

объвдиненны" ИИСТИтут адөриых исөледованй

 аубна

 аубна}

E4-94-308
V.K.Lukyanov

QUASI-CLASSICAL DESCRIPTION

 OF HEAVY ION REACTIONSInvited talk at 7th International Conference on Nuclear Reaction Mechanisms, Varenna, 6-11 June 1994

1 Introduction

The method is mugented for calculating both elantic and inelatic acattering of light and heavy ione on nuclei and for deacribing mimple trander reactiona. For thin aim we comatract neclear diatorled wavee uring the ligh-emergy approximation (HEA) in quani-clamical (QC) scatiering on an optical (complex) potemtial. The method can be applied nader the conditiona $k R>1$ and $E>V$. In sec.2, the main attentiom in peid to peculiaritioe conaing from the imaginary part of a potential. Thue, the so-called effective potential appeare, inherent in the three-dimenional quai-clanical wave function. In principle, it can be parametrined independently of the primary inpat potential, and the corromponding QC-dintorted waves may be applied then to deacribe the nuclear collicion procemes in the framework of the didorted wave Born approrimation (DWBA).

Note that manaly the ome-dimemeional quari-clanical approtimation (WKB-method) in meed for calculations of the partial phaves in comiderating the light- and heavy ion collinione with nuclei. In this care the clmaical deflection angle turns ont to be s mecemary atribute of the QCtheory (see, e.g.[1]). Inotead, the three-dimemional HEA in adjuted for calculating the hadronand electron-nuclear scattering [2]. In the comideration of the latter procenan the wraight-line trajectorien an integration palite are monatly aed. Here we try to join both tieve methode, where a simple way in developed to include a distortion of the utright lise trajectorien. Thas, one can avoid the traditional partial wave decomponition, for which in thin case a very large number of terms io to be included. In prisciple, thing given wh the pomibility to avoid complicated numerical calculatione and to obtein, in the framework of DWBA, analytical expremione for qualitative phyrical entimationa and for a quantitative comparion with experimental data. In aectione 3-5, the beic formolee are premented for elatic, inclantic actattering and transer reactione, reepectively. Sec. 6 mmmarises the remalte of comparioon with experimental date and the main conclusione.

2 Quasi-clamics for the Optical Model

We atert with the wave equation with the complex potential \bar{V} included an followa

$$
\begin{equation*}
\Delta \frac{1}{2}+K^{2}=0, \quad K^{2}=k^{2}-0, \quad D=U+i \omega=\frac{2 \pi}{\hbar^{2}} \theta, \quad V=V+i W \tag{2.1}
\end{equation*}
$$

Ite QC-solution in written is the form

$$
\begin{equation*}
=u e^{e^{2}}, \quad S=S_{1}+i S_{2} \tag{2.2}
\end{equation*}
$$

Substituting (2.2) inlo (2.1), equating the real and imaginary parts to zero separately and calculating the current change along a path, one can obtain the following equations

$$
\left(\vec{\nabla} S_{1}(r)\right)^{2}=k^{2}-U_{e}, \quad \vec{\nabla} S_{1} \vec{\nabla} S_{2}=\frac{1}{2} \omega_{c}, \quad \vec{\nabla} \vec{j}=u^{2}\left[x_{1}-2 \vec{\nabla} S_{1} \vec{\nabla} S_{2}\right] e^{-2 \bar{s}_{2}}
$$

where

$$
\begin{gather*}
\vec{j}=u^{2} \vec{\nabla} S_{1} e^{-2 S_{3}}, \\
U_{e}=U+\left(\vec{\nabla} S_{2}\right)^{2}+x_{2}, \quad \omega_{e}=-\omega+x_{1}, \quad x_{1,2}=2 \frac{\vec{\nabla} u \vec{\nabla} S_{1,2}}{4}+\Delta S_{1,2} .
\end{gather*}
$$

In the case of a real potential, when $W=0$, we have the current connervation law $\vec{\nabla} \vec{j}=u_{4}{ }^{\prime} z_{1}=0$. Thus, a simple way to decouple eqs.(2.3) is to asoume the imaginary part of a potential being small as compared with ite real part $|W| \ll|V|$. Then, supposing that $x_{1} \simeq 0$, we obtain

$$
\begin{equation*}
\left(\vec{\nabla} S_{1}\right)^{2}=k^{2}-U_{t_{1}} \quad \vec{\nabla} S_{1} \vec{\nabla} S_{2}=-\frac{1}{2} \omega, \quad \vec{\nabla} \vec{j}=u^{2} \omega c^{-2 S_{2}} . \tag{2.6}
\end{equation*}
$$

In HEA the decomporition of S in small V_{e} / E can be realized frons eq.(2.6):

$$
S_{1}=\vec{k} \vec{r}-\frac{1}{2 k} \int_{\bar{r}_{0}}^{\vec{r}} U_{e}(\vec{r}-\hat{k} s) d s, \quad S_{2} \simeq-\frac{1}{2 k} \int_{\vec{r}_{0}}^{\dot{r}} \omega(\vec{r}-\bar{k} s) d s,
$$

where integration runs along the trajectory of motion.
From the law of changing the current in (2.6) one can obtain [3] the amplitude s :

$$
\begin{equation*}
u=1-\frac{V_{c}}{4 E} x, \quad x=1+\frac{\rho}{V_{e}} \frac{d V_{e}}{d \rho} . \tag{2.8}
\end{equation*}
$$

Thus, the three-dimensional QC-wave function in a nuclear optical potential is as follows:

$$
\begin{equation*}
\psi=\left(1-\frac{V_{c}}{4 E}\right) \exp \left(i \vec{k} \vec{r}-\frac{i}{\hbar v} \int_{0}^{\infty} V_{c}(\vec{r}-\hat{k} s) d s+\frac{1}{h v} \int_{0}^{\infty} W(\vec{r}-\vec{k} s) d s\right\} \tag{2.9}
\end{equation*}
$$

Here an effective real poteatial in induced by the imaginary part of the initial potential. By the way, thim fact has no merions meaning, if V_{e} in calculated from the scatiering data in the framework of quaciclasoics. Then, these effective potentialn will abo be appropriate in cakculating other procesues, if one uses the corresponding QC-diatorled waves.

The HEA-calculation menally vtart with expressions for wave functions in a typical form (2.9), where integration is mpposed to run along the atraight line trajectories parallel to the momentum of a particle in the aymptotica $\vec{k}(\| 0 \vec{z})$. However, thin latiter suggestion docan't follow automatically from the beac condition $E>V$ of HEA. Indeed, in this case trajectories deffect near the acatiering center by angles of the order V / E. Thim means that in phase (2.7) the correction appeara of the order $k(V / E)$ to the momenturn of a particle. This additional term is comparable in magnitude with the same onder terms ($\% v)^{-1} \int V d s$ present in (2.9) a a retult of the decomponition of S is V / E. The most ditiorted trajectory goes through the so-called external turning point 3 of the closest approwch of seatiered particles. At this point
the trajectory is paralkel to the local momentum \vec{k}_{z} directed at the angle $\theta_{c} / 2$ with reepect to \vec{k} in the asymptotica. Here $\theta_{c}=\operatorname{mar}(|V(\mathbb{Y})| / E)$ in the correaponding deffection angle. Then

$$
\begin{equation*}
\vec{k}_{k}=\vec{k}-\vec{q}_{c} / 2, \quad q_{c} / 2 \simeq k \sin \left(\theta_{c} / 2\right), \tag{2.10}
\end{equation*}
$$

Where \vec{q}_{c} represento the momentum tranefer in the clmaical motion. Now, implifying the problem, we nelect a new path of integration along the atraight line paralled to the momentum $k_{\mathbf{z}}$. Then, eq.(2.9) hat to be rewritien in terns of k_{k} instead of k. It in ponible to show that the effect of the trajectory dintortion can be neglected in the lat term of (2.9) contivining the integras of V and W, since the total contribution of the corresponding terme appeared in of an order of $(V / E)^{2}$. Thus, for the inlegrats in (2.9) we may wee an an integration path tbe straight line along the momenta in the seymptoticn. Then, changing variables $\vec{f}=\vec{\rho}+\vec{z}, \quad+z=\lambda$, where $\vec{p} \perp \vec{z}$, and uning the Wigmer time reverve relation we write divtorted waves in the form:

$$
\begin{align*}
& \Psi_{k_{1}}^{(+)}=\exp \left\{i\left(\vec{k}_{i}-\frac{\vec{q}_{c i}}{2}\right) \vec{r}_{i}-\frac{i}{\hbar v_{i}} \int_{-\infty}^{j_{j}} V\left(\sqrt{\rho_{i}^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v_{i}} \int_{-\infty}^{s_{j}} W\left(\sqrt{\rho_{i}^{2}+\lambda^{2}}\right) d \lambda\right\}, \tag{2.11}\\
& \Psi_{k_{f}}^{(-)}=\exp \left\{-i\left(\vec{k}_{f}+\frac{\vec{q}_{c j}}{2}\right) \vec{F}_{f}-\frac{i}{\hbar v_{f}} \int_{f_{f}}^{\infty} V\left(\sqrt{\rho_{f}^{2}+\lambda^{2}}\right) d \lambda+\frac{1}{\hbar v_{j}} \int_{i_{f}}^{\infty} W\left(\sqrt{\rho_{j}^{2}+\lambda^{2}}\right) d \lambda\right\}, \tag{2.12}
\end{align*}
$$

One should remind that if necemary, ose cas include here the flux factor ($1-\boldsymbol{V} / 4 E$). Note that these QC-diatorted waven are inherent in the heavy ion colliniona, where the clasical deftection angle θ_{c} in really observed in experimental duta as the ao-called limited angle of the Coulomb deflection. In prisciple, other trajectories for which $\theta<\theta_{c}$ showld be aloo talken into account. Moreover, the incident particle van deflect at the sume clasical angie θ_{c} correopondiag to the "nuclear" trajectory of motion with the redive of the clowen appronch 3_{N} manalber than the F. However, frot, contributiom of theve "nuclear" trajectorice neem to be negligible beceuse of the atrong nucleas absorption in thin region. Second, the probability to find a particle out of any clanical trajectory in a quantum effect and in quasi-clancical conditione thin probability han to be expomentislly emsil. Thus, these comparably mend efiecte cansot be important in the clamical region of motion, i.e. at $\theta<\theta_{\text {c }}$. The only place where they give the main effect in the region out of the limited trajectory at $\theta>\theta_{c}$.

3 Elastic Scattering

Now we conider the heavy iom elmaic acatiteriag at emergies larger thas meveral dosen MeV per pucloon so that the QC- and HEA-condition are falifiled. An the clentic scatiering amplitade we are the expremion obtained in [3] for large aaglea $\theta>(1 / k R)$ and $\theta>\theta_{c} \simeq(|V| / E)$ which cover in practice a wide region of meatering anglee
with

$$
\begin{equation*}
\Phi=\Phi_{i}^{(+)}+\Phi_{j}^{(-)}, \quad \Phi^{(\dot{ })}=-\frac{1}{h_{\nu}} \int_{\mp=}^{\infty} V\left(\sqrt{\rho^{2}+\lambda^{2}}\right) d \lambda . \tag{3.2}
\end{equation*}
$$

[ere the potentive:

$$
\begin{gather*}
V_{N}=V+i W=V_{0} f_{V}(r)+i W_{0} f_{W}(r), \tag{3.3}\\
V_{C}=\frac{Z_{1} Z_{2 e^{2}}}{R_{C}} \int \frac{\rho_{c}(x) d \bar{x}}{|\vec{r}-\bar{x}|}, \quad \rho_{c}=\rho_{0} f_{c}(r) \tag{3.4}
\end{gather*}
$$

with the charge denaity diexribetion $\rho_{c}(r)$ and the effective momentum tramer $\vec{q}=\vec{q}-\overrightarrow{q_{c}}$, where $\bar{q} \mid q_{c}, \bar{q}=2 k\left(\alpha-\alpha_{c}\right), \alpha=\dot{\operatorname{cin}}(\theta / 2)$, and $\alpha_{c} \simeq \frac{1}{2[}\left[V\left(R_{4}\right)+V_{c}\left(R_{t}\right)+i W\left(R_{t}\right)\right]$, talen at the radim of the cloeent approach R_{t} of the external timited trajectory of motion. All the diatribation function are takem in the form of the Fermi-function

$$
\begin{equation*}
f_{p}(r)=\frac{1}{1+\exp \frac{r-h_{i}}{c_{r}}} . \tag{3.5}
\end{equation*}
$$

Thus, the scatiering amplitude conionte of three terme:

$$
\begin{equation*}
T^{w^{\prime}}=T_{V}^{d}+i T_{W}^{d}+T_{C}^{d} . \tag{3.6}
\end{equation*}
$$

Subotituting (3.4) into $T_{c}^{\text {d }}$ we oblein the 6 -dimemional integral. It can be tramformed to the 3-dimemional if one expande the phare in $\vec{u}=\vec{r}-\vec{x}$ and then integrates over $d \vec{u}$

$$
\begin{equation*}
T_{c}^{c^{\prime}}=-\frac{m}{2 \pi \hbar^{2}} \int d \vec{r} v_{c}(r) \exp \{i \vec{q} \vec{r}+i \Phi(r)\}, \quad v_{c}(r)=\frac{Z_{1} Z_{2} e^{2} \rho_{0}}{q_{c}^{2} R_{c}} f_{c}(r), \tag{3.7}
\end{equation*}
$$

where $q_{e} \simeq \tilde{q}_{\text {, }}$ and $u_{c}(r)$ pleyw a role of the quai-pptentin of achitering on a eprend charge. Now each of the ternne of the scattering amplitude (3.4) han the same form:
where Y_{P} in the "atreagth" of the correeponding part of the whole potential.
Bearing in miad, that the high-energy scattering in minly eamitive to the internal region of interaction $r<R$, we have made integrations in the GC-phases (3.2) with implified potentinle, submituting into V_{N}, imetead of f_{P}, their expanions in the "difinecenem" a-perameter [4] and ving for V_{c} itw invide-of R expremion:

$$
\begin{equation*}
\check{V}_{M}=V_{(0) M}\left\{\Theta\left(R_{N}-r\right)-\frac{\pi^{2}}{6} a^{2} \delta^{(1)}\left(r-R_{N}\right)-\ldots\right\}, \quad \tilde{V}_{C}=\frac{1}{2} V_{B}\left(3-\frac{r^{2}}{R_{C}^{2}}\right) . \tag{3.9}
\end{equation*}
$$

For the asme reseon we decorapose the remalt of iniegration of (3.2) in ρ / R and get:

$$
\begin{equation*}
=\vec{q} \vec{r}+2 \bar{a}_{0}+\frac{\bar{a}_{1}}{k}\left(\vec{k}_{i}-\vec{k}_{f}\right) \vec{r}+\frac{\dot{\sigma}_{2}}{k^{2}}\left[\left(\vec{k}_{i} \vec{r}\right)^{2}+\left(\vec{k}_{f} \vec{r}\right)^{2}\right]+\frac{a_{s}}{k^{3}}\left[\left(\vec{k}_{i} \vec{r}\right)^{3}-\left(\vec{k}_{f} \vec{r}\right)^{3}\right], \tag{3.10}
\end{equation*}
$$

where a_{n} are the trown fuctiono of r and parametery of the potemtinl, obtsined an a remilt of integration of (3.2). In prisciple, they eloo depend on the initiel and exit chanal iadicee (i, f).

To calculate the ecalar producte in (3.10), we eeloct the coordinate aysum with ares oz $\| \vec{q}$ and $o x \| \vec{R}=\overrightarrow{E_{i}}+\overrightarrow{E_{f}}$. Then,

$$
\begin{equation*}
\vec{k}_{(j)} \vec{r}=k r\left(\pm \alpha \mu+\sqrt{1-\alpha^{2}} \sqrt{1-\mu^{2}} \cos \bar{\varphi}\right), \tag{3.11}
\end{equation*}
$$

Where $\mu=\cos \bar{\theta}$ and $\bar{\theta}$ and $\bar{\varphi}$ are the angles of vector \bar{r}^{\prime} in a spherical coordinate syatem. Inserting (3.11) into (3.10), we obtain the whote phase

$$
\begin{equation*}
\left.\tilde{\Phi}=2 \bar{a}_{0}+\bar{\beta} \mu+n_{1} \mu^{2}+c_{1} \mu^{3}+n_{2}\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi}+c_{2} \mu\left(1-\mu^{2}\right) \cos ^{2} \bar{\varphi}\right]_{1}, \tag{3.12}
\end{equation*}
$$

where $\bar{\beta}, c$ and n are expremed through a_{n}. For example,

$$
\begin{equation*}
\bar{\beta}=2 k\left(\alpha-\alpha_{c}\right) r+\bar{\beta}, \quad \bar{\beta}=-\frac{2}{\hbar \nu}\left[\left(V_{0}+i W_{0}\right)+\frac{Z_{1} Z_{3} e^{2}}{2 R_{C}}\left(3-\frac{r^{2}}{R_{C}^{2}}\right)\right] \alpha r . \tag{3.13}
\end{equation*}
$$

We can see that now the integrand (3.8) contains in the exponent a typical power dependence on the variables r and μ. Keeping in mind that $d \vec{r}=-r^{2} d r d \mu d \bar{p}$, we first integrate in (3.8) over $d \mu$ by parts

$$
\begin{equation*}
I=\int_{-1}^{+1} d \mu \exp [i \tilde{\Psi}(r, \mu, \bar{\phi})]=-\left.i \frac{\exp (i \tilde{\tilde{\psi}})}{\partial \tilde{\Psi} / \partial \mu}\right|_{-1} ^{+1}+i \int d \mu \exp (i \tilde{\varphi}) \frac{\partial^{2} \tilde{\tilde{\varphi}} / \partial \mu^{2}}{(\partial \tilde{\Phi} / \partial \mu)^{2}}, \tag{3.14}
\end{equation*}
$$

neglecting the second term, having the smallness $(k R)^{-2}$. The reault is

$$
\begin{gather*}
I=-i \exp \left(2 i \bar{a}_{0}+i n_{1}\right)\left[I^{(+)}-I^{(-)}\right], \quad I^{(\pm)}=\frac{\exp \left[\pm i\left(\tilde{\beta}+c_{1}\right)\right]}{\Delta_{(\pm)} \mp \delta_{(\pm)} \cos ^{2} \bar{\varphi}^{\prime}}, \tag{3.15}\\
\Delta_{(\pm)}=\tilde{\beta}+3 c_{1} \pm 2 n_{1}, \quad \delta_{(\pm)}=2\left(n_{2} \pm c_{2}\right) . \tag{3.16}
\end{gather*}
$$

Then the integration over dëp can be performed with the help of a table integral. Thus, we can write the amplitude (3.8) in the form of a one-dimenciond integral [5]:

$$
\begin{equation*}
T_{F}^{w}=\frac{i m}{\hbar^{2}} Y_{P} \int_{0}^{\infty} f_{p}(r)\left\{F_{F}^{(+)}(r)-P_{P}^{(-)}(r)\right\} d r \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{p}^{(\pm)}(r)=\frac{r}{\tilde{q} U(\pm)} e^{i\left(2_{c}+m_{1}\right)} e^{ \pm} i\left(\tilde{q} r+c_{1}\right), \quad L(\pm)=\frac{1}{\tilde{\beta}} \sqrt{\Delta_{(\pm)}\left(\Delta_{(\pm)} \mp \delta_{(\pm)}\right)} . \tag{3.18}
\end{equation*}
$$

The root ingularitiea in the denominator are situated far from the radiun of interaction R, namely, at $r_{1}=\frac{A_{1} E}{20} R$ with A_{1}, the atomic number of a projectile, and E, the energy in MeV . At these dintances the $f_{p}(r)$ decreanes very fact, and the previondy auggeated approximations for calculations of phases do not work. This forcea us to introduce a prescription when the integration in (3.17) ahould be cut off at dintancen lese than the point r_{p}, that in to exclude the increase of an integrand due to the nonphyical singolaritien. In this way one can ouggeat the method of calculating the integral (3.17) by uing the properties of the Fermi- functions (3.5) on the complear r-plane. On the other hand, $f_{f}(r)$ has simple polea in the region of the nuclear surface at $r_{n}^{\prime}=R \pm i x_{n}$, where $x_{n}=\pi a(2 n+1)$ with $n=0,1,2 \ldots$. It in pomible to show that the integration contour for r_{n}^{+}mhould be drawn in the first quadrant of the complex plane, going along the inaginary aris and then over the circlen of an infinite radims. The same contour, but
in the fourth quadrant, must be used in the caee of r_{n}^{-}. Thus, the result is expremed through a cum of the correoponding remidues at the above-mentioned poles:

$$
\begin{equation*}
T_{\nabla}^{m i}=-\frac{i m}{\hbar^{2}} Y_{r} 2 \pi i a_{n} \sum_{n=0}^{\infty}\left\{F^{(+)}\left(r_{n}^{+}\right)+F^{(-)}\left(r_{n}^{-}\right)\right\} . \tag{3.19}
\end{equation*}
$$

In practice, for the typical nuclear parameters it is enough to take into account only a couple of polea at $r_{0}^{(\pm)}=R \pm i x_{0}$ pearest to the real axie ("iwo-pole approximation"), because every next pair contributes approximately an order lese than the previous one. However, in many ceses the L-function in the denominator of $F^{(*)}$ can be presented $\boldsymbol{e c} \exp (\mp \kappa)$ with $\kappa \simeq n_{2} / \tilde{q} r$. Then, uing the decomponitiona in amnll x_{n} / R of the following fuaclions

$$
\begin{equation*}
\bar{q} r=\tilde{q} R \pm i \bar{q} x_{n}, \quad \phi=2 \bar{a}_{0}+n_{1}=\phi(R) \pm i x_{n} \phi_{R}^{\prime}, \quad y=c_{1}-i \kappa=y(R) \pm i x_{n} y_{R}^{\prime}, \tag{3.20}
\end{equation*}
$$

one can aum up all the terms in (3.19) to obtain
where $\xi \simeq\left(1-i \frac{\pi}{f}\right) /\left(1+i \frac{\pi x}{h}\right)$, and the parameters a, R, Y have the corremponding index p.
In the came of nucleus-nucleus acatering the interaction radive R in unenlly larger than πa, and we have $\xi \simeq \mathbf{1}$. If at the aame time $\phi^{\prime}<1$, we can bring the sinh out of the wave brackete. Thwe, in principle, the amplitude begina to come down with angles an an erponential function with a nope determined by the thickness parameter a of a aurface of an interaction. Simultaneomly it occillatee with a frequency depending mainly on the radive parameter \boldsymbol{R}. However, for lerge ϕ ' oaly ore term of (3.21) is important, and in thin case no ocillations will appear in the croes nection.

4 Inelastic Scattering

For calculating the inelatic ecattering of light and heavy ions with ercitation of the collective maclear matee we have used DWBA with the relative-motion QC-wave function whose phases are calculated as it in shown in sec.3. The emergy change in the out-channel in neglected since uraally $E_{\text {es }}<1$. The tranition interaction in constructed a weal with the help of derivatives in amall quadrupole and octupole addition $\delta R=R \sum \alpha_{L M} Y_{L M}^{\#}(\hat{r})$ to the radius of a potential in the elatic chanal. The renalt for the amplatme ie the aame an if one noed the sodden approarmation

$$
\begin{equation*}
T^{\text {in }}=\left(J_{f} M_{F}\left|\hat{T}_{V}^{v}+i T_{W}^{d}+T_{c}^{e l}\right| J_{i} M_{i}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{T}_{\eta}^{N}=-\frac{m}{2 \pi \hbar^{2}} \int d \vec{r} Y_{p} f_{p}(r, R+\delta R) V^{(-)^{r}} \delta^{(+)} \tag{4.2}
\end{equation*}
$$

in the operator, depeading on the internal nuclear coordinated $\alpha_{L M}$. Then, rabotituting (4.2) into (4.1) we get

$$
\begin{equation*}
T_{P}^{\text {in }}=\sum_{L M}\left(J_{f} M_{j}\left|\alpha_{L M}\right| J_{i} M_{i}\right) \tilde{T}_{L K}^{i n}, \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{T}_{L N}=-\frac{m}{2 \pi \hbar^{2}} Y_{p} R \int d r \Psi^{(-)_{\Psi^{\prime}}^{(+)}} \frac{d f}{d R} Y_{L M}^{L} . \tag{4.4}
\end{equation*}
$$

Tranaforming the otructure matrix element in (4.3) throagh the reduced one and wing the definition of $B \downarrow$ (EL) tranition, one can write the inelmatic cromenection:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\left(2 J_{f}+1\right)}{\left(2 J_{i}+1\right)} \frac{1}{(2 L+1)} \sum_{L L} \frac{B \mid(E L)}{D_{L}^{2}}\left|\tilde{T}_{L H}\right|^{2} \tag{4.5}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{L}=Z_{2} e \rho_{0} R_{C} J_{L}^{c}, \quad J_{L}^{c}=\int \frac{d_{c}}{d R_{C}} r^{L+2} d r \simeq R_{C}^{L+2} . \tag{4.6}
\end{equation*}
$$

One can mhow that aid the terme with $\boldsymbol{M} \neq 0$ may be meglected became of the additional fast cocillatione in integrande an compared with the term $M=0$. These, the priscipel difference of the ineloctic amplitude from the eleatic ome appears in integrih over $d \mu$, became sow in the upper and lower limite $\mu= \pm 1$ we have to take into account the relation

$$
\begin{equation*}
Y_{L 0}(-\mu)=(-1)^{L} Y_{L 0}(+\mu), \tag{4.7}
\end{equation*}
$$

which changea the igs of the second term in the inelomic analog of eq.(3.15) for odd L. Indeed, now we have

$$
\begin{equation*}
I_{L}=\int_{-1}^{+1} d \mu \exp (i \tilde{\tilde{I}}) Y_{L 0} \simeq-i\left(\left.\frac{\exp (i \tilde{\omega})}{\partial \Phi / \partial_{\mu}}\right|_{+1}-\left.(-)^{L} \frac{\exp (i \tilde{\omega})}{\partial \bar{\omega} / \partial_{\mu}}\right|_{-1}\right) Y_{L 0}(1), \tag{4.8}
\end{equation*}
$$

and consequenily, ming the relation $d_{p} / d R=-d_{p} / d r$, we have got, instend of (3.17), its analog equation for ineleatic ackitering

$$
\begin{equation*}
\mathcal{T}_{p}^{\text {in }}=-\frac{i m}{\hbar^{2}} Y_{p} Y_{L 0}(1) R \int_{0}^{\infty} d r \frac{d f_{\rho}}{d r}\left\{F_{r}^{(+)}(r)-(-1)^{L} F_{r}^{(-)}(r)\right\} . \tag{4.9}
\end{equation*}
$$

This iniegral can be calculated in analytion form if one asee the recond order polet on the complex plane of the derivative of/dr. However, we show another way. Indeed, bearing in mind that the $F^{(t)}$-function rapidly oncillate with increning r became of the exponent $\bar{q} r>1$, one can integrate in (4.9) by parta

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d f_{p}}{d r} F_{p}^{(*)} d r=-\int_{0}^{\infty} f_{p} \frac{1}{r} F_{r}^{(k)} d r-O\left(\frac{1}{(\tilde{T} r)^{2}}\right) . \tag{4.10}
\end{equation*}
$$

So, mbotituting (4.10) into (4.9) we get a form like (3.15) for clatic acattering with rome additione in the integraed, namoly, the finctor $(1 / r)$ and the maltiplier $(-1)^{L}$ before the second tenm:

$$
\begin{equation*}
f_{p}^{\infty}=\frac{i m}{\hbar^{2}} Y_{p} Y_{L 0}(1) R \int_{0}^{\infty} d r \frac{1}{r} f_{p}(r)\left\{F_{p}^{(+)}(r)-(-1)^{L} F_{p}^{(-)}(r)\right\} . \tag{4.11}
\end{equation*}
$$

Subsequent calculationa are the same as in the case of elsatic acattering. We give here only an approximate expremion, an analog of (3.21), when aummation of all the poles runs under certain auggention on the QC-phane behaviour. We have

$$
\begin{equation*}
T_{P}^{i n} \simeq \frac{\pi a m R}{\hbar^{2} \tilde{q}} Y_{p} Y_{L 0}(1) e^{i *(R)}\left\{\frac{e^{i(\phi R+\chi(R))}}{\operatorname{inh}\left[\pi a\left(\tilde{q}+y_{R}^{\prime}+\phi_{R}^{\prime}\right)\right]}+(-1)^{L} \frac{e^{-i\left(\bar{q} R+y^{\prime}(R)\right)}}{\sinh \left[\pi a\left(\tilde{q}+y_{R}^{\prime}-\phi_{R}^{\prime}\right)\right]}\right\} \tag{4.12}
\end{equation*}
$$

It is eary to see that if the admirture ϕ^{\prime} to the distorted QC-phase io negligible, all the denominatore coincide and for large arguments they give, in the amplitude, a fast decreasing function $\exp (-\pi a k \theta)$ [6]. Simultaneoualy, the oacillating part of the amplitude as a function of the acattering angle is the cos- or sin-function in dependeace of l-even or odd, reapectively. In thin care the crose section will have viaible oacillations which coicide for excilations of the even collective atates in their phames with the elantic acatiering oncillations. In the other case, when ϕ^{\prime} is large, the only term in (4.12) will contribute to the crose section, so that no cocillations will exiat, and the slope of the crose section will depend mainly on the thickness parameter of the interaction potential.

5 One-nucleon Transier Reactions

For simplicity, we consider the reaction $a+A \rightarrow b+B$ with tranafer of a spinless z-particle, when the corremponding cromesection and the amplitude in the sero-range approximation are as follow:

$$
\begin{align*}
& \frac{d \sigma}{d \Omega}=\frac{m_{B}}{m_{b}} \frac{k_{\mathrm{B}}}{k_{b}} \frac{1}{2 j_{a}+1} \frac{2 J_{B}+1}{2 J_{A}+1} \sum_{l} S_{J}\left|\tilde{T}_{I}^{t r}\right|^{2}, \tag{5.1}
\end{align*}
$$

where

$$
D_{0}=-\frac{4 \pi \hbar^{2}}{m_{m}} \sqrt{\frac{\kappa_{x}}{2 \pi}}
$$

dependa on the atructure of an incident particle, and $\boldsymbol{\Xi}_{1}(r)$ is the radial wave function of the 2 -particle in the final nucleme B. The latter hao the mymptotic behaviour exp $\left(-\kappa_{i} r\right) / r$. We have emphnised that the main effect in heavy ion reactions comes from the region near the interaction rading. This meana that the behavionr of the function g_{f} at $r<\boldsymbol{R}$ is of no importanice, and one can select it in the form

$$
\begin{equation*}
\exists_{i}(r)=\frac{\sqrt{6 a_{4}}}{r} \frac{d f_{s}\left(r, R_{1} a_{\xi}\right)}{d r}, \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}=\frac{\sinh \frac{R}{a_{4}}}{\operatorname{conh} \frac{R}{4}+\cosh \frac{\pi}{4}} \simeq \frac{1}{1+\exp \frac{r-R}{4}} \tag{5.4}
\end{equation*}
$$

is the aymmetrised Fermi-function having the aymptotica $\exp (-a f r) / r$ and going to a constant at $r=0$; the function (5.3) in normalised to 1 , and the "diffusenem" of the trancition region in to be taken $a_{4}=1 / \kappa_{i}$; where $\kappa_{i}=\sqrt{2 m_{z} \epsilon_{l} / \hbar^{2}}$ with c_{i}, the meparation energy.

Inserting (5.3) into (5.2) we get the amplitude of the typical form inherent in HEA. Moreover, here we can use the quari-elartic approximation becnuse the low of emergy in the reaction in comparably amall and $E_{a} \simeq E_{b}$. Thue, the QC-diatorted wavea are taken in the anme elastic chandel, and the fina expremsion for the amplitude in follow:

$$
\begin{equation*}
\tilde{T}_{i}^{t^{t}}=\frac{m_{b}}{2 \pi \hbar^{2}} D_{0} \sqrt{6 a \hbar} Y_{t o}(1) 2 \pi i \int_{0}^{\infty} d r \frac{1}{r} \frac{d f}{d r}\left\{F^{(+)}(r)-(-)^{t} F^{(-)}(r)\right\} \tag{5.5}
\end{equation*}
$$

The only difference here is that the residues muat be taken in the second order potea diaplayed at the ame poinla an in the previone calculations. So, we write

Thus, we can conclude that here we also have the gencral exponential decrease at anglen $\theta>\theta_{c}$, depending on the acting thicknese a_{9} in the region of the aurface of trascition [7]. Ita magnitude in determined by the alope of a "tail" of a bound state function in the final nuclene B.

6 Conclusion

Calculation of differential cromentions for elatic and inelantic acatiering withia the two-pole approximation are presented in fige. $1 \mathrm{a}, \mathrm{b}$ in comparion with the experimental data from [8]. Ope can see a rather good agreement in the range of weatitering anglea $\theta>\theta_{c} \simeq 2^{\circ}$ in coincidemce with the initial maraptions of the HEA-method. For each ret of colliding naclei we got the aame interaction parametern for clantic and inelantic chanmela exclading the aborptions W_{0} that appeared to he about $10 \% \times$ andillat that in the elantic channel. The depthe of potential wrelle are in limite of $V_{0}=60-70 \mathrm{MeV}$ and $W_{0}=5-6 \mathrm{MeV}$, the $B(E L)$-tranitione obtained are approaimately twice those cited in [8]. The mont intereating reault in that the thicknem parameters for inelnatic chanmela are about two-three times as anall an those for elantic chanmely, where we have $a_{1}=0.55-0.6 \mathrm{fm}$. Thin might rignify that in collective excitatione of auclei not all the particle staten take part in forming the tranition matrix elemente. Otherwise, in. elatic meattering the "taif" of a potemtial in formed from the whole att of ome-particie atates.

Figa.2a,b ehow calculations and comparinom with data from [9]. The apectroacopic factory were taken to equal 1 , and the aboolute valven of theoretical crom sectione are preseated. The thicknem parameters bere are $a_{1}=0.4 \mathrm{fm}$ and $a_{1}=0.6 \mathrm{fm}$ for the first and the second reactiona, consequently, they characterise the form factor behavionr in the surface area of interaction. The other parameters are $V_{0}=50 \mathrm{MeV}, W_{0}=31$ and 48 MeV . We mhould mote that we uee no codes for the bent it analyia of data, but we are arre that the benic conchuione we have obtaiaed will not change.

We can mamiarise that inventigations of heavy ion collinions in the quantum region of scattering anglet $\theta>\theta_{c}$, outide of the limited trajoctories of motion, are very mencitive to the procive atrecture of a natien-muclem interaction. For inatance, the dope of curvee with θ feel the "thickmem" of the acting region in the corsesponding channel. It may be uned aloo for searching the "halo" dimibutions of maclei in the radionctive beame which now become available. We hope that the HEA-method anggented can be aucceurally veed in both the qualitative and quartitative analyia of acatieriag procemes and direct reactions.

In conclnion I would like to thant Dr. R.Rouncel-Chomas for semding the tables on elentic and inelatic achtiering data.

Fig. 1 The heavy ion elantic and inelatic crow seclions; (a) ${ }^{17} \mathrm{O}+{ }^{\mathrm{B0}} \mathrm{Ni}$;
(b) ${ }^{18} \mathrm{O}+{ }^{20} Z_{r} ; E_{t b b}=1435 \mathrm{MeV}$, exp. data from [8], solid lines- theory

Fig. 2 The transfer reaction crose sections: (a) ${ }^{12} C+{ }^{27} A l \Rightarrow{ }^{11} B+{ }^{28} S_{i}$;
(b) ${ }^{12} \mathrm{C}+{ }^{200} \mathrm{~Pb} \Rightarrow{ }^{11} B+{ }^{209} \mathrm{Bi} ; E=50 \mathrm{MeV} / \mathrm{n}$, exp. data from [9], eolid lines-theory

References

1. Ford K.W., Wheeler J.A. // Ann.Phys. 1959. V.7. P.259; Zagrebaev V.I. // Ann.Phys. 1990. V.197. P.33.
2. Glauber R.J. // Lect.in Theor.Phys. (N.Y.) 1959. V.1. P.315; Yennie D.R., Boos F.L., Ravenhall D.C. // Phys.Rev. 1965. V.B137. P.882; Lukyanov V.K., Pol' Yu.S. // Sov.J. Particles Nucl. 1975. V.5. P.385.
3. Schiff L.I. // Phys.Rev. 1958. V.103. P.443; Lukyanov V.K. // Bull.of Ruse.Acad.of Sc., Physics. 1994. V.58. P.6.
4. Lukyanow V.K. // Comm. of JINR (Dubna) 1993. P4-93-300.
5. Lukyanov V.K. // Proc.Int.School-Seminar on HI Phys.(Dubpa) 1993. E7-93-274. V.2. P. 129; Lukyanov V.K., Gridnev K.A., Embulaev A.V. //Bull. of Ruse. Acad.of Sc., Physics. 1994. V.58. P. 19.
6. Fedotov S.I., Lulyanov V.K., Permyakov V.P. //IV Int.Conf.on Select. Topice of Nucl.Str. (Dubna) 1994. E4-94-168. P.42.
7. Gridnev K.A., Fedotov S.I., Lukyanov V.K. //44th Int.Conf.on Nucl.Spectr. \& Nucl.Struet. (S.-Peteruburg) 1994. Theses. P. 292.
8. Lignori Neto R. et al. // Nucl.Phys. 1993. V.A560. P.733.
9. Winfield J.S. et al. // Phys.Rev. 1989. V.C39. P. 1395.
