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The study of phenomena occurring in hot nuclear systems in the frame­
work provided by the nuclear many body theory has attracted attention of 
many authors ref.[l-7]. The problem of particular interest is collective exci­
tations in these systems and their dependence on the temperature T\ It is 
well proved for cold heavy nuclei that the main part of the width of collec­
tive giant resonance states is due to coupling of the RPA - states with more 
complex ones like 2p-2h or four quasiparticle or two phonon states ref.[8-10]. 
The same idea has been explored for giant resonances in hot nuclei as well 
[2]. But comparing the theoretical results with experimental data shows the 
discrepancy between both (see, e.g. the discussion of the problem in [6]). So, 
new attempts to resolve this problem seem to be desirable. 

We formulate here an approach based on extension of the quasiparticle -
phonon nuclear model (the QPM) [8, 9] to T ф 0. The QPM gives reasonable 
description of spreading widths of giant resonances and other resonance -
like structures in spectra of heavy nuclei at the excitation energies Ex < 
20 — 25 MeV. Distinctive features of the QPM are the schematic (namely, 
separable) residual forces and the use of the RPA phonons as elementary 
blocks to describe excitations in even - even nuclei. Both ingredients simplify 
drastically formulas of the model as well as numerical calculations within it. 

To extend the QPM to T ф 0, we explore the formalism of the thermo 
field dynamics (the TFD) [10]. The main idea behind the TFD is to define 
a thermal vacuum |0(|3)) such that the thermal expectation value of any 
operator 

<А^щ^ЩТг[Лехр{-т 

(/J = T - 1 ) equals the expectation value with respect to the thermal state 

< A > = <0(/?)|A|0(/?)) . 

The extension of quantum field theory at T = 0 to finite temperature 
requires a doubling of the field degrees of freedom. In the TFD, a tilde 
conjugate operator A is associated to any operator A acting in ordinary 
space through the tilde conjugation rules 

{AB) = AB ; (ctA + сгВ)~ = c\A + c'2B , 

where A and В stand for any operators and ci , c2 are c-numbers. The 
asterisk denotes the complex conjugate. The tilde operation commutes with 
the hermitian conjugation operation and any tilde and non-tilde operators 

1 



are assumed to commute or anticommute with each other. For any system 
governed by the Hamiltonian H the whole Hilbert space now is spanned by 
the direct product of the eigen states of H and those of the tilde Hamiltonian 
H having the same eigenvalues. The time - translation operator is not the 
energy operator H but the thermal Hamiltonian H — H — H. This means 
that the properties of the system excitations are obtained by the diagonal-
ization of "H. Since the TFD includes temperature as well as the space and 
time coordinates, there appears, in addition to these operator relations, a 
relation which determines the temperature. This relation is called the ther­
mal state condition and it determines the thermal vacuum (or temperature 
dependent vacuum) |0(/3)) which contains the thermally excited particles. 
This condition has the form 

a{x,t)\0(p)) = aaa+(xj - Щ/2)\0ЦЗ)) , 

where aa is a certain phase factor. The Heisenberg equation, equal - time 
commutation relations, the tilde conjugation rules and the thermal state 
condition form the basic relations in the TFD. 

Now we apply the outlined formalism to hot nuclear system governed by 
the Hamiltonian of the QPM. This Hamiltonian consists of the average fields 
for protons and neutrons, the monopole pp- and nn- pairing interactions and 
the separable multipole particle - hole interactions consisting of the isoscalar 
and isovector parts 

H — # , p + HpaiT + Hvh 

Within the QPM, one follows the standard way of transformation of the 
Hamiltonian of a system of interacting nucleons to that of interacting ele­
mentary excitation modes. The first step along this way is the Bogoliubov 
transformation from the creation and annihilation operators of particles and 
holes to the creation and annihilation operators of quasiparticles. To take into 
account the influence of temperature, we have to make additional canonical 
transformation to the operators of thermal quasiparticles that will annihi­
late the thermal vacuum (such operators have to exist due to the thermal 
state condition). So the final form of the transformation from the nucleon 
creation and annihilation operators a , a+ , a , a + to thermal quasiparticles 
/? ,/3+ , /3 , #+, which have |0(#)) as a vacuum, is the following [5, 11, 12] : 
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(1) 

A = Xj 

To find the coefficients Uj,Vj,Xj,yj, we minimize the grand thermody­
namic potential ft = (0(/9)|W|0(/?)> - TS ( S is entropy of the system) for a 
system of nucleons governed by Hamiltonian H = H,p + Hpair at T = const. 
In other words, we find the condition of thermal equlibrium for a system. 

After variation of ft over u,-, Vj,Xj,yj, we obtain for the coefficients Uj, u,-
the relations that are well known in the theory of nuclear superfluidity at 
T ф 0 with the Hamiltonian of Bardeen - Cooper - Shrieffer (see e.g. ref.[13]) 
and for the coefficients х,,у, the following expression : 

Xj = y/l - щ ,yj = y/n] 

where n,- is the thermal Fermi occupation number 

1 
П'~ 1 + txp{0ej) 

(£j is the quasiparticle energy). 
After the transformation (1) to the thermal quasiparticles the thermal 

Hamiltonian of the QPM takes the form 

- 5 E E (*&A> + pk[X)){Mtir)MUpr) - MA+(г)МлЛрг)} , 
A<i T , , . = ± 1 

where 
( - > A-M 

+(-)*-"Al)(jj'; A - A*)1+ Bptii'; AM)} (2) 
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Щзз\ V) = 

Bpijj'; ЛА*) = 

+ u<+ )
v^rH- v /n7([ /3+ n J3 i .m , ]A B + ( - ) * - 1 / w ; m ' ] A - „ ) 

In these formulas we use the following notation: / : . , is the reduced single -

particle matrix element of the multipole operator; the coupling 
constants of the isoscalar and isovector multipole - multipole interactions, 
respectively; u.t, = UjUj» + uyw,- , «." = UJUJ — Vj-Vj. The index r is an 
isotopic index and takes two values, т = n,p. So the symbol £ T means that 
the summation is taken only over neutron or proton single - particle states 
and changing the sign of т means changing n *-» p. The square brackets 
[ ]ли stand for the coupling of single - particle angular momenta j,j to the 
sum angular momentum A. The bar over lower indices Jrn denotes the time 
reversal state. 

One can easily see from (2) that the structure of the thermal Hamiltonian 
H in terms of the operators /3+,/3, /?+,/9 is the same as of the Hamiltonian 
H in terms of the Bogoliubov quasiparticles a+,a (cf. [9]). The main differ­
ence is redefinition of vertices corresponding to terms of the same operator 
structure. For example, the coefficient at the term Aj}(jij2» A/t)A^(j3j4; Xfi) 
depends now not only on the superfluid particle-hole factor vr£J2 as at T = 0 
but on the particle - particle (or hole - hole) factor w}"^ as well. The thermal 
vacuum |0(/3)) now formally plays the role which is similar to the role of 
the quasiparticle vacuum at Г = 0. So further derivation can be done in a 
parallel way with the T = 0 case (see also [4, 5, 12]). 

Firstly, we introduce a thermal phonon operator and redefine the thermal 
ground state as a phonon vacuum |Ф0(/3)): 

a' 
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<?,l*o(/?)> = О 
Then we suppose that the standard assumptions of the RPA are valid, 

namely, the number of thermal quasiparticles in the new vacuum state |Фо(/?)) 
is negligible and thermal phonon operators commute : 

(M№!mhm\MP))*o 

(*оШЯ^ ,Q£V..']IW)> = 4Л<*«' 
With these assumptions it is easy to find the following constraint on the 

bifermionic amplitudes of the thermal phonon: 

\ £ ( * # ) ' - ( ^ ) 2 + «>$? - { & + 2 (^ - ) 2 " 2 ( ф 2 = 6XX.6U, (3) 2 
и 

The energy U>A,- of the one-phonon excitation Qt,ii№a(0)) *nd the ampli­
tudes ф, ф, n, ф, ф, С can be found by minimizing the expectation value of "H 
with respect to the one-phonon state at the constraint (3). The correspond­
ing formulae can be found in [12] (they have been derived by other methods 
in [13, 15] as well). 

Making the inverse transformation from the operators Q*^, Qx^i to bifer­
mionic operators [/?I"/?J]A»< etc. with the RPA values of the amplitudes ф, ф, п, 
ф, ф, £, we get the following expression for H in terms of thermal quasiparti­
cles and phonons: 

Xfii 

i / ( A ) 

- Л Е Е Г - 4 {((-)A-"Qt, + Qx-M(jj; A - A*) - (4) 
ZV* Apt г tf yJAI* 

- ((-)A_"0t. + Qb-mtffiUj', A ~ /0 + h.c.} 
In (4) we introduce the tilde operators QA,« яа^ Bpdj ; A — /z), for conve­

nience. JV^ ' ( T = niP) a r e something like normalization factors of the neutron 
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and proton parts of the one-phonon wave function. The smaller is the value 
of Л/"*' \the higher is the collectivity of the phonon. 

The second term in (4) (we denote it by Hgph) is the interaction term of 
thermal quasiparticles and thermal phonons (i.e. phonons built of pairs of 
thermal quasiparticles). This term mixes the states with a different phonon 
number, and due to this mixing the strength of the RPA-state is fragmented 
over some excitation energy interval. In other words, the term Hqph produces 
a spreading width of a thermal one-phonon state. 

To describe the fragmentation of thermal phonons, we use the variational 
method with a trial wave function of the form: 

+ £ ^(J")[«.«u«t««]JJ#}l»o(W (5) 

So we take into account the effect of the interaction between phonons 
on excited states but not on the vacuum state which is supposed to be the 
thermal phonon vacuum |Фо(у8)) as before. The wave function (5) has to be 
normalized 

£ ( f t ( . b ) ) 2 + 2 £ (Pt£{J»))2 = i (6) 

To find the energy of the state (5) r\jv and the coefficients J2, P , we again 
minimize the expectation value of H over |ФД JMv)) at the constraint (6). 
Note that the term H„h didn't contribute to the expectation value of "H over 
a one phonon state (i.e. in the random phase approximation). We have 

(»„(JAO|W|«„(JM)) = 5 > J J № ( J I / ) ] 4 
i 

+2 £ Кп+^МР&'О^р + гХ; £ Wv^VvWl&Vi) 
(7) 

where 

U$£(Ji) = ( « o W I Q j M i W ^ Q j . ^ Q t ^ JJM!*o(/3)> = 

= UJ&(Ji,n) + U}£(Ji,p) 
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is the coupling matrix element of one- and two-phonon configurations. The 
function U\£(Ji) is a quite complicated bilinear form of the phonon ampli­
tudes ф,ф,Т1,ф,ф,(, namely: 

и££(л,т) = -^V^AT+TV^AT+TX 

„ Г т L_V/pA2»2 1 ^2 ^1 J \irMilJi, 

Where 

«ЗИЛ = ^ V ^ n , 7 v T ^ n S - ( - ) * + i i + * - « x 

v / , / ,AiH/-Ajij , jAifi-Ajij , Ani IA2ti • /-Al'l-/JAjiJ \ 

- и < + ) /nT*/T~=rnZ(—)X2(C*lilil>>t2*2 + пХ1**6Х2'2 + ^ , ! , n A , P + t6A l*VA j . '»)-
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After variation of (7) at the constraint (6) one gets the homogeneous 
system of linear equations with the coefficients depending on energy J/J„. The 
system can be resolved if rfj„ is the root of the following secular equation: 

Equation (8) for the energies of excited states built on the thermal ground 
(compound) state of a hot nucleus together with the expression for U]££(Ji') 
is the main result of the present paper. Formally, eq.(8) has the same form 
as at T = 0 (see, e.g. [9]). The difference is that now UJ££(Ji) depends on 
the temperature through the thermal occupation numbers (not only directly 
but through the amplitudes ф,ф ,») etc. as well). Moreover, the energies of 
one-phonon states a^t are calculated in the thermal RPA and the number 
of phonons of given multipolarity at finite temperature is twice as large as 
at T = 0 because of new poles е, — ey which appear in the thermal RPA 
equation. 

In [12], we have derived the expressions for the thermal RPA amplitudes 
ф,ф,т),ф,ф, £. In the leading order the non-tilde amplitudes ф,ф are pro­
portional to (1 — rij) , the mixed amplitudes r/, £ are proportional to n/ and 
the tilde amplitudes ф, ф are proportional to rij. So, at T —» 0 only the terms 
containing ф, ф will survive, and, as a result, one gets for UJ£g(Ji) the same 
expression as in refs.[8, 9]. It means that there is a natural correspondence 
between the results of our approach at T ф 0 and at T = 0. 

In the above-stated consideration, we followed quite closely the way out­
lined in [4, 5]. The difference from, e.g. [4], is due to a specific form of a 
residual interaction (which is now taken to be separable for simplicity) and 
the phonon language when we go beyond the thermal RPA. It seems inter­
esting to clarify in detail what is the difference between the second thermal 
RPA approach of [4] and our way to take into account the coupling with 
comlex configurations by mixing one- and two- thermal phonon states. 

But it seems that the present TFD approach to the damping of nuclear 
excitations at finite temperature differs quite noticeably from that of papers 
[2, 3]. In those papers, the Matsubara formalism has been used but the main 
point was that the thermal particle - hole and the thermal phonon excita­
tions have been considered on equal footing, i.e., both systems were heated 
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and both Fermi and Bose thermal occupation numbers came into play, re­
spectively. In the TFD approach, the thermal phonons are formed of the 
thermal quasiparticles but the phonon system itself is not heated and, there­
fore, Bose thermal occupation numbers didn't appear in our consideration. 
Certainly, one can project the initial Hamiltonian from bifermion to boson 
space using some kind of boson expansion and only after that make the T F D 
transformation. This way has been discussed by Hatsuda [5], for example. 
Then, Bose thermal occupation numbers appear naturally but the structure 
of bosons has to be calculated at T = 0. This is not the case e.g. in [2] where 
the structure of phonons have been calculated in the thermal RPA. It seems 
to us that this is a kind of double counting. 

In conclusion, we have considered the TFD extension of the quasiparticle 
- phonon nuclear model to a finite temperature. Using the thermal Bogoli-
ubov transformation we have derived the thermal QPM Hamiltonian "HQPM 
and then expressed it in terms of thermal quasiparticles and thermal RPA -
phonons. At the last stage, we have diagonalized it approximately within the 
space of one- and two- thermal phonon states. We have derived an expression 
for the coupling matrix element between thermal phonons and an equation 
for the energies of excited states taking into account the interaction between 
one- and two thermal phonon configurations. 
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