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1. INTRODUCTION 

One of the basic quantum-mechanical problems, namely the hydrogen atom in electro­
magnetic fields, has been of great importance for the progress of quantum theory and is 
still of significant interest because of its numerous physical applications. Л large number 
of publications dealt with partial aspects of the problem. The present paper is devoted 
to the solving of the three-dimensional Schrodinger equation for the electron of the hy­
drogen atom in external magnetic В and electric F fields of arbitrary mutual orientation. 
Although the problem has a history as long as quantum mechanics itself, only a few 
quantitative results have been obtained for the special cases of mutually parallel and or­
thogonal weak fields in the framework of perturbation theory. Initially, the problem was 
studied within the old quantum theory by Epstein ( cf [1]) and its quanta! treatment was 
given in [2]. In both papers the first order of perturbation theory was considered for weak 
fields В and F of arbitrary mutual orientation. The second-order formulae for the cases 
of parallel В \ \ F and orthogonal В _L F fields were obtained in [3] and an equation for 
an additional second-order correction, which may completely lift the residual degeneracy 
of hydrogen levels for the case В X F, was analyzed [4]. The higher-order corrections 
B2F2 and B2F* to the ground state of the two examples В \\ F and В L F were com­
puted in [5]. We also have to mention a quasi-classical analysis of the problem for В _L F 
[6]; this work offers a qualitative investigation of an interesting possibility where within 
the hydrogen atom the electron may be localized separately of the nucleus at a certain 
distance from the center of the Coulomb well, which gives rise to a large dipole moment 
of the ground state of the system. 

In the general case of arbitrary mutual orientation of the fields the separation of 
variables is not possible. To solve this three-dimensional problem we use a method sug­
gested by us in an earlier paper [7] . This approach has been applied to a number 
of two-dimensional examples, both for scattering and for the discrete spectrum of the 
Schrodinger equation. In particular, it has been demonstrated that the method converges 
quickly for the two-dimensional problem of a hydrogen atom in a homogeneous magnetic 
field [7] . An extension to a three-dimensional cose, taking as an example a bound state 
of the helium atom, has been considered in [8]. 

In Section 2, the formulation of the problem and the essence of the applied method are 
presented. In Section 3, we consider a two-dimensional special case which is at present 
being investigated extensively, namely the hydrogen atom in a strong magnetic field 
(| В |> 109G, F = 0). Apart from the known applications in astrophysics, solid state 
physics and in chaotic studies (discussions of physical applications may be found in [9— 11] 
and references therein), the problem has recently attracted attention as a convenient way 
of calibrating different approaches for solving the Schrodinger equation without separation 
of variables. By modifying the strength of the magnetic field | В | it is possible to change 
dramatically the wave function of the system, from Coulomb (| В |= 0) to Landau 
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(I В |= оо) limit. For solving the problem, variational methods ([12], and reference 
therein), adiabatic approach [13], modified Hartree-Pock approach [14], finite clement 
methods [15),[16] and Kato's method (17], have been applied recently. Only a Tew of the 
most successful analyses using different approaches are mentioned here. A complete list 
of publications devoted to this problem one can find in the papers quoted above. The 
accuracy achieved by a recent, more refined method [12] for the ground state is better than 
1 part in 10T for fields | В |~ 10"G and better than 1 part in 10 i e for | В |< ICG, which 
allows one to take into consideration relativistic corrections as well. We demonstratr 
that our approach is comparable in accuracy with the advanced variational finite-basis 
method [12] for the ground state of the problem and that it is more accurate for some of 
the low-lying states to be analyzed here. 

An extension of the approach to the general three-dimensional case of nonzero fields 
В and F arbitrary oriented one to another is given in Section 4, where the evolution of 
the electron state n = 2 as a function of the angle a € [0, f] between the fields and the 
relative strength 77 = 5jM of the fields is analyzed. For the limited cases a = 0 (F || fi) 

and a = 5 (F X B) the obtained results agree with perturbation theory [3], [4). 'Die 
convergence of the method is demonstrated for these two mutual orientations and for 
different relative strengths (n < l,n = 1 and 17 > 1) of the fields. 

In Section 5, possible applications of the obtained results and a possible extension of 
the usage of the method are discussed. 

2. FORMULATION OF THE PROBLEM A N D METHOD OF 
CALCULATION 

The nonrelativistic Hamiltonian of a hydrogen electron in external electric F and 
magnetic В fields has a form: 

H(R,0,,f,) = -1-Aii-L+

1-(B-L)+1-[e-R¥ + (F-R), (1) 

where R = {R sin в cos <j>,R sin в sin ^,Л cos $} is the radius-vector of the electron and L 
is its orbital angular momentum. The Hamiltonian is written in atomic units, h — e = 
m e = 1; the units of the electric and magnetic fields strengths are equal to Fo = *-$*• — 
5.14 • 108VIcm, Bo = (f )3тг

ес ~ 2.35 • 109G. 
We introduce a coordinate frame in such a way that the vectors В and F, which form 

an arbitrary angle a, determine the plane у = 0 and the z-axis coincides with the direction 
of the field B: 

B = /3 -n B , F = i-nF, 

where йв = {0,0,1} and np = {sina,0,cos«} are unit vectors, and /J and 7 are the 
strengths of the magnetic and electric field, respectively. In this case the Hamiltonian is 
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reduced to the form: 

И1Л.Ф.Ф) = - i g j i * i + Щ Я . » , Ф ) + J L • адл (2) 
where 

sin» oS сю атвдф2 

U(R,8,4>) = -— - i - ^ + a sin 2 g + 7 f i ( s i n g c o s ^ s i n a - c o s g c o s a ) , 
К 2 v0 о 

An essential point of the method [7] for solving the Schrodinger equation with the 
Hamiltonian (2) is the reduction of the partial differential equation 

{Н(Х)-е}ф(Х) = 0 (3) 

in the multidimensional space X = {R, il} to a system of differential-difference equations 
in terms of one of the variables R. To make the procedure more efficient we have exploited 
the idea ( has been developed in collocation [18], [19] and pseudospectral methods [20], 
[21]): for approximating the unknown wave function ф(Х) that is to be calculated, we 
use a set of global basis functions on a difference grid CI/, (and not a local pointwise basis 
as used in the standard discrete analysis of finite differences or finite elements). This 
idea has already been successfully applied in quantum chemistry to solve Schrodinger 
type equations ( "discrete variable representation" of J.C. Light et al. [22 — 24]) and 
Hartree-Fock equations ("pseudospectral method" of R.A. Friesner [25],[26]), where hybrid 
computational schemes based on manipulating a basis set and a physical space grid have 
been developed to increase the efficiency of computations. 

Below we give a brief account of approach [7] with more detailed consideration of 
the peculiarities of problem (2). In space X subspace fi is defined and from the the D-
dimensional Hamiltonian (3) a D — 1-dimensional Hamiltonian h0(U) with an orthogonal 
set of eigenfunctions <fin(Sl) is extracted: 

H(X) = - ^ — R 2 - ^ + U(R,n) + f(R)-ho(m. (4) 

In subspace Q a difference grid fit (k=l,2,...,N) is introduced, in whose nodes the values 
of the wave function that is to be calculated are 

^ ( Д , П ) ^ ^ ( Л , П * ) = ^ - Л ( Й ) - (5) 

Furthermore, a discrete index v (f=l,2,...,oo) is introduced, which corresponds to the set 
{/<} of quantum numbers that characterize the system of basis functions у>д(П). Now 
the set of the first N eigenfunctions p„(fi), ( f=l ,2 N) of the Hamiltonian Л0(П) at the 
nodal points ft* forms a square matrix <£*„ = {^(ft*)} of dimension N x N . Assuming 
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the system ipv(Sl) to be a Chebyshev set on Я [27] we introduce the inverse matrix ^>k' 
and represent the wave function ф(Я, ft) we want to calculate as an expansion 

. ЛГ N 

in terms of the basis functions v>„(0). 
For this expansion relation (5) is fulfilled automatically, and the following relations 

1 W 

(М«ЖЛ>0))п=п4 = р ^ Е ^ ' ^ ' ^ ^ й ) (Л 

. N л- . 
( Щ Я , П Ж Я , П ) ) П = П 4 = - ^ ' ( Д а д ^ ^ - ' Щ Я ) = -1/(Я,П*)&(Я) (8) 

are valid. Here e„ is the eigenvalue of the Hamiltonian ho that corresponds to the eigen 
function <pr(tl).' By substituting expansion (6) into the Schrodinger equation (3) and 
using relations (7) and (8) we obtain a system of N differential-difference equations: 

where 

JV 

Vki(R) = U(R,fi*) • 4y + £ VtoWZj-

In [7] it was shown for the two-dimensional case how equations (9) may be transformed 
to the equations of the "discrete variable representation" [22]. 

Following paper [28], we formulate the eigenvalue problem for the system of Eqs. (9) 
as a nonlinear equation F(z) = 0 for an unknown eigenvalue e^and eigenfunc.tions фк{Щ, 
z = {£,^)s(/{)}, by adding to the equation Fi(z) = 0 boundary conditions at R = 0 and 
R = Rm —> oo and a normalization condition: 

*»(*) = *t(0) = 0, F3(z) = ^ ( Ц . ) = 0, 

FA(z) = Y, I ЫЩФ№№ - i = o . (10) 
hi J 

In approach [28] both the eigenvalue and the scattering problem for the system of 
equations (9) are formulated as a functional equation F(z) = 0, which is solved by New­
ton's method. So, the same computing technique can be applied for calculating the bound 
states as well as the ionization of a hydrogen atom by the electric field. 
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Let as formulate problem (9) ,(10) for a hydrogen atom in arbitrary oriented magnetic 
and electric fields (2). For this case it is convenient to define subspace П as a rectangle 
П = {х,ф}, where i = — cos в € [—1,1), ф 6 (0,2т], and to choose the Hamillonian Ao(fi) 
as Ь(х,ф) with basis functions <p„(fl) defined by 

vv(O) = / n * ) { c o s m 0 ' m - ° sin | тф |, m < 0, 

where P™(x) are the associated Legendre polynomials, v = {I, m]. 
We will look for the wave function ф(Я, fi) as an expansion 

(11) 

, N N 

Ф(п,п) = -^(^лт^)(Фля)+^ли)) da) 
j = i i/=i 

containing both real i/>j{R) and imaginary i>j(R) parts. 
By substituting this expansion into the Schrodinger equation (3) with Hamiltonian 

(2) we obtain a system of differential-difference equations 

F l z ) = j ELfew + Wye-н>(Я))Шй) + ELЫ*Шв) \ = 0 ,,.,, 

where 

VkiW = i-J + {^f~ • (1 - 4) - 7Й- ( 0 - 4 • cos^sina - .rtcoso)} • ikj 

1 N 

+2ff- £ ' ( ' + 1 ) ' № - Л Л (») 
i/={l,m }=1 

In those equations the summation indices take the following values: 

к = {ке,кф}, ks = \,...,Ng, кф = 1, ....Л/^; 
i = {ie,i*}> J« = i , - , № , j# = i.-.A^; 
i/={/,m}, / = 0,1 ЛГ.-1, m = - (JV*- l ) , . . . , (^ - l ) ; 

JV« = JV#, ЛГ = N, • ЛГ Ф . 
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3. THE HYDROGEN ATOM IN A STRONG MAGNETIC FIELD 

We start the analysis of problem (13),(14) from a special case /3 > 1,7 = 0, i.e. a 
hydrogen atom in a strong magnetic field. Also, we do not include the term —1'|щ, which 
is linear in the magnetic field strength /?, in the Hamiltonian (2) in order to have the 
possibility of direct comparison with the analyses of other authors. As in this instance 
the variable ф may be separated, the initial three-dimensional problem is reduced to 
the problem on the plane X = {R,x}, which allows one to use as the basis set ~ри(Щ 
in expansion (12) the Legendre polynomials Pi(x) instead of the two-dimensional basis 
functions (11). And , as the Hamiltonian defined in such a way does not keep the terms 
that violate the wave function symmetry relative to inversion ( i —+ —x) , one may use 
either even or odd polynomials Pi{x), depending on the г—parity of the state one is 
looking for. Now the imaginary part of expansion (12) is equal to zero, and the effective 
potentials Vkj(R) (14) of the system of equations (13) are reduced to : 

^(Л) = ( - | + в ( 1 - 4 ) ) ^ + ^ Е " ( " - 1 ) - р " - ' ^ - ' р ^ ' <15> 

where the summation index и takes the values v — 1,3...,2ЛГг — 1 от v = 2,4,...,2JV, 
for the respective states with positive or negative г-parity, and the negative nodes of the 
2/Vx-point Gauss quadrature on [—1,1] are used as Nx grid points ft* = x* € [—1,0]. 
For solving problem (13),(10) we use the computational scheme successfully applied to a 
number of various multichannel problems of muon-catalyzed fusion [29],[30] and atomic 
physics [31 — 33]. Here we will not discuss the details of this scheme, which may be found 
in [7],[28], but turn directly to the analysis of the obtained results. 

In Tables 1 and 2 the evaluated quantities Ev = — 2(г„—у) are presented for the ground 
state and for several low-lying excited states of the problem together with more accurate 
results obtained recently by other authors using different approaches. We performed the 
calculations for several field strengths in the the region 1 < /J < 2 • 10 3, which is usually 
tested. For numbering the states the classification of paper [14] was used, v = (nlmjn'mv), 
with the set of asymptotic quantum numbers (nlm) and (n'mv) of the bounda.ry cases 
/? = 0 and /? = oo . 

There are two sources of computational errors in our approach : A(Nj;) caused by the 
truncation of expansion (12) and A(NR) caused by numerical integration of system (13) 
over Д, JVJ and NR being the numbers of grid points for x and R, respectively. Notice that 
the number iV* of grid points for x is equal to the number of terms in expansion (12). It 
has been shown in [7] that the accuracy of expansion (12) is of the order ~ jfa for Nx > NT 

(where Nx depends on /? ), and this estimate was proved by "numerical experiment" for 
fields /?' < 1. It allows us to expect that expansion (12) will converge quite fast for stronger 
fields as well. The convergence of the method for 1 < /? < 2 • 10 3 with respect to Nx is 
demonstrated in Table 3 for the ground state and in Fig.l for several excited states. The 
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calculations were performed on the quasi-uniform grids {O...Ri-i(hi)Ri...Rm} for R given 
in Table 4 with finite-difference approximation of equations (13) of the order ~ AJ ~ N^*. 
Estimating the accuracy A{NR) of the approximation of problem (13),(10) for variable 
R is quite standard procedure if the order of the approximation is known. The cutoff 
values Rn were selected by requiring that the error due to the truncation of infinite R 
should be at least one order of magnitude smaller then the errors A(NX) and A(NR). 
Some technical details concerning the integration of the problem over R for fixed Nx may 
be found in [7], [28]. 

The error analysis of the computation is illustrated in Table 5, which shows, as an 
example, the binding energy EV(NX,NR) of the ground state и = (lOo/OOO) for a field 
/ 5 = 2 . An evaluation of the quantity E„(NX, NR) on a sequence of converging grids for 
both variables x (Nx = 8,12,24,32) and Д (Nn = 350,700,1400) yields an estimate of 
the resulting computational error: A(NX) + A(NR). Furthermore, since the computed 

quantities S(NR) |jv*=i6= E(IN)-E(N ) — ** a n < * *(^я) 1л=м— 14, which characterize 
the order of the convergence over NR, agree with the theoretical value Sth = 16 for the 
uf-order numerical integration, this allows one to suppress the error A(NR = 1400) at 
least on the order of magnitude by the extrapolation to A,- - • 0(NR —• oo) (see last column 
in Table 5): 

E(NR -» oo) = E(NR) - ^ • (E^-NR) - E(Nn)). 
Concerning the convergence of the results to Nx —• oo, the following fact should be noted. 
It may be seen from Tables 3 and 5 that the quantity 6(NX) = E(iN)-ElNl l s ^ a r 8 e 

enough and grows fast with increasing Nx, which shows quite high order of the convergence 
over Nx. However, for examining how the order, of the convergence of expansion (12) for 
the fields 1 < /? < 2 • 103 agrees with an estimation A(NX) ~ JJ-J given in [7] for weak 
fields /3 < 1 we would have to increase the accuracy of integration over R and to carry 
out the evaluation with more significant digits than we used here (all calculations were 
performed in double precision on a RISC/320h work-station ). 

rn Tables 1 and 2 we give the calculated quantities Ev. For the ground states of 
the hydrogen atom in the fields /? < 2 • 10 3 the extrapolation to NR -* oo has been 
performed to suppress the errors A(NR). For the rest binding energies given in Tables 
1 and 2 only the estimation of the errors Д(ЛГд) has been done, and the grid points 
{O...Ri-i(hi)Ri...Rm} (see Table 4) were selected by requiring that the value A(NR) should 
be the same order as the error A(NX) due to the truncation of expansion (12). An analysis 
of the spread of computational errors allows us to guarantee the correctness of all digits 
given in the quantities Ev except for the last one, which may be subject to computational 
errors. This analysis and the comparison with advanced evaluations by other authors 
using different approaches, which are given in Tables 1 and 2, allows us to come to the 
following conclusion: our approach agrees with very accurate variational calculations of 
the ground states [12] and yields more accurate binding energies for the low-lying excited 
states with different z-parities which are considered here for fields /9 < 2 • 102. 

It is also interesting to note that we have used the same expansion (12) over the 
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whole range of field strengths 1 < /? < 2 • 103 while other approaches normally use two 
separate expansions for the wave functions to be calculated and suppose either a spherical 
symmetry of the Coulomb states (/? = 0) for weak to moderate fields or a cylindrical 
symmetry of Landau states (/? = oo) for strong to very strong fields. The exceptions 
are the finite-difference analysis of [16] with the local pointwise basis and the finite-basis-
method [12], where the basis set of trial functions contains both terms with spherical and 
cylindrical symmetry. 

We have obtained a rather fast convergence of our approach over Л^ and Nn, although 
the problem of finding the optimum distribution of grid points {xk} for given Nt has 
not been investigated. By carrying out such optimization and by using more accurate 
approximation formulae for R, the computational efficiency of the present method may 
be further increased. 

4. THE HYDROGEN ATOM Ш ARBITRARY ORIENTED MAGNETIC 
AND ELECTRIC FIELDS 

Now, as an efficiency of our approach has been tested on a particularly well investi­
gated two-dimensional example, we turn to the general three-dimensional case of nonzero 
magnetic and electric fields of arbitrary'mutual orientation: а ф 0,/J ф 0,7 ф 0. To 
make the analysis clearer we consider a well-known example, the evolution of the n = 2 
multiplet in external fields, which is usually used in courses on quantum mechanics as an 
illustration of the development of the classical Stark and Zeeman effects. Now we have 
the possibility of considering both effects simultaneously. We will analyze rather weak 
fields /? and 7 in order to separately investigate the states of the neighbor multiplets n 
and n f l . 

For the three-dimensional Schrodinger equation with Hamiltonian (2) the set of two-
dimensional basis functions <р„(И) in expansion (12) is defined by formula (11) on the 
rectangle fi = {x, ф], where x 6 [—1,1], Ф 6 [o, 2JT], and the index v = {I,m} takes the 
values: / = 0,1,. . . , Nz - 1 and m = -(JV^ - 1),..., (ЛГ$ - 1). Here the numbers Л^ = ЛГ̂  
have to be equal to the sums of the nodes in the JV^-point Gauss quadratures over the 
variables x and ф on the intervals x € £1,1] and ф € [0,2ir]. The total number of grid 
points Я* in „he rectangle П = {x, ф] is equal to N = Nx- N4 and the summation indices j 
and к in equations (13) take the values j = {j' e, 34} = 1,..., ЛГ and к = {kg, кф} = 1,..., N. 
The xt, aud фкф coordinates of the grid points ilk — {xt,, фкф] are determined as the nodes 
of the Gauss quadrature formulae over the variables x and ф. Notice that now the bound 
states of problem (13),(10) do not have a definite symmetry relative to inversion (z —» —г) 
any more because in the Hamiltonian of-the problem there are terms proportional to /3 
and 7 that violate the symmetry. Therefore, in expansion (12) one has to keep both even 
and odd basis functions Pl"(x) (relative to inversion x —» —х), which are defined in the 
whole interval x € [—1,1], and the functions sin тф and cosm^ as well. The abscissas 
Фкф of the grid points ft* have been chosen as the nodes фь4 = jj-(2fc* - 1) (with odd N+) 
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of a quadrature on the whole interval [0, Ъс\ being two times larger than the standard 
intervals of the definition for orthogonal polynomials sinm^ and cosm^. 

We start the analysis from the case of parallel fields (a = 0) where the problem still 
has cylindrical symmetry, which permits one to classify the bound states with parabolic 
quantum numbers ({n,ni,nj,m},n = щ + n2+ | m | +1). For small fields /J and 7 
the second-order perturbation formulae are known [3]. According to these analysis the 
degeneracy of n multiplet is removed completely by the fields: 

Г г„ + Д 4 » » / ^ 0 , 7 = 0 
£„(/? = 7 = 0) =>enQm = { £„ + Д 4 э т 0 = 0,7 Ф О 

\ еп + Ае*$т fi # 0 , 7 5*0. 

Here Q = щ —Пг, As%Qm

 a n t ' ^enQm a r e * n e splittings of the Coulomb level n by magnetic 
and electric fields expressed as power series in /3 and 7, respectively. If both fields are 
applied to the system simultaneously, the splitting Ae%gm is not equal to the sum of 
A 4 j m «id As*gm : 

Ae%m = Д е * , . + Aez

nQm + Д £ * | г а , 

where the additional shift AE%Qm contains cross terms of /3 and 7. However, the cross 
terms do not arise in the second-order perturbation theory yet [3]: 

£ n g i » - £ » t i i f n g m — £n + i±enQ + atnQm+Acnm t а с я < ) п 1 . (in) 

The shift АЕЦ§т has been analyzed only for the ground state n=l in [5]. 
The results of our evaluation of the binding energies —2e„Qm of the (nQm) states 

of the multiplet n = 2 are given in Table 6 together with the quantities obtained with 
first- and second- order perturbation formulae [3]. We have performed calculations on 
a sequence of converging grids {fit} with N=9(N* = ^ = 3), 25(5) and 49(7) grid 
points to examine the convergence of expansion (12). Note that the number of terms in 
the expansion is equal to the number of grid points {ilk} while the number of coupled 
equations in system (13) is twice as large because the expansion contains both real and 
imaginary parts. We have chosen a quasi-uniform grid {0(0.04)4(0.08)8(0.16)28} for R 
in such a way that the error of numerical integration over R would give a contribution 
in the last digit of the values given in Table 6. The evaluation has been done for three 
possible relative strenghths of the fields, 17 = 3jp < 1, i/ = 1 and 1/ > 1, with respect to 
the critical point t/ = 1, where the first-order perturbation corrections due to /i and 7 
fields are identical. The magnetic field strength was fixed /J = j • 10~ г and the strength 
of the electric field was varied: 7 = 5 - 1 0 - 3 , ^ • 1 0 - 2 and jj • 10"' ( у = 0.2,1 and 2 ). 

The performed numerical analysis permits one to estimate the computational errors 
Ae{Ntt,N) of the values -2enQm(N = 49), given in Table 6, as Ae(NR,N) < 10"7 for 
n = 0.2, and Де(Л я̂> N) < 10"5 for 17 > 1. As in the investigated range of field strengths 
/9 and 7, our numerical evaluation of the binding energy e„qm is more accurate than the 
value ej2}m (16) given by second-order perturbation formulae [3], we have a possibility 
of estimating the main cross term in AE%QB = £2(jo - EJQO- From Fig. 2 one sees that 
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the main term may be approximated as Д£здо — AIQOP31 + ••• in the limit 7 —> 0 with 
the coefficient AJQO estimated as Aajo — Q • 170. For more accurate evaluation of this 
coefficient one can do the calculation with more significant digits and for smaller field 
strengths (7 ~ 0.0001), where perturbation theory is applicable with a higher degree of 
accuracy. 

In Table 6 the convergence of the method over N is analyzed for orthogonal fields 
(o = f ) too by analogy with the case of parallel fields (o = 0). For a = 5 the first- and 
second-order perturbation formulae [2], [4] give the following: 

A4V = J 9 N / ( 3 « 7 ) 2 + ^ ; (17) 

Д е & = £ £ ( * » ' + 1 - , » +A) + ^ ( 3 9

2 - 1 7 n 2 - 1 9 - ^ f y - V - O ) . 

Here the quantum number q takes the values q = —(n — 1), ...,(n — 1) = —1,0,1 and A is 
the eigenvalue of the operator that removes {n — q) degeneracy remained in the first-order 
correction &ety[2]. The values е{,*'л = e„ + Д4У + Де{£д given in Table 6 were evaluated 
with formulae (17) without contribution of terms ~ A. The eigenvalue problem for A 
(which does not allow an analytical solution) has been analyzed in [4] as a function of 
parameters /?, 7 and 7. According to this analysis the removal of the (n - q) degeneracy 
for the states with q = 0 does not take place for the fields considered here with the 
parameters: Д = j • 10"*, 7 = | • 10~2(v = 2). But one may see an "artificial" removal of 
the (n — q) degeneracy at N=9, which is, however, suppressed as the number of terms in 
expansion (12) is increased to N = 25 and the approximation of the initial Hamiltonian 
is improved. 

The performed numerical analysis shows that the same accuracy of the method has 
been achieved for the both considered cases, a = 0 and a = j . 

While analyzing the n=2 multiplet for the two limiting cases a = 0 and a = 5 we 
observed a total change in the structure of the spectrum due to changing in the mutual 
orientation of the fields F and B. The rearrangement of the spectrum of an electron 
in a hydrogen atom in crossed electric and magnetic fields as a function of their mutual 
orientation 

£n(jm(a = 0) => enq\(a = - ) 

is illustrated by the example of the n=2 multiplet shown in Fig. 3. The calculated curves 
are plotted as functions of a for fixed /3 = | • 10"2 and 7 varying over three possible 
relative strengths of the fields: n = 0.2,1 and 2 (7 = | • 10~3, ^ • W 2 and | • 10 - 2 ) . 
The calculated binding energies —2e„om(o) are also given for several values of a in Table 
7. The calculations were performed with N = 25. Computational errors may give a 
contribution to the last decimal digits of the values —2enqm(a) presented in Table 7. 

Mention also that, according to the analysis performed in [4] in the framework of 
perturbation theory, the (n — g)-degeneracy of the states with q = 0 for a =• | may be 
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removed only in one of the cases being considered here, i? = 1, although the splitting of 
Де),Д in the second-order of perturbation theory due to A does not excead by the order 
of magnitude the computational errors (see Table 7). To analyze a removal of the (n — q) 
degeneracy due to the term Л one has to carry out the calculation with more significant 
digits and a higher value of N for various values of /3 and 7. 

For classifying the states we used the quantum ci'.nbers (nQm) and {nqm} of the 
limiting cases of parallel (or = 0) and orthogonal (a = | ) fields but it is not clear if this 
classification is also useful for stronger fields where the application of perturbation theory 
becomes questionable. It seems that in this case only a classification by the number 
of nodal surfaces of the three-dimensional wave function , the form of the surfaces and 
the possible symmetry of the wave function with respect to the {BF} plane would be 
meaningful. 

It should be noted that the results presented in Table 6,7 and in Fig.2,3 do not depend 
on the space orientation of the {BF} plane. As the applied approach allows to carry 
out the calculations for different plane orientations, this yields an additional test of the 
consistency of the calculations. 

5. CONCLUSION 

Our interest in the problem considered here was aroused by two circumstances: we 
wanted to examine the efficiency of the method [7] in an application to a real three-
dimensional physical problem whose solutions are known with high accuracy for certain 
special cases, and we tried to give a new point of view on the well-known classical problem 
usually analyzed with some additional conditions imposed upon its parameters, which has 
allowed to use conventional methods of quantum theory ( such as separation of variables, 
perturbation theory , quasi-classical approximations etc.). 

In solving the Schrodinger equation for the electron of the hydrogen atom in external 
magnetic В and electric F fields as a three-dimensional problem without separation of 
variables we have calculated the rearrangement of the spectrum due to changing in the 
mutual orientations of the fields. As any interaction is introduced in addition to the 
Hamiltonian (2) and projected into the space {Я,в,ф} is diagonal in our approach (see 
Eqe.(13),(14)), this allows one to include into a consideration in a natural way the effects 
of finite mass .and finite size of nucleus, relativistic and QED effects etc., and yields a 
background for an experimental analysis of the rearrangement phenomena. 

Our approach may also be applied for analyzing the ionization of hydrogen atom which 
occurs when an electric field is added to the system [34] because equations (9),(10) have 
been formulated in [7] both for eigenvalue and the scattering problem. 

It seems interesting to analyze the possibilities for bounding of the electron away from 
the hydrogen nucleus, at a certain distance from the center of the Coulomb well and with 
another, deeper effective potential well, which gives rise to a large dipole moment of the 
ground state in the crossed fields [6] 
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Table 1: Binding energies E„ of the ground state v = (b o /000) of the hydrogen atom in 
a magnetic field & . 

0 = 1 0 = 2 fi = 20 0 = 200 0 = 2000 
Ref. 13 " 1.63Й41 

2.1200 J 
/2.29241 
\2.4774/ f 1Й.5508 1 118.6204 / 

Ref. u I) 1.662338 2.044428 4.4:10797 9.4531/50 18.60896/986 
Ref. 16 ') 2.014426 4.Ш786 9.45416 18.60928 
Ref. 17 " ашвт.- /2.0444278161 

12.044127820/ 
J 1.Ш792 1 
\4.431826j_ 

Ref. 12 Л 1.66233779346 2.04442781532 4. Ш797О30 9.454290216 18.6095300 
Present 
work 

1.66233779349 2.04442781536 4.130797031 9.15129022 18.60952 

a) Adiabatic approximation of C.Liu and A.F.Starace giving both tower and upper limits 
for binding energies. 
b) Modified Hartree-Fock approach of W.Rosner et al. The value calculated with maximum 
number of expansion terms being used (nc) is given before the slash, after the slash there 
are the last figures of the value still ' iging if the two binding energies last computed are 
linearly extrapolated to - — • 0. 
c) Finite-element analysis of J.Shertzer. * 
d) Lower and upper bounds obtained using Kato's method by G.Fonte et al. 
f) Variational finite-basis-set evaluation of S.P.Goldman and Z.Chen. 

We would also like to mention a possible, quite unusual application of the problem of 
the hydrogen atom in crossed fields for describing the Coulomb interaction of a particle 
colliding with the hydrogen atom as an effective electromagnetic field in the rotating 
coordinate frame [3]. 

It is obvious that our approach may be applicable for investigating some particular 
aspects of the problem that are being actual at present, such as the Stark effect in strong 
fields and the Zeeman effect in hydrogen-like atom (or, exiton in magnetic held) with 
finite mass, of the nucleus ( i t is known [35] that the hydrogen Zeeman Hamiltonian with 
finite nuclear mass is equivalent to the В X F Hamiltonian for hydrogen with infinitely 
heavy nucleus). 
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Concerning the efficiency of the method, the following should be noted. All compu­
tations were performed on a conventional RISC/320h workstation , which limited the 
number of terms in expansion (12) to Л/ ~ 100. However, for the special case of a hydro­
gen atom in a strong magnetic field wc obtained highly accurate binding-energies for the 
low-lying excited states that were investigated, and for the ground state the results we ob­
tained are in agreement with advanced variational calculations. This allows us to expect 
an important increase in the accuracy of the calculations when more powerful computers 
will be used. Possible optimization by an adequate distribution of the grid points П* may 
give an additional increase in the efficiency of the calculations. 

The rather good convergence of our method for the low-lying excited states we consid­
ered suggests that it might also be used for higher excitations, in the energy region where 
the application of quasi-classical analysis is still questionable. 

The high order of smoothness of the calculated wave function (12) allows one to expect 
highly accurate calculations for matrix elements with wave functions such as mean-square 
radii, multiple moments, transition probabilities etc. 

9.6%<\ereiai 
; ; ; ; | * - - - д ~ ~ i ; 

«5» 

Fig. 1: Two examples illustrating the convergence behavior of energy values ti„(NT) 
of excited states v as Nx —• oo. 
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S.00 11111111111111111111111111111111111111111 

0.00 0.08 0.10 0.1S 0.Z0 

Fig. 2: Deviation &ЕЩ0 °f the calculated binding energy £240 from the value £^0 

given by the second-order perturbation formulae as a function of 7 for fixed /? = | • I0~ 2 

( £ | | Fcase). 
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Table 2: Binding energies Ev of the low-lying excited states v = (nlm/n'mv) of the 
hydrogen atom in a magnetic field 0. 

0 = 1 0 = 2 0 = 20 /3 = 200 

(2po/001) Ref.[13]"> mm 0.59001 
0.5982 

I 0.9548 1 
\ 0.9550 (2po/001) 

Ref.[14]*> 0.5200132 0.5954219 0.8267545/72 0.9530610/1 
(2po/001) 

Present 
work 

0.520013779 0.595422153 0.826756 0.9530 

(2s0/002) Ref.^]11» {о:3188] 
'0.31481 
0.3488 j 

Г 0.53801 
0.5400/ (2s0/002) 

Ref.[14]'» 0.3209379 0.3478880 0.44762/73 0.537921/45 
(2s0/002) 

Present 
work 

0.320938144 0.34788941 0.447678 0.537 

(34/004) Ref.[14]'> 0.13202/63 0.13841/66 0.160647/74 (34/004) 
Present 
work 

0.13246593 0.1385510 0.16065 

(3s0/006) Ref.[14]»> 0.07128/53 0.073658/753 (3s0/006) 
Present 
work 

0.0714645 0.0737219 

с) Adiabatic approximation of C.Liu and A.F.Starace. 
b) Modified Hartree-Fock approach of W.Rosner et al. 

Table 3: The convergence of the ground-state enegy values Ev as function of the number 
of terms Nx included in expansion (12) for various magnetic fields 0. 

0 = 1 0 = 20 0 = 200 0 = 2000 
ЛГ = 8 1.662337793449 
ЛГ = 12 4.430773182 
N = 16 1.662337793593 
JV = 24 1.662337793593 4.430797011 
N = 32 4.430797012 9.454276938 
iV = 40 9.454289557 
iV = 48 9.454290139 
JV = 60 9.454290169 18.608963 
JV = 70 9.454290172 18.609424 
TV = 80 18.609506 
JV = 90 18.60952 
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Table 4: Parameters of the method used for each calculation: quasi-uniform grid 
{O...Ri-i(hi)Ri...Rm} over R with the total number of the points JVR and the maximum 
number jVr of the terms used in expansion (12). The steps of integration A* are given in 
units h=0.000625. 

& 0...Ri.,(ki)R,...Rm; MR Лх 
(b 0 /000) 1 0(h)0.125(2h)0.25(4h)0.5(8h)2(l6h)6(32h)10(64h)14; 1400 24 (b 0 /000) 

2 0(h)0.125(2h)0.25(4h)0.5(8h)2(16h)6(32h)10(64h)14; 1400 32 
(b 0 /000) 

20 0(h)0.125(2h)0.25(4h)0.5(8h)2(16h)6(32h)8; 1200 32 

(b 0 /000) 

200 0(h)0.125(2h)0.25(4h)0.5(8h)2(l6h)4; 900 60 

(b 0 /000) 

2000 0(2h)0.25(8h)0.5(lfih)l(32h)2; 350 90 
(2/,0/001j 1 0(h)0.125(2h)0.25(4h)2(8h)6(16h)10(32h)22; 2800 24 (2/,0/001j 

2 0(h)0.125(2h)0.25(4h)2(8h)6(16h)10(32h)22; 2800 32 
(2/,0/001j 

20 0(2h)0.125(4h)0.25(8h)0.5(16h)2(32h)4(64h)16; 750 60 

(2/,0/001j 

200 ' 0(4h)0.125(8h)0.25(16h)0.5(32h)2(64h)6(128h)14; 250 100 
(2*o/002) 1 0(h)0.125(2h)0.25(4h)0.5(8h)2(l6h)6(32h)16(128h)28; 1750 32 (2*o/002) 

2 0(32h)4(64h)8(128h)16(256h)32; 500 40 
(2*o/002) 

20 0(16h)l(32h)3(64h)5(I2Sh)15; 375 70 

(2*o/002) 

200 0(32h)l(64h)3(128h)5(256h)9; 150 120 
(3«fe/004). 1 0(32h)4(64h)8(128h)30(256h)42; 650 48 (3«fe/004). 

2 0(32h)4(64h)8(128h)16(256h)32; 500 60 
(3«fe/004). 

20 0(32h)l(64h)3(128h)5(256h)13(512h)37; 250 120 
(3so/006) 1 0(32h)4(64h)8(128h)30(256h)42; 650 60 (3so/006) 

2 0(32h)3(64h)6(128h)12(256h)32(512h)56; 500 90 i 

Table 5: The convergence of the method over Nx and Л/д for the example of the ground-
state binding energy EV(NX, NR) for a magnetic field /3 = 2 . 

NR = 350 Nn = 700 NR = 1400 NH —too ' 
JV, = 8 2.044427793139 
NX=12 2.044427836258 2.044427816799 2.044427815429 2.04142781532 
iVr = 24 2.044427836284 2.044427816826 2.044427815455 2.044427S1536 
JVr = 32 2.044427815456 
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Table 6: The convergence of the binding energies -2£2Qm(a = 0) and -2£2,\(a = | ) over 
N for various relative strengths 9 of the fields 0 and 7: 0 = ^ ; 7= ^ , ^ , ^ . 

Present work Perturbation theory («,'") 
M ЛГ = 9 /V = 25 Л г = 49 2 — order 1 — order 

(«,'") 
M 

4 = 0.2 o = 0 0.2451529 
0.2488783 
0.2508811 
0.2551531 

0.2448539 
0.2488783 
0.2508811 
0.2548539 

0.2448545 
0.2488783 
0.2508811 
0.2548544 

0.2448.543 
0.2488797 
0.2508797 
0.2548543 

0.2450000 
0.2490000 
0.2510000 
0.2550000 

(0,1) 
(1.0) 
(-1,0) 
(0,-1) 

4 = 1 a = 0 0.2449887 
0.2459894 
0.2549943 
0.2559926 

0.244960 
0.2449885 
0.254960 
0.2549942 

0.244960 
0.244983 
0.254960 
0.254995 

0.2449583 
0.2449917 
0.2549583 
0.2549917 

0.2150000 
0.2550000 

(0,1) 
(1,0) 
(0.-1) 
(-1,0) 

, = 2 o = 0 0.2403263 
0.2485911 
0.2585638 
0.2603586 

0.2403285 
0.2452326 
0.2552318 
0.2603612 

0.2403289 
0.2452872 
0.2552872 
0.2603620 

0.2403417 
0.2452833 
0.2552833 
0.2603417 

0.2400000 
0.2450000 
0.2550000 
0.260000 

(1,0) 
(0,1) 
(0,-1) 
(-1,0) 

, = 2 

< * = 2 
0.2383266 
0.2498502 
0.2503353 
0.2603199 

0.2391239 
0.2502591 
0.2502590 
0.2614999 

0.2391307 
0.2502591 
0.2615078 

0.2391364 
0.2503408 
0.2614970 

0.2388197 
0.2500000 
0.2611803 

{1} 
{0} 

{-1} 

Table 7: Evolution of the n = 2 multiplet in crossed magnetic and electric fields as a 
function of the mutual orientation a for various relative strengths 1? of the fields ft and 7: 
a— a*-L- -»- I5zi ЖИ. mil p— 2 > 7— 6 > 12 > e • 

(Q,m) Q = 0 <* = i-jr О = J-JT « = * • * a = 5 • it Ы 
4 = 0.2 (0Д) 

0,o) 
(-1,0) 
(0,-1) 

0.244854 
0.248878 0.250881 
0.254854 

0.244839 
0.248957 0.250802 
0.254869 

0.244804 
0.249178 0.250582 
0.254905 

0.244769 
0.249500 0.250259 
0.254939 

0.244756 
0.249830 
0.254953 

{1} 
{0} 
{-1} 

, = 1 (0,1) 
(1.0) 
(0,-1) 
(-1,0) 

0.24496 
0.24499 0.25496 
0.25500 

0.24409 
0.24605 0.25391 
0.25585 

0.24344 
0.24726 0.25269 
0.25650 

0.24303 
0.24860 0.25137 
0.25690 

0.24290 
.24993 
0.25704 

{1} 
{0} 
{-1} 

V = 2 (1,0) 
(0,1) 
(0,-1) 
(-1,0) 

0.2403 
0.2452 0.2552 
0.2604 

0.2401 
0.2458 0.2.548 
0.2606 

0.2396 
0.2470 0.2536 
0.2610 

0.2393 
0.2486 0.2520 
0.2614 

0.2391 
0.2503 
0.2615 

{1} 
{0} 
{-1} 
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