


I. Introduction

Consider the free nonrelativistic electron in a static magnetic field H, taking
electron spin into account. A plane-polarized wave propagates along a magnetic
field, its frequency  is close to the electron rotation frequency wy, = eH/me:

1 —wr| << wi, (1)

where —e isthe electron charge, rn is the electron mass and c is the velocity of light.
Let the electron be located in a domain with dimension L << A, where XA = 27¢/Q
is the length of the light wave. So we can describe the electron-wave interaction
using a dipole approximation for the kinetic part of the Hamiltonian. We include
the wave magnetic field in the spin part of the Hamiltonian because the corre-
sponding interaction frequency is close to the resonant one, so spin components
have to be mixed. In section Il of the present paper we include and transform the
corresponding Schrédinger equation.

As the electron Hamiltonian is time-dependent and time-periodic, one can in-
clude quasienergies and.steady states [1] (quasicnergy states [2, 3]) to describe
electron behaviour. In section III we construct these values according to the res-
onant approximation of (1). It is shown that if Q # wy, the electron quasienergy
spectrum is discrete and equivalent to the Landau energy spectrum in a static mag-
netic field. Steady state components corresponding to rotation have a finite norm.
When 2 = wy, the electron quasienergy spectrum changes into a continuous one
and the steady state rotation components become un-normalizable. Destruction
of the Landau spectrum in the resonant casc corresponds to electron transversal
motion transmutation (from finite to infinite) in the resonant wave.

II. Schrédinger Equation Transform

Let j be 1,2,3; a, § be +1; z; -— the coordinates, t — time, 1), — the electron
wave function, U(’) the Pauli matrixes and A — Planck’s constant.

Let the static magnetic field to be directed along the z; axis and the wave
electric field oscillate along the x; axis with amplitude E. We can then describe
the electron by the following Schrédinger equation:

ih%z/;u = -}—{( zei - —H:rz) + ( th— 0 + '—E-COS(Qt))

2m Oz, Jza Q
—h? i}z/) e—)‘LX:{—Esin(Qt) My HU } b (2)
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Next, we search for solutions of (2) in the form:

%(w,,t)—exp{h[plz,+pszs-—;’3t—»%cos(m)]}%(s,t), ®

where p;, p; are real numbers and § = z; —(p1¢)/(eH). -
. Two functions, 11(€,t) and- 7_1(§ t), satisfy the followmg set of equatlons -

N hw
th 36');1 = {Ha,c + —2— +eE¢ sm(Qt)}'y, sm(Qt)'y_
. h .
i —a—g—;— = {Hosc - th +eE¢ sm(Qt)}'y_l e sm(Qt)'yl , o (4)
where e = E/H and \ : .
2
Type = Ly Mg N (5)

Howe = =556 T 2

In the frame of the resonant approx1mat10n (1) we can rewrlte (4) as ‘

‘367; {Hosc+—ﬁ°;—+eE£sm(m)}m e, exf)(—ma)‘v-‘l_
2Lt ={msc-ﬁ%+emsm(m)}7_1+ Lexp(if)y . (6)
Then, we search for solutions of (6) in the form: .-
LD =By, @

where $ is a constant. It is easy. to show that (7) can be the solution of (6) if

B=frs= ‘{2(9 — 1) £ /42 — wr)? '+'62wz}7(§wL) e

Let us present 7;(£,t) in following form for the two cases correspondmg to

B=Pp, B=7Px ' «
71(§,t)-—exp{—zt[ \/' Q—wLp+ ezwL]}cls(g,t) (9)

Then &(¢,t) satisfies the following equation in both cases:

ihgd)({,t) = {H + Bt ;in(nvt)}qs(g,t) . (10)

Equation (10) is the well-known equation for a harmonic oscillator acted upon
by a time-dependent oscillating force. ‘Thus, we have shown that the electron,
located in both a static magnetic field and an electromagnetic wave with the
frequency close to the resonant one, descrlbed by the Schrodinger equation for a

harmonic oscillator.
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IT1. Quasienergies and Steady States Construction

Quasienergies and steady states (quasienergy states) for the quantum systems
described by (10) and for some more general class of Hamiltonians werc exactly
constructed in [4]... Below we construct them for our special case (10) and give a
draft proof for the conclusions used. The results are especially clear if we use the
resonant approximation ( 1) and mtroduce as standard operators:

= ——i\/h/2mwl,b—g - z'f\/me/ﬂi jat = \/h/2me + i€y/mwy [2h . (11)

Then we can rewrite (10) as approximately:

z%[@(t) >= {wL (a+a + %) + oz(ae’m + a+e_’m) }[@(t) >, (12)

where |3(t) > is the corresponding‘ket”\trector and a = eE/\/Smth
Now let us use complex representation [5]..If z is a complcx number and |z >
is a corresponding coherent state, then

qa(z,t) = exp{|2[?/2} < 2|9(t) > - (13)

is an analitical function of z in the whole complex plane at any ¢ .(the overline
meéans a complex conjugation). We can rewrite (12) for ®(z,t):
d 1\, [uad .
z——‘IJ‘(z,t) = {wL (zb; + —2-) + a(e ma +e mz) }‘IJ(z,t) . (14)
It was shown in [4] that equation (14) has resonant SOllltl()nS at wr, = ¢S, where
g is an integer. Here we consider resonant solutions for g = 1 only because the
restriction (1) is fulfilled.

If Q # wy, each solution of equatlon (14) can be represented as a lincar com-
_bination of following solutions:

Qﬂ(z,t) — e_itE"/h¢ﬂ(z;t) H ¢ﬂ(z,t) = ¢n(Z;t +2’IT/Q) y = 0, 71, 2... s (15)

where quasienergies E, and steady states (quasienergy states) ¢n(z,t) are given
by:

: . ) 1 ) h 2
E,.:th<n+—)+ =
’ Q wi,
_ Ll [wa__@ ] { zea  Jaf? } .
¢,.(z,t) =7 ze g | exp zth+ Q on 2(()—w1‘)2 (16)

It is easy to show: [4] that the vectors ¢,(z, t), n-=20,1,2..., form the complete
orthogonal basis in the corresponding Hilbert space and th(nr norms are equal to
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one. It shows that we have found all the solutions of equation (2) (in resonant ap-

proximation). The quasienergy spectrum (16) is equivalent to the Landau energy
spectrum for a free electron in a static magnctic field.

As quasienergics arc only defined modulo ¢hQ, where ¢ is an mtcger we can
use an equivalent representation for qudswncrglcs and steady states (quasienergy
stdtcs) mst('ad of (16) [1, 2, 3]

E = h(w, - Q)n + hwy, /‘7 + haz/(Q w,) Gn(z,t) = e_i'"néﬂ(z ). (17)
This f(nm showe tlnt when. the wave frequency §) approaches to the el(‘ctron
rotation frequency wy;, the quasienergy spectrum almost degenerates.

In the resonant casc, when 2 = wy, each solution of equation (14) ‘can be
represented as a lincar combination of following solutions:
or(z,t) = ¢p(z,t + 27 /) ;

Bp(z,t) = T Flhpp(z,t) ; ~00 <'E <'oo, (18)

where E is the quasiencrgy, and the steady states (quasicniergy states) ¢g(z,t) arc
given by [4]: ‘ ’
:c",‘.m(E _ hQ/Q) :20—21'1(1

ha 2

E —-hQ/2\?

br(z,1) = (2rh2a?) 1 exp{——( 2',”1,/ ) +
(19)

It is casy to show [4] that the etcady states (19) eatlefv the followmg relations at

any t:

-/ dzdze-'z"dsE(z,t>¢,,,~'_(z_,t>=‘6(1;—Ef) |
[ dBsu0en(= 1) = (20)

where § is the Dirac delta-function. These rclations mean that the corresponding
ket-vectors satisfy the orthogonality and completeness relations [6]:
' o0
<bulbw >=8E-E) i [ dBler><érl=1, (21)
where T is the nnit operator in the corresponding Hilbert space. The relations
(21) show that we have found, for the resonant case, all solutions of equation (2)
(in resonant approximation).

We can sce that the Landau spectrum (16) is destroyed in the resonant case,
because the quasiencrgy spectrum is a continuous one: —~oo < E < oco. As
follows from (21), resonant stcady states (quasicnergy states) are un-normalizable.
The spectrum and steady states reconstruction correspond to clectron transversal
motion transmutation (from finite to infinite) in the resonant wave.



IV. Conclusion

The behaviour of the electron located in both a static ﬁlagnqtié_ﬁeld and an
electromagnétic wave with the frequency close td the rcsonarit one is dcé(:ribcd in
terms of qua51energ1es and steady states (qua51cncrgy state s)

It is shown that the well-known electron transversal motion trdnsrnutatlon
(from finite to infinite) in the resonant wave leads to the, descrete quasienergy
spectrum destruction and to the forming of a new steady states basis, consisting of
un-normalizabled vectors. The corresponding quasicnergy spectrum is continuous.

This investigation was supported by the Russmn Foundation for Fundamental
Research (Project 93-02- 2535)

References

(1) Samnble H. Phys. Rev. A, V.7, N6, p.2203, 1973.

[2) Zeldovitch Ya.B. Zh. Exp. Teor. Fiz., V.51, p.1492, 1966.

(3] Ritus V.L Zh. Exp. Teor. Fiz., V.51, p.1544, 1966,

[4 ] SkoblmAA JINR Commumcatlon P4 94 93 Dubna, 1994.

[5] Klauder J R., Sudarshan E. C G. Fundamentals of Quantum Optics. New York,
1968

[6] Perina J. Coherence of nght New York 1972




