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1 In troduc t ion 

The method ia avggeated for calculating both daatic and inelastic scattering of light aad heavy 
ion* on nuclei and for describing ample transfer reaction». For thia aim we construct aocleai 
diatorled wave* using the high-energy approximation (НБЛ) ia qaaaVclaaacal (QC) icattering 
on an optical ( complex ) potential. The method can be applied ander the conditiona kR > 1 
a a d £ > V. Inaec.2, the main attention ia paid to pecaharitiea coming from the imagiaary part 
of a potential. Thna, the so-caled effective potential appear*, inherent in the thtee-dimeaaioaal 
quasi-classical wave function*. Ia principle, it can be parametriaed independently of the primary 
input potential, aad the correapoadjag QC-distorted wave* may be applied then to deacribe 
the nuclear ccttaioa processes in the framework of the distorted wave Bora approximation 
( DWBA ). 

Note that naualy the oac-dimeaaional qaaai rlassiral approxiaaatioa (WKB-metbod) ia aaed 
for calculation* of the partial phases ia considerating the bight- aad heavy ion coKaon* with 
nuclei. In thii caae the rliaairal defection angle tarn» out to be a nicenmy atribate of the QC-
theory (aee, e.g.[l]). Inatead, the three-dimenaional HEA ia adjaated for calculating the hadron-
and efectron-nuclear acattering [2]. In the consideration of the latter ргосепкя the atraight-line 
trajectories a* integration patha are analy aaed. Here we try to join both' theae method*, 
where a simple way i* developed to include a distortion of the atraight Kne trajectories. Thus, 
one can avoid the traditional partial wave decompositions, for which m thia ca*e a very large 
number of term* i* to be included. In principle, that give» u» the possibility to avoid complicated 
numerical calculation* and to obtaia, in the framework of DWBA, analytical expressions for 
qualitative phyaical estimation» and for a quantitative comparisoa with experimental data. 
In aectiona 3-S, the baac formulae are presented for elastic, ia el attic scattering aad traaafer 
reaction*, respectively. Sec.6 summarises the result* of comparison with experimental data and 
the main coacluaoai. 

2 Quaei-claaaica for the Optical Model 
We start with the wave equation with the complex poteatial V included as folows 

Д * + ЛГ3» = 0, J f ' s f - f f , 0 = D + iu,= ^9, V = V + iW. (2.1) 
ft 

It* QC-solatioa ia written in the form 
» = ue**, S = Si + iS2 (2.2) 
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Substituting (2.2) into (2.1), equating the real and imaginary parts to zero separately and 
calculating the current change along a path, one can obtain the following equations 

(tfS,(r))a = k1 - U„ $S,,9S3=*<*, V j = u 2 [ x , - 2 V S 1 ' ? 5 3 ] e - ! 5 ' , (2.1) 

where 
J=u2$S,e-1Sl, 12.41 

V, = U + (VS2)3 + *,, <* = - c + x„ x,i = 2 " ~ ' | 2 + A S i 2 . (2.5) 
и 

In the case of a real potential, when W=0, we have the current connervatton taw V? = nJrt — 0. 
Thus, a simple way to decouple eqs.(2.3) in to assume the imaginary part of a potential Ьгшк 
•mail as compared with iti real part \W\ < |V|. Then, supposing that x. ~ 0, we obtain 

(f Si)J = k? - V„ $StfS2 = - \ш, $] = uV , S l . 12.6) 

In НБА the decomposition of 5 in email V,/E can be reaUzed from eq.(2.6): 

5j = У- ^r IU,(r- h)ds, S2 ~ -^r [щ(г- ks)d>, 127» 

where integration runs along the trajectory of motion. 
From the law of changing the current in (2.6) one can obtain [3] the amplitude u: 

Thus, tbe three-dimennonal QC-wave functioa in * nuclear optical potential ш as follows: 

* = (1 - ^)exp{tfr - ±-jvA?- h)ds + ±fw(f- ks)d,}. (2.9) 
о о 

Here an effective real potential is induced by the imaginary part of the initial potential. By the 
way, this fact has no serious meaning, if Vr is calculated from the scattering data in the frame
work of qaaaiclaasics. Then, these effective potentials will alio be appropriate in calculating 
other processes, if one uses the corresponding QC-distorted waves. 

The НЕЛ-calculationa usually start with expressions for wave functions in a typical form 
(2.9), where integration is supposed to run along the straight hne trajectories parallel to the 
momentum of a particle in the asymptotics £(||o5). However, this latter suggestion doesn't 
follow automatically from tbe basic condition E > V of HEA. Indeed, in this case trajectories 
deflect near the scattering center by angles of the order V/E. This means that in phase (2.7) 
the correction appears of the order k(V/E) to the momentum of a particle. This additional 
term is comparable in magnitude with the same order terms (Ли)-1 J Vds present in (2.9) as 
a result of the decomposition of S in V/E. The most distorted trajectory goes through the 
so-called external turning point Я of the closest approach of scattered particles. At this point 
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the trajectory ia parallel to the local momentum Jc*> directed at the angle 0c/2 with reapect to 
к in the asymptotic*. Here вс = max(|V(Jt)|/£) ia the corresponding deflection angle. Then 

& = £ - £ / 2 , ?с/2=г*еш(0с/2), (2.10) 

where qc represents the momeatum transfer in the classical motion. Now, simplifying the 
problem, we select a new path of integration aloag the straight line parallel to the momentum 
£». Then, eq.(2.9) has to be rewritten in terms of it» instead of k. It is possible to show that 
the effect of the trajectory distortion caa be neglected ia the last terms of (2.9) containing the 
integrals of V and W, since the total contribution of the corresponding terms appeared ia of an 
order of (V/Ef. Thus, for the integrals in (2.9) we may use as an integration path the straight 
line along the momenta in the asymptotics. Thea, changing variables r = p + z, $ + x = A, 
where p±z, and aaiag the Wigner time reverse relation we write distorted waves in tbe form: 

*£> = exp{.(£ - Ц)?. --L-j V[y/pj+V)d\ + ±f W(ylfi + \*)d\}, (2.11) 
—r» — oo 

enj OO 

¥jf = exp{-,(£, + Ц)?з -£-J V(ylp) + >?)d\ + ±-j W(J(?i + \*)d\}, (2.12) 
•i «/ 

One should remind that if necessary, one cati iaclade here the flax factor (1 — V/4E). Note that 
these QC-diatorted waves are inherent in tbe heavy ion coDiaioaa, where the rlisairil deflection 
angle вс ia realy observed in experimental data as the ao-caled limited angle of the Coulomb 
deflection. In principle, other trajectories for which в <вс should be also taken into account. 
Moreover, tbe incident particle can deflect at the same classical angle вс corresponding to the 
"nuclear" trajectory of motion with tbe radian of the closest approach Kn smaller than the 
St. However, first, contributions of theae "nuclear" trajectories seem to be negligible because 
of the strong nuclear absorption in this region. Second, the probability to find a particle out 
of any classical trajectory ia a quantum effect and in quasi rlassiral conditions this probability 
has to be exponentially small. Thus, these comparably amal eflects cannot be important in 
the classical region of motion, i.e. at 9 < вс. The only place where they give the main elect is 
the region out of the limited trajectory at в > вс. 

3 Elastic Scattering 
Now we consider the heavy ion elastic scattering at energies larger than several doaen hleV per 
nucleoli so that the QC- and HEA-condrtioaa are fulfilled. As the «lactic scattering amplitude 
we use the expression obtained in [3] for large angles в > (1/kR) and в > вс к (\V\/E) which 
cover in practice a wide region of scattering angle* 

7" = " ^ / o V l M * V l £ > = - ^ / * ™ ( ^ + Vc)<M&+ *(*=» (3.1) 

with 

ф = Ф$+) + »(,-,
> *w = ~fv(y/? + >?)d\. (3.2) 
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Here the potentials: 
Vs = V + iW = Vofv(r) + iW,fw(r), (3.3) 

Vc--RTjyrs\' *-*«'> <34> 
with the charge density diatribatioa pe(r) aad the effective momeatam transfer q = q-qi, 
where fl|& j = 2*(e - «e), « = sia(0/2), aad orc s ^[V(A) + Vc(ft) + ДС(Я,)], takea 
at the radiaa of the closest approach Я, of tbe exteraal limited trajectory of motion. All the 
diatribntioa faactioaa are tabea in the form of the FermHuactioB 

Thiu, the acatteriag ampatade consist* of three terma: 

T* = T$ + iT£ + Tg. (3.6) 

Substituting (3.4) into Tc we obtain the 6-dimenak»al integral. It caa be transformed to the 
3-dmMaaioaaI if oae expaada the phaae Ф in u = f - 1 aad then iategratea over du 

Т* = ~ш1 Л-М«»ЯФ,+*CW. »'(r) = ̂ p ^ A M . (3'7) 

where q, a q, and vc(r) play» a role of the qaaat-poteatial of acatteriag on a spread charge. 
Now each of the terma of the acatteriag amphlade (3.4) has the same form: 

Tf = -jjfe jW,/,(r)exp{i#f/)}, #(r) = $r+*(f), (3.8) 

wLere Yj> ia the "strength" of the correapoadiag part of the whole potential. 
Beariag ia aaad, that the high-energy acatteriag is mainly aeaaitive to the internal region of 

interaction г < Я, we have made iategratioaa ia the QC-phase* (3.2) with simplined poteatiala, 
substituting into VM, instead of / „ their expansions in the "drfaseneas* q-paramrter [4] and 
using for Vp it* insirlr of-Д expcesaioa: 

Ь - Ч д а < в ( Д . - г ) - ^ , « м ( г - * г ) - 4 ^ c = IV ' ' ( 3-^ ) ( 3 9 ) 

For the same reaaoa we decompose the reaalt of integration of (3.2) ia p/R aad get: 

* = ??+ 2a, + ^-(6 - t » f + jjflfe»» + (i,m + £ [ (*>? - (*»»], (3.10) 

where d, are the Imowa faactioaa of r and parameters of the potentials, obtaiaed as a ramlt of 
iategratioa of (3.2). la principle, they also depend oa the initial aad exit channel indices (i, / ) . 

To calculate the scalar prodacts in (3.10), we select the coordinate system with axes ox\\q 
aad o*||tf = ** + *,. Thea, 

£rnr = кг(±ац + -/r^y/i - 1?аяф), (3.11) 
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«here /л = cos в and в and ф are the angles of vector г- in a spherical coordinate system-
Inserting (3.11) into (3.10), we obtain the whole phase 

* = 2oo + 0Ц + riî i2 + CIM3 + n2(l - AtJ)cosa<p + C2/J(1 - /a3)cos3(p], (3.12) 

where /3, с and n are expressed through a». For example, 

fi = 2k(a-^)r + $, 0 = -±[(VB + iWo) + ?^(3-^)]ar. (3.13) 

We can see that now the integrand (3.8) contains in the exponent a typical power dependence 
on the variables r and ц. Keeping in mind that dr — —^drtipdv, we first integrate in (3.8) 
over dft by parts 

/ = / r f , e x p [ i # ( r „ , ^ = - ^ [ 4 , / d , e x p ( . * ) ^ ^ 1 (3.14) 

neglecting the second term, having the smaUness (fcR)"2. The result is 

/ = -.exptfioo + «,)[!«•) - /<">], /<*> = ^ t f ^ L 
&(±)T*(±)Cos*v> 

(3.15) 

Д(±) = ^ + Зс1±2пь 6i±) = 2{n1±c2). (3.16) 
Then the integration over dp can be performed with the help of a table integral. Thus, we can 
write the amplitude (3.8) in the form of a one-dimensional integral [5]: 

it = ipn//,M{3+)W - fj-'w}*. (з .IT) 
0 

where 

^ ± , ( Г ) = |ЩГ'°"'+ '" >е±' ('Г + Cl)" £ ( ± ) = | \/A*)(4(±)=F *(*,)• (3.18) 

The root singularities in the denominator are situated far from the radius of interaction Я, 
namely, at r, = 4{^Д with Ai, the atomic number of a projectile, and E, the energy in MeV. 
At these distances the f,(r) decreases very fast. , and the previously suggested approximations 
for calculations of phases do not work. This forces us to introduce a prescription when the 
integration in (3.17) should be cut off at distances less than the point r,, that is to exclude the 
increase of an integrand due to the nonphysical singularities. In this way one can suggest the 
method of calculating the integral (3.17) by using the properties of the Fermi- functions (3.5) 
on the complex г-plane. On the other hand, /,(>•) has simple poles in the region of the nuclear 
surface at rj = R±ixn, where za = xa(2n+ 1) with n = 0,1,2.... It is possible to show that 
the integration contour for r+ should be drawn ia the first quadrant of the complex plane, going 
along the imaginary axis and then over the circles of an infinite radius. The same contour, but 
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in the fourth quadrant, mutt be used in the ca*e of r~. Thus, the result is expressed through 
a mm of the corresponding residues at the above-mentioned poles: 

V = -JsY&i'rY.i^tt) + *-Ч'ш)\ (319) 

In practice, for the typical nuclear parameters it is enough to take into account only a couple 
of poles at rj — R± ixa nearest to the real axis ("two-pole approximation"), because every 
next pair contributes approximately an order leas than the previous one. However, in many 
cases the -̂function in the denominator of /**' can be presented as exp(T*) with к rz n^/qr. 
Then, using the decompositions in small x„/R of the following functions 

qr = qR ± iqx„ ф = 23o + n, = ф(Я) ± ххпф'я, у = d - tic = y(R) ± ixny'R, (3.20) 

one can sum up all the terms in (3.19) to obtain 

,ы tamR на ^ л ) / а<.*я+тя)) е-«я+»(л)) 1 
^ " Щ - ^ ' + 'Т* \шЛ[Мя+А+М + f«hM,-+й-4fR)]]' (32I) 

where t ~ (1 - i^f)/(l + t^f), and the parameters a,R,Y have the corresponding index p, 
In the case of nucleus-nucleus scattering the interaction radios R is usually larger than та, 

and we have ( s i . If at the same time ф' <. 1, we can bring the sink out of the wave 
brackets. That, in principle, the amplitude begins to come down with angles a* an exponential 
function with a slope determined by the thickness parameter a of a surface of an interaction. 
Simultaneously it oscillates with a frequency depending mainly on the radius parameter R. 
However, for large ф' only one term of (3.21) is important, and in this case no ocsillations will 
appear in the cross section. 

4 Inelastic Scattering 
For calculating the inelastic scattering of light and heavy ions with excitation of the collective 
nuclear states we have used DWBA with the relative-motion QC-wave functions whose phases 
are calculated as it is shown in sec.3. The energy change in the out-channel is neglected since 
usually £ „ < 1. The transition interaction is constructed as usual with the help of derivatives 
in small qaadnipole and octupole additions SR = R £ <*i.vXuf (r) to the radius of a potential 
in the elastic channel. The result for the amplitade is the same as if one used the sudden 
approximation 

T* = (J,MF\l$ + dA+tg\JM), (4.1) 

where 
ff = " p / «Wtfn *+ SO)*-?*™ (4.2) 

is the operator, depending on the internal nuclear coordinates aLu- Then, substituting (4.2) 
into (4.1) we get 

TJT = £ ( ДО^ДО) *Йг, (4-3) 
LU 
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where 

Transforming tbe structure matrix element in (4.3) through the reduced one and using the 
definition of В J (££}-tranaition, one can write the inelastic cross section: 

da _(2J J + 1) 1 ^BMEL)~ 
5i - (2j ' + l)(2X + l ) -^ D\ ]7Tui ( 4 5 ) 

With f а 
DL=Ziep<,RcJl Jt~Jjjfc*"batag». (4.6) 

One can show that aQ the terms with M ф 0 may be neglected becaase of the additional fast 
oscillations in integrands as compared with the term M = 0. Then, the principal difference of 
the inelastic amplitude from the elastic one appears in integrals over dp, because now in the 
upper and lower hmita /< = ±1 we have to take into account the relation 

У«(-М) = (-1)1;У»(+М), (4.7) 

which changes the sign of the second term in the inelastic analog of eq.(3.15) for odd L. Indeed, 
now we have 

'-/*«**>•—<(itL-H'^fi>m' «•» 
and consequently, using tbe relation dfr/dR = —dfr/dr, we have got, instead of (3.17), '*• 
analog equation for inelastic scattering 

*T - -§ПЫ1)я/* ЩП*Чг)- (-i)l^-'«}- К») 
о 

This integral can be calculated ia analytical form if one uses the second order poles on the 
complez plane of the derivative df/dr. However, we show another way. Indeed, bearing in mind 
that the /^'-functioas rapidly oscillate with increasing г because of the exponent gr > 1, one 
can integrate in (4.9) by parts 

J$#t+~]*№*-«m)- (410) 
о о 

So, substituting (4.10) into (4.9) we get a form nice (3.15) for elastic scattering with some 
additions in the integrand, namely, the factor (1/r) and the multiplier (-1)1- before the second 
term: 

to 
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Subsequent calculation* are tbe same as in the сак of elastic scattering. We give here only 
an approximate expression, an analog of (3.21), when summation of all the poles runs under 
certain suggestions on the QC-phase behaviour. We have 

Ъ*s-WY'Yu{1)e \А4["(?+А+Л)]+ ( _ 1 ) *ЧяЙ+А-«!/' ( 412 ) 

It is easy to see that if the admixture ф' to the distorted QC-phase is negligible, all the de
nominators coincide and for large arguments they give, in the amplitude, a fast decreasing 
function exp(-ira«0) [6]. Simultaneously, the oscillating part of the amplitude as a function of 
the scattering angle is the cos- or n'n-function ia dependence of L-even or odd, respectively. In 
this case the cross section will have visible oscillations which coicide for excitations of the even 
collective states in their phases with the elastic scattering oscillations. In the other case, when 
ф' is large, the only term in (4.12) will contribute to the cross section, so that no oscillations 
will exist, and tbe slope of the cross section will depend mainly on the thickness parameter of 
the interaction potential. 

Б One-nucleon TVanefer Reactions 
For simplicity, we consider the reaction a + Л —• b + В with transfer of a spinless z-particle, 
when the corresponding cross section and the amplitude in the sero-range approximation are 
as follows: 

fT = " S j p / *-1<-)*(г-)*<.+)(г)Я,(г)У,;(г), (5.2) 

where „ _ _ 

depends on the structure of an incident particle, and Si(r) is the radial wave function of 
the z-particle in the final nucleus B. Tbe latter has the asymptotic behaviour exp(-icir)/r. 
We have emphasised that the main effect in heavy ion reactions comes from the region near 
the interaction radius. This means that the behaviour of the function Яг at r < Л is of no 
importance, and one can select it in the form 

*t(r) = — j : — . (5-3) 

where 
sinh£ 1 

'• cosh £ +cosh £ " l + e x p ^ l " ' 

is the symmetrised Fermi-function having the asymptotics exp(—air)/r and going to a constant 
at r = 0; the function (5.3) is normahied to 1, and the "diffuseness" of the transition region is 

to be taken щ = 1/KI, where ж — v/2m,Ej/A3 with ei, the separation energy. 
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Inserting (5.3) into (5.2) we get the amplitude of the typical form inherent in HEA. Moreover, 
here we can uae the quasi-elastic approximation because the loss of energy in the reaction ia 
comparably small and E. ~ £». Thus, the QC-distorted waves are taken in the same elastic 
channel, and the final expression for tnV amplitude is a* follows: 

oo 

ff = ^A,VSa7V»(l)2*. /dr 1-^{f<*4r) - (-)'*<->(r)}. (5.5) 
0 

The only difference here ia that the residues must be taken in the second order poles displayed 
at the same points as in the previous calculation.». So, we write 

Thus, we can conclude that here we also have the general exponential decrease at angles в > 0C, 
depending on the acting thickness щ in the region of the surface of transition [7]. Its magnitude 
is determined by the slope of a "tail" of a bound state function in the final nucleus B. 

6 Conclusion 

Calculations of differential cross sections for elastic and inelastic scattering within the two-pole 
approximation are presented in Figs.la,b in comparison with the experimental data from [в]. 
One can see a rather good agreement in the range of scattering angles в > flc =; 2* in coincidence 
with the initial assumptions of the HEA-method. For each set of coliding nuclei we got the 
same interaction parameters for elastic and inelastic channels excluding the absorption W0 that 
appeared to be about 10*c aa small as that in the elastic channel The depths of potential 
wens are in Emits of V0 = 60 - 70ДГeV and Wt = 5 - HMeV, the B(££)-transition* obtained 
are approximately twice those cited in [8]. The moat interesting result ia that the thickness 
parameters for inelastic channels are about two-three times aa small aa those for elastic channels, 
where we have aw = 0.55 — 0.6/m. This might signify that in colective excitation* of nuclei 
not all the particle state* take part in forming the transition matrix elements. Otherwise, in. 
elastic scattering the "tail" of a potential i* formed from the whole set of one-particle states. 

Figs.2a,b show calculation* and comparisons with data from [9]. The spectroscopic factors 
were taken to equal 1, and the absolute values of theoretical cross sections are presented. The 
thickness parameters here are <H = 0.4/m and or = 0.6/m for the first and the second reactions, 
consequently, they characterise the form factor behaviour in the surface area of interaction. The 
other parameters are V0 = 50Л/eV, We = 31 and 48JV eV. We should note that we use no codes 
for the best fit analysis of data, but we are sure that the basic coacrosioas we have obtained 
will not change. 

We can sumnurise that investigation* of heavy ion collision* in the quantum region of 
scattering angles в > 0ct outside of the limited trajectories of motion, are very sensitive to 
the precise structure of a nudea*->>4cleus interaction. For instance, the slope of curves with в 
fed* the "thickness" of the acting region in the corresponding channel. It may be used also 
for searching the "halo" distributions of nuclei in the radioactive beams which now become 
available. We hope that the HEA-method suggested can be successfully used in both the 
qualitative and quantitative analysis of scattering processes and direct reactions. 

" In conclusion I would like to thank Dr.R.Roinurl Chomas for sending the tables on elastic 
and inelastic scattering data. 
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