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1. Introduction 

One of the aims of studying the scattering reactions with strong and electromagnetic 
interacting particles in the relativistic quantum field theory is such a type of consti action 
of corresponding potentials and amplitudes, which satisfies the first principle of relativity, 
causality, unitary, gauge invariance etc. The general form of Bethe-Salpeter equations, 
where all these principles are observed, are presented in ref. [1,2,3]. However, as a rule, 
by solution of these or other field-theoretical equations two basic assumptions are used: 

1) The number of particles from intermediate states of field-theoretical potentials by 
practical calculations is limited. This assumption is necessary for obtaining a closed 
system of equations and it brings an additional difficulties to make the sought amplitudes 
gauge invariant [1,2,3,4]. 

The employment of particle number restriction by constructing the microscopical po­
tentials is usually verified only through the comparisons with experimental data and with 
results from other models. In this paper we will suggest an additional test for examining 
the accuracy of intermediate particle number restriction approach. This test is derived 
on the base of the same vertices which are used by construction of interaction potentials. 

2) The input vertex functions for the building of Bethe-Salpeter potential or its 
quasipotential representations depends on two, three or more number of variables. In 
contrast to these the phenomenological vertices which are used as rule by calculation of 
microscopical potentials, are defined as one-variable functions. Therefore, in order to 
construct of the microscopical potentials in quasipotential or other three-dimensional ap­
proach on the base of one-variable phenomenological vertices, an additional assumptions 
about particles off mass shell behavior are used. 

An other three-dimensional field-theoretical formulation of scattering reactions deriv­
ing from the covariant generalization of old perturbation theory [5], where all particle 
are on mass shell are presented in refs. [5,6,7,8]. However, in this formulation arise the 
nonphysical degrees of freedom which increase the number of independent variables in 
vertices or the total number of invariant form-factors and amplitudes [8]. 

In this paper we consider the alternative field-theoretical formulation of equations for 
amplitudes of coupled ed — e'NN, ed — di and fd — NN reactions. This relativistic 
approach is a three-dimensional one from the beginning and by the construction of po­
tentials in resulting equations, we found one-variable covariant vertex functions. The 
base of suggesting equations is a field-theoretical spectral decomposition of -yd—NN and 
NN — NN transition amplitudes which after distinguish of id — NN and NN — NN 
amplitudes admit the form of so called Low-type equations [9-17]. The relativistic Low 
equations was often used by investigations of rN scattering problems in the framework 
of Chew-Low model [10,11] and in more general cases [12,13]. In refs. [14,15,16,17] we 
have suggested the general procedure of linearization of relativistic Low-type equations. 
These linearized equations have the form of Lippmann-Schwinger equations with linear 
energy dependent potential and we have used their solutions for description of low energy 
xN and NN scattering phase shifts. Besides this in refs. [16,17] we have demonstrated 
that the Low-type equations can be considered as a matrix representation of microscopic 
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causality condition between two particle field operators which were given by Dogoliubov 
(18.19). 

The present paper consists of six sections. The section 2 deals with the formal deriva­
tion of field-theoretical spectral decomposition of fd — NN and ed — e'NN amplitudes, 
which afterwards are rewritten in the form of Low-type equations. The linearized rep­
resentation of these Low-type equations is given in sect. 3. In sect. 4 we demonstrate 
the gauge invariance of suggesting equations. In sect. 5 we derive the condition for ex­
amining the accuracy of restriction of intermediate particle numbers by constructing the 
microscopic potential. Finally sect. 6 contains a brief summary. 

2. FIELD-THEORETICAL SPECTRAL DECOMPOSITION OF DEUTERON 
ELECTROMAGNETIC DISINTEGRATION AMPLITUDE 

We start from the general 5-matrix element of the deuteron electro and photo disin­
tegration reactions 

< out;p'ep'N1p'N2\pep4;in > = 

= (2*)4»«<4>te + p'm +jfNi-pt - pt) < out;p'jVlp'№1|Jp'.(0)IP'P'';'n > (1) 

< out; p'jviP';wlkAP*; in > = 

= ( 2 * ) 4 6 « V j n + v'Ni ~ * - P) < out; rfnp'jn|j,(0)|p.pll;in > # ' ( k ) (2) 

where we have used the conventions and normalization conditions from the book by 
Itzykson and Zuber [20]. So for electron and photon current operators we have Jp<e(x) = 
g(p e ) ( i7„V — тс)ф(х) and j„ ( i ) = (dl)A„(x), fj, '(k) is a photon polarization vector, 
P« = (л/Р. + ТО2>Р«) denotes the on-mass-shell momentum of particle « = N,d,e and for 
the sake of simplicity of notation following spin and isospin indices of nucleoli, deutcron 
and electron will be omitted. 

According to the reduction technique in quantum field theory [20], the deuteron 
electro-disintegration amplitude (1) can be transformed as 

< °"<;p'jviP'jwlJp'«(o)IPeP,<;*« > = < ои<;р'лг1Р'т|{лР'Л0).ь*р«(0)}|р«|;«п > 

+ijd*xexp(-ipcx) < out;p'N1p'Ni\T(3p.J0)sl.(*))\PS,in > (3) 

where b'p'.(i°) denotes the Heisenberg field operator of the fermion a = e,N with on-
mass-shell momentum p. 

frtp.**0) = J <*3«*p(-4>„*)u-(p„bo*(*) (4) 

The second part of the right side in eq. (3) consists of the second or more highly order 
contributions of electromagnetic interactions. Therefore, we neglect this term and after 
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using the canonical commutation relation for electron fields in quantum electrodynamic, 
we obtain well known formula for the dcuteron electro-disintegration amplitude 

Ud-SN-N- = -£2"(р'г)7м"(Рг)-2 < O"<;PVIP'№II.7M(0)I<W'» > (5 n) 
4 

where q1 = (p'Ni + p'KJ — paj1 is the ]>hoton four-momentum. 
The deuteron photo-disintegration amplitude, according the formula (2), can be writ­

ten as 
/W-JVJV = < out; p'mP'm\J*W\P* in > «iA)(k) (56) 

The deiiteron electron and photon disintegration amplitude (5a) and (5b) are depicted 
in Fig. la and Fig. lb. Note that these amplitudes depend nontriviall only on external 
iiucleons and deuteron three-momenta We suppose that the photon four-momentum 
in expressions (5a) and (5I>) is defiuei' through the momenta of external deuteron and 
nur.leons q = ;>дг, + p'Ni — p,t i. e. photon is defined off-mass-shell so, that q = к but 
<y2 = Д.'2 = О only on-energy-sliell surface. After this definition we call the scattering 
amplitude (5a) and (5b) as half-olT-inass-shell amplitude. For unified consideration of 
deuteron photo and electron scattering reactions we introduce following expression 

ГЫ-N-N- = < ««<; Р'ЛМР'Л'2|;"(0)1Р.(; i» > (6) 

We continue the transformation of this expression on the base of the reduction technique 
of the quantum field theory [19,20]. Thus, after reduction one of nucleons from the "out" 
state we find 

< out,p'NiP'N2\J»W\p<i;in >=< o«<;p'/vil[6PVI(°)'iM(o)]lP^»' > (") 

+ij d*xfxp(-ipx) < out;p'Nip'N1i\T(iif,.N2{0)jl,(x))\ps,in > 

where 4p"N(x) = u(pfi)(i"yvV — тм)Ч(х) denotes the nucleoli current operator and for 
sake of the simplicity we omit the antisymnietiization procedure of identical particles as 
it is done for example in ref. [15,16,17]. 

We substitute the completeness condition of asymptotic "out" states into the second 
term of eq. (7) and after integration over the x variable we obtain 

- E <P'N. W0)l»;out > {2х*Г?п +PV,-P-) <ollt.Ю|Ш]рл> 
u=rfJV/V,. 

m=N,*N,. 

< ouf,p'mp'Ni\j,t(0)\pj;in > = >'jv2.,.(Pwi,Pd) 

!*)3Д(3)(РУ,+РУ;-Р 

1?1П - Pi + В-

(S) 

+ £ < pV,U,(0)K«mt > ( 2 т ) Т ( р , ' ^ " У P,,) < < " " ; ' » W O T W I P - > 



e(p,). 

~X 
dipj 

(a) 

e(p.) 

Щр'т) 

(b) 

- ^ Щр'т) 

— №(?'«; 

Fig.l. Diagrammatic representation of a) the deuteron electron-disintegration 
and b) photo-disintegration amplitude. Off-mass-shell particle here and 
everywhere .below are marked with additional cross. 

U) (b) 

Fig.2. Equal-time commutator (a) corresponding to the simplest one nucleon 
exchange term (11) and (b) corresponding to the four-point Yd-N'N' 
vertex with off-mass-shell photon and one nucleon. 
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where VJV2,M denotes the equal time commutator which in current algebra is called as 
seagull term 

YNIAPNIM) = < P'ml[V«(°)..7».(0)]|p.i > (9) 

This equal time commutator can be directly calculated on the base of simple phenomeno-
logical Lagrangian models as it has been done, for example, for xN and NN scattering 
cases in refs. [14,16,17]. So the current operator for simplest model of electromagnetic 
interaction of jr-meson Ф(х) and nucleoli Ф(х) field operators can be written as 

i„(«) = Ф(х)1(1 + тз)7мФ(*) + ( * ( * ) x ^ | M ) (Ю) 

and using the canonical commutation relations we obtain 

У^1„(Рт,Рн) = й(р'К2)ъ\(1 + г3)ъ<р'тт0)\р^> (11) 

This expression of the simplest equal time commutator for the -yd — N'N' system is 
depicted in Fig. 2a as a t-channel one off-mass-shell nucleon exchange diagram. Besides 
this, a photon-nucleon vertex in (11) is given in tree approximation. By calculation of 
equal time commutators on the base of more general models of meson-nucleon Lagrangians 
other terms arise which could not be represented as tbe off-mass-shell particle exchange 
expressions. These complicated terms represent four-point yd — NN vertices (Fig. 2b). 
According to the dispersion theory [18,19,20] the equal time commutator (9) represents 
the finite number polinom of ps2 four-momentum and consists of one-variable (pm —Pd)2 

vertex functions. 
Relation (8) is the sought spectral decomposition of deuteron electromagnetic disin­

tegration amplitude through the complete system of asymptotic "out" states. Hence, the 
intermediate states and propagators in this relation are defined on-mass-shell. This rela­
tion can be rewritten in a more compact form as Low-type equation. For this purpose we 
single out terms with NN and d intermediate states and define the sum of the rest of the 
terms as inhomogeneous or potential part of Low equation. Thus we get 

< out;p'mp'N2\j„(0)\P<i->»» > = W № U ( P V I , P ' J W ; P J ) 

" E <P'm\vP-m(0)\n;out> ( 2 Т У 1 Р ' ? + Р / 2 " Г в ) < ^ ; 4 ( 0 ) Ь > (12) 

where 
WNtf„(pm, p'jvi; pd) = YN2jll{p'm ,pd) + (2хУ%2 ,„(р'о т , P'JW \Pd) (13) 

and in Vjv2,p we take into account all disconnected parts of transition amplitudes in eq. 
(8), or, in other words, we carry out the cluster decomposition [21] which enables us to 
obtain 

VmAPrntPNt'tPi) = 

- E < P'm\4p-m(0)\n;out >c *?т +P'm - P . ) < m t . n \ m \ p d >c 

_ ± 7 PjVl + Г N2 - &n + К 

б 



ч. г*-*- V • * - > -

<») 

ч 
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• ^ е * -
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(d) 
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(е) 

(g) » ) 
Fig.3. On-mass-shell particle exchange part Уц(Щ ofyd-NN transition potential 

with following intermediate states n' = NA.xd.xNN,...; m = N.nN,...; 
I =р,хя,...; and corresponding set of antiparticle intermediate states 
n = NN.d.NA,...; ih = N,KN,...; f=P.*i. 
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+ £ < O I V „ ( 0 ) K out > S{P'N2 J m ) < out; m, p'm |7„(0)|p, > c 

£ 
=jv,*7?. 

< 0| i^„(0) |n, , iB;oii l > * ( f f w J*"1 У } < oUt;m,p'Wlb„(0)|0 > (14) 

+ £ < Р'л. WO)|m; o«* > c ^ - J » + g < °U < : ml4p'„(0)IP< >c 
m=N,*N.... 

S{P'N,+P'm-P* + Vi) - £ <о\ш\1;о,и> y,7lm~,;4iE <""М,Р'У,1^(О)1Р.>С 
1 = ^ . . . . ' ' ATI + Г Л 2 - J>rf + *" 

+ E < PV.I>,(0)|p./,m;o»< > , * ( f f " ^ l ^ < ou«;fgta,„(0)|0 > 

- E < 0|л,(0)|р..,»;о«« > % т ^ т ^ к ) < o..f,n,p'N1\Vp.n{0)\0 > 

where the subscript "c" denotes the connected part of transition amplitude and the ad­
ditional minus before some terms results from the permutation of nucleoli fields. 

We plot in Figs. 3a-3h the time-ordered diagrams which corresponds to the three-
dimensional terms of Vjvi.,. (14). Thus, the diagrams on Fig. 3a, Fig. 3d, Fig. 3e and 
Fig. 3h describe the fd — NN transition in .«, u,u and s channels. But the diagrams in 
Fig. 3b, Fig. 3g and Fig. 3c, Fig. 3f respect to the -)d — NN transition through the 
transformation of one olf-mass-shell nucleoli and photon in m = irN,... and / = ( i , n , . . . 
on-mass-shcll states. 

In the lowest order the inhomogeneous term WJV2J, (13) contains one nucleoli (Figs. 
2a and 3c) and one anli-nuclcon (Figs. 3d,g) exchange terms. To take into account 
one f),a)-meson exchange terms in the considered approach the connected amplitudes 
< P ' M I V M J O J I P ^ M ' " - ' ) ; 0 " ' > a , u l < <>"<'./>(<'>)'P'JVII4PV!(0)IP'< > should be calculated. 
The construction of these amplitudes is similar to the -yd — NN and d —yNN transition 
amplitudes in which photon is replaced with />(w)-meson. So if in eq. (8) we replace 
on-mass-shell nucleoli momentum with on-mass-shell p(w)-mesons four-momentum, then 
we obtain Low-type equation for p(w)d — N'N' or d — N'N'p(w) transition amplitudes. 

In Fig. 4 the -yd — NN transition diagrams with two-body meson exchange currents 
are plotted. These diagrams are often used for calculations of dcuteron electromagnetic 
disintegration reactions [22,23,24,25,2В]. The analogous meson-exchange currents can 
be easily extracted from the on-mass-shell particle exchange potential V/vj.,, (14). .So 
the diagram from the Fig. 4a could be extracted from the second (Fig. 3b) terms of 
expression (14) with m = xN intermediate state. The diagram on the Fig. 4b is included 
when constructing the deuteron wave function. The diagram on Fig. 4c contains the 
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vertex functions with two or three off-mass-shell particles. Therefore, the contributions 
of this diagram together with the sum of other more complicated terms are included into 
equal time term (9) (Pig. 2b). And finally if we assume that in diagrams on Fig. 4d,e 
only one external nucleon and photon are off-mass-shcll, then the diagrams on Fig. 4d,e 
are included into fourth or seventh (Fig. 3d or 3g) and into third or sixth (Fig. 3c or 3f) 
terms. But if we assume that in the diagrams 4d,e we have a more number of off-mass-
shell particles, then the contributions of these diagrams are included also into the seagull 
term (9) (Fig. 2b) [16,19]. 

3. EQUATIONS FOR THE DEUTERON ELECTROMAGNETIC 
INTERACTIONS AMPLITUDES 

The relativistic Low-type equation (8) or (12) can be transformed in a more convenient 
form of relativistic Lippmann-Schwinger type equation without one-deuteron intermediate 
state. For this purpose let us consider the coupled set of Low-type equations for processes 
of nucleon-nucleon scattering and yd — NN transition in which we keeping only a lowest 
order of e i. e. we neglect contributions from yd — -yd channel. We use also the field-
theoretical spectral decomposition formula for the NN scattering amplitude [15,16,17] 

/N'N'-NN =< out; p'mP'т\%тШРкг > (15) 

This spectral decomposition formula has the analogy to (8) form [15,16,17] in which the 
photon current operator JJfi) is replaced by nucleon source operator VPwi(0) and one-
deuteron "in" state is replaced with one-nucleon state. It must be pointed out that the 
equal time anticommutator in NN scattering potential < p'jviK V«j(")' Чрт(0)}|рл'2 > 
reproduce in exact form the one-boson-exchange model of NN potential [28] if it is cal­
culated in the framework of the simplest meson-nucleon phenomenological Lagrangian 
models [16,17]. 

Thus, the field-theoretical spectral decomposition of NN (15) and yd— NN (8) am­
plitude can be rewritten as a set of coupled Low-type equations 

/„* = Wag + &Gd(E0)U + £ flP,G0.{Eg)f0.0 (16) 

where a,/? denotes the number of coupled channel a,/9 = 1,2 = NN,yd and E0 is total 
energy of asymptotic states fl, 

а**Ь-вГЁ? G><E"^E0-l+U <17"> 
are Green functions of corresponding noninteracted systems and we have used the follow­
ing definitions for multichannel amplitudes 

, _(<out;p'N1p'Ni\f}PH,(0)|p« > < out;р'тР'кг\М0)Ы»'« >"\ / i 7 n Ja*-\<out;p'll\jl,(0)\pNtpm;in> 0 J V l ' 

fja=(<P'<\%N,№\PN>>\ n7c) 
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The inhomogeneous term HVi of NN system is defined in our previous works [16,17]. By 
the construction of W2>\ we use the complete system of "out* states and if for sake of 
simplicity we omit the s channel singularities in Wa0, then we obtain 

WWP'JVI. P'WJ! Pd) = W^p's, pNi,pm) (18) 

Then following the refs. [15,16,17] one can show that the system of the relativistic three-
dimensional equations (15) can be linearized. Thus, we can construct following set of 
Lippmann-Schwinger type equations equivalent to eqs. (15) 

ta0(E) = Ua0(E) + £ Ua0.(E)G0,(E)t,,.0(E) (19) 

where on-energy shell surface solution of eq. (18) coincides with solution of eq. (16) 
он energy iMt = lap and the linear energy depending potential is singlevalued 

determined with the inhomogeneous term of eqs. (16). 

Ua0(E = E0) = Wo0 (20a) 

Ua0(E) = Aa0 + EBa0 (206) 
where Aa0 and Ba0 are hermitian matrices which are constructed according to eqs.' 
(9),(13),(14) for the -yd — NN system and in [15,16,17] for the nucleon-nucleon case 

Now it is easy to derive the explicit expression for the sought deuteron electromagnetic 
disintegrations amplitude ti>2 and t^ through the nucleon-nucleon wave functions and 
•yd — NN transitions potential (20a,b,c) and (13) 

< P'wi. P'wal W^ivwOIP* >=< * P ' „ . * ' « \Uv2№w)\Pi > (21) 

< p'd\tME*)\p< >=< «p<Jt/i<2(S*)|p,< > (22) 
where < *p'w,,pVa | and < Фр-J axe continuous and discrete wave functions for pure NN 
interactions which are defined by 

< *PVI.P'«JPNI>PJW > = < P'ATHP'WIPW.PM > + 

1 
^>«i.Pwa ~ ^T>*j»i.P'm + *e 

< P'wn Р'т\Ъч{Ер>н„р'т)\Рт, Pm > (23) 

< *Р^1РЛГ1,Р« >= •= = < р*\Тгч(Е*)\рт,Ркг > (24) 
*" ~ 'VmJP'm 

where 7i,i is the solution of relativistic Lippmann-Schwinger type equation for NN scat­
tering problem [16,17] with Uv,i potential 

Tvi(E) = UV1(E) + UV1(E)GNN(E)TV1(E) (25) 
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The nucleon-nucleon wave functions (23) and (24) satisfy completeness conditions 

/ «^PAfi^PJVjI'pwi.pwa > < *PwiiP»2 | ^ - | Ф p , > < * p J = ( l - B r , ) - , (26) 

Besides this, the hermitian potential (20a,b) provides more general completeness condi­
tions for the solution of multichannel equations (19) 

<Я{ £ \Фа><9а\ + \Ф,хфЛ\0>=(\-Врр (27) 
*-a=NN,*d ' 

where 
< Ф„|/? > = < /3|o > +G0{Ea)t0a(Ea) (28«) 

< Ф„|/9 > = G0(Ed)t0i{Ed) (28b) 

Equation (23) and (24) represent our final result for the relativistic and three-dimensional 
amplitude for deuteron electron (Fig. 5a) and photo (Fig.5b) disintegration reactions. So 
if we multiply the equation (23) on the —e2u(p'e)7^u(pe)<7-2 or on the photon polarization 
vector, then according to eq. (5a) or (2) we obtain the amplitudes of ed— N N or yd— NN 
reactions. If instead of N'N' final states we consider one-deuteron d1 state, then eq. 
(24) enables us to calculate the deuteron form-factors for the transitions ed — e'd1 and 
•yd — d1. In contrast to the other relativistic approaches the suggested formulation of 
coupled ed — e'd^d — dfffd — N'N' and ed — e'N'N' reactions possesses the following 
attractive features: 

1. The sought relativistic invariant amplitude (6) or (23) and (24) depend only on 
the three-momenta of on-mass-shell final two nucleon and initial deuteron. All transi­
tion amplitudes in basis formula of field-theoretical spectral decomposition (8) as well 
as other relations for sought amplitude are defined through the renormalized, physical 
matrix elements. In particular, the on-mass-shell particle exchange term VJ, (14) con­
sists of transition matrix elements between nouf and "in" states and Green functions 
of noninteracting real particle. The equal time commutator (9) contains the corrections 
coming from the renormalization procedure [16,19] in every order of perturbation theory. 
But in the final form we can assume that this commutator is expressed through the finite 
physical form-factors which are independent of the renormalization procedure. 

2. In the effective potential of Low-type equations and their linearized representation 
the on-mass-shell and off-mass-shell degrees of freedom are separated from each other. 
Thus all on-mass-shell particle exchange terms are included into l^ (14) and nontriviai 
off-mass-shell contributions Are contained in the equal-time commutator (9). Besides this, 
in suggested the formulation, as well as in other three-dimensional approaches [5,6,7,16], 
the anti-nucleon degrees of freedom are separated. 

3. By calculation of Low-type equations (12) as input vertex function one can take 
the seagull terms (9) and vertex functions < р'лп|5?р„,(0)|Рс1 >, < P'N\JA®)\PN >, 
< "|^Pwi(0)|p'jvPd; in >, < oa<;p'JVPi5f|j/1(0)|0 > etc. It should be pointed out that all 
these matrix elements are expressed through the one-variable vertices. 
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(a) (b) 

- i r-

(O (d) (e) 

Fig.4. The dominant ineson-cxchangc current for two nucleon system a.b) nonstatic 
corrections to the one-body current c, d. c) the leading order «wo-nucleons 
current in static limit. 

%; ( %.) « П Vx, 

(a) (b) 

Fig.5. Diagrammatic representation of a) Yd-NN transition amplitude given 
by cq (23) and b) Yd-d vertex function, as it is defined by cq (24). 
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All relations for the coupled -yd — NN or erf — e'N'N' channels amplitudes which 
are derived in this paper, imply an obvious generalization for the more complete case of 
coupled yd — NN — ltd— AN — Д А channels. The base of this generalization is the 
three-body relativistic theory of coupled AW — rNN systems [29]. In ref. [30] the recipe 
of building relativistic equations is suggested for coupled NN — rd— AN channels as well 
as the ordinary set of coupled two-body equations. 

4. GAUGE INVARIANCE 

Let us consider the gauge conservation problem for the final form of -yd scattering 
matrices (5a,b) and (6) with off-mass-shell photon. It is clear that for this it is enough 
to check the gauge invariance of initial expression (8) of spectral decomposition of half 
off-mass-shell -yd — NN amplitude (6). Thus, if we take into account the photon currents 
conservation condition 9"_>„(i) = 0, then we obtain 

dj»2 = Дш,.2 = < p ' M l [ V « ( ° b i o ( 0 ) ] | p , , > 

-«' Y, <Р'т1'?р'„(0)|п;ои*>(25г)3й ( 3»(р'л„+р'лг2-Ря)<в"<;пЫ0)|р1 <> (29) 
n=d.NN,... 

+« Л < P'm |j'o(0)|m;out > (2x)36i3\p'N2 -pd + P„.) < out; m\rip.N2(0)\pd > 
m=N,*N,... 

where 6p(i°) = d/diPbp{x0) = -r/rf3xexp(ipi)u(p)7/(x) 
Hence, from the expression (8) we see that for the amplitude of deuteron photo disinte­

gration reactions, which is independent of the zero components of photon field operators, 
the invariance under the gauge transformation for every choice of intermediate states in 
relations (8) and (29) is valid. Therefore, the photon-deuteron scattering amplitudes (23) 
and (24) with real photon field in asymptotic state is gauge invariant for arbitrary set 
of intermediate states. But for the electron-deuteron reactions the gauge invariance is 
fulfilled only by an infinite set of intermediate particle in eqs. (8) and (29). 

As the simplest way to restore the gauge invariance for the ed scattering amplitude (6) 
with a finite number of particle in intermediate states, we suggest the following redefinition 
of /i<j (6) amplitude 

In = fi-2 ~ V - 5 A u , i ' 2 - (30) 

The additional term in (30) vanishes if we take into account in (8) and (29) the infinite set 
of intermediate states. But for the finite number of intermediate states in eq. (8) and (29) 
the redefined amplitude (30) insure the gauge invariance. Unlike to the gauge restoring 
recipes of refs. [1,2,3], in the formula (9) we have modified only zero component of current 
matrix elements. This modification corresponds to the redefinition of Uyt(E) potentials 
in resulting expressions (23) and (24) of electron-deuteron scattering amplitudes 

0VI(ENN) = UV2(ENN) - S^&wtv (31) 
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After these redefinition the expressions of amplitudes for the reactions ed — e'tf and 
ed — e'NN (23) and (24) would be gauge invariant by every choice of intermediate states. 

5. TEST FOR THE INTERMEDIATE PARTICLE NUMBER RESTRICTION 
IN MICROSCOPICAL POTENTIALS 

Relation (29) presents an identity for equal time commutator of current operators 
and its matrix representation between complete set of "out" and "in" states. But for a 
finite set of intermediate states which will be, as a rule assumed by practical calculation, 
such a type of identities one could consider as an additional requirement for input vertex 
functions by construction of potential in the equations suggested. If we single out one-
particle exchange terms in expression (29), then we get 

<Р'м1[Ьр'„(0),^(0)]|р^>=^(р'тР'«;Р<) + » £ {•••} (32) 
п=4,ЛГЛГ 

-«Е{-}+'£{-}+<£{-}-«Е{-Ь<Е{-}-«Е:{-} 
where the exact expressions of one intermediate particle terms inside of the curly 

brackets as well as the representation of sum of all other multi-particle intermediate 
terms which we have denoted as rest part 1ZM are derived from (29) after using cluster 
decomposition [21]. In fact, these expressions differ from the corresponding terms in VJ, 
(14) with only free Green functions in (14). 

The second term of the right side of identity (32) contains the sought amplitudes of 
•yd — d1 and id — NN transitions with off-shell photon field. But using the completeness 
condition (27), these «-channel terms can be rewritten as 

£ {/,l/.2}= £ wXa-B^wv» (зз) 
where we have used the following conditions 

faP = £ < * . |7 > *•# /*> = £ < * < | 7 > И ^ (34) 

Now substituting eq. (33) into identity (32) we obtain 

KiP'mP'N2;P*)=<P'Hi\[bp-m(°)>3*(0)}\P4>+i £ wfol-BftK* (35) 

+<£{HE{} (£{H£{-H£{}+<E{-} 
The relation (35) one can consider as a test for the verification of limitation of intermediate 
particles number by construction of VM (14) in the framework of one-particle exchange 

1» 



model. So if in eq. (35) H¥ — 0, then we can suppose that our choose of strong and 
electromagnetic vertices functions is successful. This requirement can be easily used if 
we allow for, that equal time commutator in (35) consists of one-variable t = (pj — 
Pm)1 vertices and other terms in (35) as well as Уи (14) are nontrivial functions of more 
complicated variables. 

6. CONCLUSION 

The main achievement of the considered field-theoretical three-dimensional construc­
tion of gauge-invariant currents for scattering reactions is that here from the beginning 
as input functions one-variable relativistic invariant vertex functions are required. So the 
two-particle irreducible potentials NN—NN and fd—NN reactions consist of equal-time 
commutators and on-mass-shell particle exchange terms which can be constructed directly 
from the phenomenoligical one-variable vertex functions. The analogical structure also 

' has additional AW potential (29) which insures the gauge invariance for electron-deuteron 
scattering reactions. The equal time commutators in the considered potentials were the 
subject of investigation of current algebra [20,21]. Thus, these parts of potentials satisfy 
the corresponding sum rules and have the well known asymptotic behavior. Moreover, in 
the suggested formulation we can estimate the fitting vertices and effective potentials on 
the base of additional condition (35). This condition must be satisfied if the restriction 
of particle numbers in intermediate states in effective potential of solving equations is 
justifiable. 

The author thanks V. V. Burov and M. P. Rekalo for stimulating discussions and M. 
V. Aristarkhova and M. Popkovan for their assistance in preparing this manuscript. 
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