressription when the integration in (4.25) should be cut off at distances less than $r_{\text {, }}$. For this aim we use the properties of the functions $f^{(0)}(r)$ on the complex r-plane, where they have poles near the radius of nuclear interaction at $r_{n}^{ \pm}=R \pm i x_{n}$ with $x_{n}=\pi a(2 n+1)$ and $n=0,1,2 \ldots$

For example we consider in some details the case, correaponding to elastic acattering, when $L=0, \mathrm{l}=0, P(r)=1$. (For an exact amplitude of scattering one needs to take $P(r)=$ $-m / 2 \pi \hbar^{2} Y_{00}$). In this case we have the simple poles of $f(r)$ in $r_{n}^{ \pm}$, the integration contour for r_{n}^{+}should be selected in the first quadrant of the complex plane, going along the imaginary axis and then over the circles of an infinite radius. The same contour, but in the fourth quadrant, must be used in the case of r_{n}^{-}. Thus, the result is expressed through a sum of the corrcsponding residues at the above-mentioned poles:

$$
\begin{equation*}
t=-2 \pi i a Y_{00}(1) \sum_{n=0}^{\infty}\left\{F^{(+)}\left(r_{n}^{+}\right)+F^{(-)}\left(r_{n}^{-}\right)\right\} . \tag{4.27}
\end{equation*}
$$

In practice, for the typical nuclear parameters it is usually enough to take into account only a couple of poles at $r_{0}^{ \pm}=R \pm i x_{0}$ nearest to the real axis ("two-pole approximation"), since, in principle, every next pair of poles contributes approximately an order smaller than the previous one. In many cancs the L-function in the denomiaator of $F^{ \pm \pm}$can be presented as $\exp (\mp \kappa)$ with $\kappa \simeq n_{2} /(\bar{\beta} r)$, because other terms in L usually occurr to be negligible. Then, expanding the functions in amall (x_{n} / R)

$$
\begin{equation*}
\bar{q} r=\bar{q} R \pm i \bar{q} x_{n}, \quad \phi=2 a_{0}+n_{1}=\phi(R) \pm i x_{n} \phi_{R}^{\prime}, \quad y=c_{1}-i \kappa=y(R) \pm i x_{n} y_{R}^{\prime}, \tag{4.28}
\end{equation*}
$$

and using the relations

$$
\begin{equation*}
\sum_{n=0}^{\infty} \exp [-(2 n+1) x]=\frac{1}{2 \sinh x} ; \quad \sum_{n=0}^{\infty}(2 n+1) \exp [-(2 n+1) x]=\frac{\operatorname{coth} x}{2 \sinh x}, \tag{4.29}
\end{equation*}
$$

we sum up all the terma in (4.20) to obtain

$$
\begin{equation*}
t \simeq-\frac{i \pi a R}{\tilde{q}} Y_{00}(1)\left(1+i \frac{\pi a}{R}\right) e^{i \phi(R)}\left\{\frac{e^{i(\tilde{\tilde{q}} R+\mu(R))}}{\sinh \left[\pi a\left(\tilde{q}+y_{R}^{\prime}+\phi_{R}^{\prime}\right)\right]}+\xi_{\sin b\left[\pi a\left(\tilde{q}+y_{R}^{\prime}-\phi_{R}^{\prime}\right)\right]}^{\sin }\right\}, \tag{4.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi \simeq\left(1-i \frac{\pi a}{R}\right) /\left(1+i \frac{\pi a}{R}\right) . \tag{4.31}
\end{equation*}
$$

In a qu ditative consideration one can put $\xi \simeq 1$, since the interaction radius R is usually larger than πa. If at the same time $\left(\phi^{\prime} / \pi a\right)<1$, we can bring the $\sinh \left(\pi a q_{e f}\right)$ out of the wave brackets and obtain at large $\pi a g_{e f}$:

$$
\begin{equation*}
t \sim e^{-\pi a k\left(\alpha-a_{\epsilon}\right)} \cos \left(\tilde{q} R+y_{R}^{\prime}\right) \tag{4.32}
\end{equation*}
$$

where $\alpha=\sin (\theta / 2)$. We see that the elantic amplitude t is decreasing with the angle of scattering as an exponential function [11] with a slope determined by the thickness parameter a of a surface of an interaction. Simultaneouly it occilleres with a frequency depending mainly on the radius parameter \boldsymbol{R}. This is a typical behaviour for the so-called Fraunhofer diffraction scattering on nuclei. However, for large ($\phi^{\prime} / \pi a$) only one term of (4.30) gives contribution, and in this case no oacillations will appear. So,

$$
\begin{equation*}
|t|^{2} \sim e^{-2 \pi e k\left(\alpha-\alpha_{c}\right)} \tag{4.33}
\end{equation*}
$$

Under some conditions this lind behaviour is obeerved in the heavy ion elastic acattering at angles θ larger than θ_{c}, the limited deffection angle.

In other cases, when $f^{(l)}(r)$ takes place in the integrand, the pole method can also be applied to obtain simple analytical expressions for the corresponding matrix elements.

5 Conclusion

It is clear that the consideration of high-energy processes in the language of nuclear potentials needs adequate methods of their description. The method developed here takes account of some specific features of nuclear collision procesees including the heavy-ion reactions, as compared with those suggeated for scattering on nuclei of fast electrons [4,5] and protons [12]. The reaults obtained can be summerised as follows:

1. The three-dimensional quasi-classics is adopted for constructing nuclear distorted waves using the high-energy approximation, when the conditions $k \boldsymbol{R}>\boldsymbol{1}, \boldsymbol{E}>|V|, \theta>\theta_{c} \simeq$ $(1 / k R)$, $(|V| / E)$ are fulfiled.
2. The complex nuclear potential is transformed, in the corresponding eikonal-like QCdistorted waves, into an effective potential which may be selected independently of the initial one for the description of experimental data. Then, based on the idea of the distorted wave Born approximation, the obtained distorted waves may be used for further applications in other direct cbannela, e.g., for inelastic scattering and nucleon transfer reactions.
3. An important role is eatablished of a deflection of the trajectory of motion from the straight lines, usually used as paths of integration, and the prescription of introducing the deflection angle θ_{c} is suggested. This effect is most significant in heavy-ion collisions, and can change the corresponding crose ecctions in orders of value.
4. A method is developed for calculations of the matrix elements for typical direct processes jncluding the calculations of $Q C$-phases and integrations over the angular and r-variables in analytic form. This gives a poseibility both for the qualitative analysis of main physical features of processes and the quantitative fit to experimental data.
5. The method can be applied for scattering angles $\theta>\theta_{c}$, forbidden in the clasaical mechanics. Thereforc, in this region all the crose sections fall down with angles as an exponential function having a slope determined by the "diffuseness" parameter of the suriace of an interaction potential.

REFERENCES

1. Ford K.W., Wheeler J.A. // Ann.Phys. 1959. V.7. P.259; Zagrebser V.I. // Ann.Phys. 1990. V.197. P.33.
2. Gleuber R.J. // Lect.in Theor.Phys. (N.Y.) 1959. V.1. P.315.
3. Schiff L.I. // Phyn.Rev, 1956. V.103. P.443.
4. Yennie D.R., Boos F.L., Ravenhall D.C. // Phy.Rev. 1965. V.B137. P.882.
5. Lukyanov V.K., Pol' Yn.S. // Sov.J. Particles Nucl. 1975. V.5. P.385. (in russian Elem.Pari.\& Atomic Nucl. 1974. V5. P.955.)
6. Migdal A.B." // Qualitetive methods in quantum mechanica", M., Science, 1975.
7. Rosen M. //Nucl.Phya. 1962. V:31. P. 664.
8. Saxon D.S., Schiff L.I. // Nuovo Cim. 1957. V.6. P.614.
9. Lukyanov V.K. // Bull.of Ruas.Acad.of Sc., Physics. 1994. V.58. P.6. (in russian Isv. RAN, ser.fiz. 1994. V.58. P.8.)
10. Lukyanov V.K. // Commof JINR (Dubna) 1993. P4-93-300.
11. Lukyanov V.K. // Proc.Int.Schoot-Seminar on HI Phys.(Dubna) 1993. E7-93-274. V.2. P.129; Lukyanov V.K., Gridnev K.A., Embulaev A.V. //Bull. of Rues.Acad. of Sc., Phyica. 1994. V.58. P.19. (in russian Izv. RAN, wer.fis. 1994. V.58. P.23)
12. Pol' Yu.S., Lukyanov V.K., Petkov I.Z. // Acta Phya.Pol. 1968. V.34. P.49.
