
V.G.Kartavenko, W.Greiner1, K.A.Gridnev2 

DYNAMICAL INSTABILITY 

AND SOLITON CONCEPT 

Invited talk at the 31 st Spring Meeting, Holzhau, Germany, 
April 11-15, 1994 

E4-94-175 

1
Institut fiir Theoretische Physik der Universitat Frankfurt/Main, 

Germany 
2St.-Petersburg State University, St.-Petersburg, Russia 



I. MOTIVATION 

Nonlinear dynamic phenomena in different complex systems are currently a topic of con­

siderable interest in modern physics. It is mainly caused by great progress in a development 

of the methods to solve exactly nonlinear partial differential equations. A hole class of these 

equations admits solutions in a form of so-called solitary waves - solitons (For a last decade 

history of a soliton concept in nonrelativistic nuclear physics see review [1]). 

An existence of solitary waves is determined by two essential factors, namely, nonlinearity 

and dispersion. Both the factors, which are responsible for the stability of a wave, are 

connected in their turn with two different types of instability. A localized pulse will tend 

to spread out due to dispersion terms of the equations of motion. The nonlinearity which 

is responsible for the formation of solitary waves, on the other hand, automatically leads to 

their destruction, if it is alone. Both instabilities may compensate each other and lead to 

stable solutions (solitons). 

Let us look from these points of view at multifragmentation phenomena. The formation 

and breakup of a highly excited and compressed nuclear system is the most striking process 

observed in intermediate-energy heavy ion reactions. How does such a system expand and 

finally disassemble when passing through a regime of dynamical instabilities? What is 

the mechanism of the clustering (stable light and intermediate mass fragment production)? 

Quite a variety of models have been developed to discuss this question (see, for instance, 

the recent review [2] and Proceedings [3]). The dynamical clusterization in the presence 

of instabilities is the focus of attention of the intermediate energy heavy ions physics [4], 

[5]. Ten years ago multifragmentation has been associated with the onset of the spinodal 

instability [6]. This instability is associated with the transit of a homogeneous fluid across 

a domain of negative pressure, which leads to its breaking up into droplets of denser liquid 

embedded in a lower density vapor. Since the spinodal instability can occur in an infinite 

system, it can be called the bulk or volume instability. On the other hand, it physically 

means that pressure depends on density, that is just a nonlinearity in terms of density [7]. 
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Recently [8], it has been pointed out that a new kind of instability (sheet instability) 

may play an important role in multifragmentation. This new instability can be assigned to 

the class of surface instabilities of the Rayleigh-Taylor kind [9]. System escapes from the 

high surface energy of the intermediate complex by breaking up into a number of spherical 

fragments with less overall surface. At the same time, it physically means the existence of 

the gradient terms of the equations of motion, i.e the dispersion [7]. 

The spinodal instability and the Rayleigh-Taylor instability may compensate each other 

and lead to stable quasi-soliton type objects. In the next Sec. we present this physical picture 

using a simple analytical model proposed to describe the time evolution of compressed 

nuclear systems. 

TI. BASIC EQUATIONS 

A complete quantum - mechanical description of a colliding nuclear systems is not yet 

constructed. The Schrodinger equation is linear in nuclear many-body wave function, but 

we are not able to solve it. The reduced description in a truncated space of collective degrees 

of freedom inevitably leads to nonlinear problem. 

Both classical (hydrodynamics [10]) and semiclassical (time dependent Hartree-Fock 

(TDHF), temperature dependent Hartree - Fock, the dynamical Thomas - Fermi theory, 

the Boltzmann - Nordheim -Vlasov (BNV [II]) or Botzmann - Ueling - Uhlenbeck (BUU) 

[12]) equations are used now to simulate numerically a breakup phase in heavy ion collisions. 

All of them are based on a supposition that at the later stage, when hard collisions are nearly 

over, the created excitation evolves according to the mean-field description. 

At the same time, an analysis of stability of nonlinear dynamical systems and an analysis 

of nonlinear evolution of initial complex states is a traditional goal of Soliton Theory. The 

inverse methods to integrate nonlinear evolution equations are often more effective than a 

direct numerical integration. Let us demonstrate this statement for a very simple case [13]. 

The type of systems under our consideration are uncharged slabs of nuclear matter. The 
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slabs are finite in the г coordinate and infinite and homogeneous in two transverse directions. 

The basic equations for the static mean-field description of the slabs are the following 

Фк^Лх) = -j=4'n(:)exp(iki.r), 

- | ^ V ' n ( - ) + ('(-)i'„<-) = еЖ(г)< 

•Vo 

p(«)=*/>(c) = 53«„^(r). (1) 
• 1 = 1 

.Vo 

I . = I 

«n = —rjl ' /- - ' i l l . 

where r = (i,y),fc± = (lcr,ky). and П is the transverse normalization area. N0 is the 

number of occupied bound orbitals. 

The dynamical description will be done in the framework of the inverse mean field 

method. One can found the details of this approach in [II], [15]. We concentrate here 

only on essentials. 

The evolution of a system is given by the famous hydrodynaniiral Korteweg-de Vries 

equation (KdV) for the mean-field potential lr(:.t) 

£?0(ЗД 0: in, <)z* l"' 

where 5„ are constants which are determined by the initial conditions. 

General solution of KdV Eq. (2) can be derived in principle via direct methods nu­

merically. This way is to assign a functional of interaction £ (as usual an effective density 

dependent Skyrme force), a total number of particles (or a thickness of a slab .4) and to 

solve Hartree-Fock equations to derive a spectrum of the single particle states en and wave 
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functions фп(г,0), the density profile p{z,Q) and the one-body potential U(*,0) for the ini­

tial compressed nucleus. Then, one calculate an evolution of the one-body potential with 

the help of Eq. (2). 

However, there is an inverse method to solve KdV Eq. (2). The main advantage of this 

way is to reduce the solution of the nonlinear KdV Eq. (2) to the solution of the linear 

Schrodinger - type equation 

- | ^ W M ) + {/(2,«)<M;,t) = en ,M*,i), (3) 

and linear integral Gelfand - Levitan - Marchenko equation to derive the function A'(x, y) 

A'(x,B) + B{x + y)+ f B{y + z)K(x, z)dz = О. (4) 

The kernel В is determined by the reflection coefficients R{k){ei, = fi2fcs/2m). and by the 

N bound state eigenvalues e„ = —ft2«'/2m. N is the total number of the bound orbitals. 
N 

B(z) = V* С*(кп) + - [ R(k)exp(ikz)dk. 

The coefficients Cn are uniquely specified by the boundary conditions 

C„(K„) = lim i/>n(z)exp(/cnz), 
z—oo 

and the wanted single particle potential is given by 

The time t is included in Eqs. (3,4) only as a parameter, so it has been omitted in the above 

formulas. 

The general solution, U{z,t), should naturally contain both, contributions due to the 

continuum of the spectrum and to its discrete part. There is no way to obtain the general 

solution U(z,t) in a closed form. Eqs. (3,4) have to be solved only numerically. 

However in the case of renectless (R(k) = 0) symmetrical (U(-z, 0) = U(z, 0)) potentials 

one can derive the following basic relations 

u(z,t) = _£|Lin(dei||M||) = ™ X X i £ ( * . 0 , 

4 



А„(г, t) = С„(к„)егр(-кпг + 2h2K*Snt/m)), (5) 

" к п + к л ' / г 
С п ( < с „ ) = ( 2 К „ П ^ ^ ) 

1фп 

So, the wave functions, potential and the density profile are completely defined by the bound 

state eigenvalues. The first step is to solve the Schrodinger Eq. (3) for the initial potential 

V(z,0), which is suitable to simulate compressed nuclear system or to simulate this state 

with the help of spectrum. Then one calculates the evolution of p{z,t) and U(z,t) with the 

help of Eqs. (5). 

III. THREE-LEVEL SYSTEM 

Although there is definitely some progress in the application of the inverse methods to 

nuclear physics they are not yet too popular. As illustration of these methods, we con­

sider a one-dimensional three-level system in detail. A three-level system may be useful for 

modelling the evolution of light nuclei, for instance, of oxygen [16]. 

Let us present the main formulas to calculate wave functions of a three-level system 

«з > «2 > «i 

*(«,«) = (2«. (S)(^)) ,V'(Z ,0H6 + 6) - te)<*(fc - 6)), 

««,0 = (Мет(2£))м10-(*.ОИ6+Ь) - (5±*)«А(6-&)), 

*(*,<) = (MS^MSSrt'^-'t'.OOAKi +6) - (5*£)<*(6 -6». 

D(z,t) = cA(fl + 6 + fc) + (^±U)(S+U) c f c ( e , + & _6) 

Kj — « i «3 — Kj Л3 — Kj «3 — «2 
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b(z,t) s кпг - 2n2
K*S„t/m п = 1,2,3. 

The asymptotic behavior of the wave functions and the mean - field potential have the 

following form ((„ is fixed) 

Km фк = 6kny/K^sech((n - £), 

lim U(z, t) = -^iS£cAJ(€„ - 0 > 

So, for large z and t the time - dependent one - body potential and the corresponding density 

distributions are represented by a set of stable solitary waves. The energy spectrum of an 

initially compressed system completely determines widths, velocities and the phase shifts of 

the solitons. 

The number of waves is equal to the number of occupied bound orbitals. Thickness 

('number' of particles) of an n - wave is equal to a„. 

Reflecting terms (R{k) ф 0) of U(z, t) cause ripples (oscillating waves of a small ampli­

tude) in addition to the solitons in the final state. 

The initially compressed system expands so that for large times one can observe separate 

density solitons and ripples ('emissions'). This picture is in accordance with the TDHF 

simulation of the time evolution of a compressed 0,e nucleus [16]. The disassembly shows 

collective flow and clusterization. It is important to note that the clusterization was not 

observed in the absence of the self-consistent mean-field potential, i.e this confirmes our 

supposition that the nonlinearity is very important for the clustering. 

It is necessary to note that the present model is too primitive in order to describe a real 

breakup process. However this model can be used to illustrate an inverse mean-field method 

scheme, a nonlinear principle of superposition and the idea that nonlinearity and dispersion 

terms of the evolution equation can lead to clusterization in the final channel. 

Certainly there are a lot of open questions relative to the presented approach. The most 

crucial concerns the generalization to 3+1 dimensional model with a finite temperature. One 
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possible way to do it keeping symplicity of the approach would be to use an information 

theory [17], [18]. Such investigations are in progress. 

IV. SUMMARY 

The problem of dynamical instability and clusterization (stable fragments formation) in 

a breakup of excited nuclear systems are considered from the points of view of the soliton 

concept. It is noted that the volume (spinodal) instability ran be associated with nonlinear 

terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the 

evolution equations. The both instabilities above may compensate each other and lead to 

stable solutions (solitons). 

The simple analytical model is presented lo describe the time evolution of the cold com­

pressed nuclear systems in the framework of the inverse mean-field method. It is demon­

strated that the nonlinearity and dispersion terms of I he evolution equations can lead to 

clusterization in the final channel. 
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