


1. Introduction

The statics of fission is governed by the variation of a potential energy of the
fissioning system as a function of deformation in the transition from the initial state to
scission (see the last reviews [1}-[3]). Therefore, the most important characteristics of
fissioning nuclei are fission barriers determined as differences between the saddle-point
and ground state masses

By = M,(AZ) — M,,(A, Z). (1)

Various models used to calculate By can be classified in three categories: micro-
scopic, semiclassical of hybrid, and macroscopic (see [5] for a bricf review). In the
microscopic models the nucleus is studied as a many-body problem of an ensemble of
nucleons moving in a seif-consistent Hartree-Fock field with possible extensions (see
[6]) for a review). This method should provide the most accurate knowledge of the
fissioning system. However the complexity of the effective nucleon-nucleon interaction
and a great number of nucleons in a heavy nucleus make the calculations very difficult
and too lengthy to be used in Monte Carlo calculations of competing fission and evap-
oration processes. Therefore, for statistical applications, the "regular™ part of fission
barriers is usually either calculated in the framework of such macroscopic approaches
as different versions of the liquid-drop model (LDM)} [7]-[9], dropiet model {11, 12},
single- Yukawa modified LDM [13], Yukawa-plus-cxponential modified LDM [10, 14, 15},
or phenomenologically approximated {16] in accordance with their experimental values.

To estimate the "irregular” rhicroscopic part of By, either different hybrid ap-
proaches are used taking into account quantal corrections for shell and pairing effects,
the finite range of the nuclear force, the effects of the diffuseness of the nuclear surface
and other physics effects [7]-[14], or certain different phenomenological approximations
are used [16, 17). Apparently, to date the most adequate description of macroscopic
fission barriers for hot and usually rotating nuclei has been done by Sierk [15]. Sierk
also performed a global fit for macrascopic By for nuclei with an atomic number from
20 to 100 for the entire range of the angular momentum L for which a fission barrier
exists and obtained a globa) representation of results whick depends only on three
variables: A, Z and L. This global approximation is provided be the Fortran-77 sub-
routine BARFIT that is availabie for users (see [15]) and may be easily incorporated in
the statistical evaporation model calculations. But in certain cases this code may re-
quire too much computing time to obtain a satisfactorily statistics in the Monte Carlo
simulation of reactions.

In the present work we compare different easy-computing approaches and models
for fission barriers in order to find out their applicability for statistical calculations of
nuclear reactions involving fission processes.
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2. Macroscopic and microscopic approaches for
fission-barrier heights

In the hybrid macroscopic-microscopic approach a fission barrier is given by a sum
of a macroscopic smooth term and a microscopic term, each being in the general case a
function of atomic Z and mass A numbers, excitation energy of the fissioning nucleus
E*, its angular momentum L and deformation (denoted by a}

By(A,Z,E*,L,a) = B*"*(A, Z, E", L,a) + B]""°(A, Z,E*, L,a). (2)

Let us at the beginning do not take into account the excitation cnergy and angular
momentum dependences of By.

BITG73 approximation [16]. For fast statistical calculations Barashenkov ef al.
[16] has proposed 1o use a simple phenomenological approximation for fission barriers.
The authors of {16] suggested not to calculate fission barriers during Monte Carle
simulations of nuclear reactions but to use the known experimental values by singling
out of them the phenomenological "irregular” part which depends on shell corrections,
residual interactions and other nuclear siructure effecls, and by approximating the
remaining "regular” part by a simple analytical expression

BPTTS™(A,Z) = BY(A, Z) ~ SWRTTC(A, Z2) + 6WETT™(A, 2). 3)

The "regular” p-it of the experimental fission barriers BY(A, Z) was well approxi-
mated by the function (in MeV)

+4.7(33.5 — Z2 /AP, i ZP/A <335,

~2.1(33.5 — Z Ay, il ZP/A > 335 . @

BYA,Z) =125 +{

The "irregular” part was divided into two terms: a correction to the nuclear

ground state mass §W5I7C™( A, 7) and a correction to the nuclear saddle-point mass
SWEBITGI( 4 7). For sWETG™( A, Z) the authors of [16] proposed 1o use the Cameron’s

shell and pairing corrections

SWBITS™S(4 7) = A(Z,N)=S(Z,N)+ P(Z,N) =
[S(Z) + P(Z)] + [S(N}+ P(N); (N = A~ Z), (5)

1

tabulated in {18], or the data
A(Z,N)=S(Z)+ P(Z) + S(N) + P(N), (6)

tabulated in a subsequent work by Cameron cf al. [19] and, thercfore, very convenient
for numerical calculations of an evaporative cascade.

In fig. 1, these two sets of Cameron shell corrections are shown for a collection
of odd-odd nuclei together with the Myers and Swiatecki’s LDM shell corrections {7].
One can see that the discrepancy in the absolute values of two sets of Cameron's
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shell corrections is small and only for some nuclei amounts up to 2 MeV, while the
discrepancy between Cameron’s and Myers and Swiatecki’s values is more significant.
For §WBTS™( 4, Z) the following approximation (in MeV) was obtained:

(7

SWEITET (4, 7) = {-0.5 for even Z} + {0 for even N}.

D for odd Z 1 forodd v

L 0dd Z and O0dd N
10+

e ~— Myers & Swiatecki (1967)
a - Cameron (1957)
o — Truran, Cameron & Hilf (1970)
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Fig. 1. Comparison of Camcron's [18}, Truran, Cameron and Hilf’s {19) and Myers and -

Swiatecki’s {7] shell corrections.

BG77 approximation [17]. Another simple semiphencmenological approximation
for fission barriers has been proposed by Barashenkov and Gereghi [17]. The authors
of [17] proposed to use a formula analogous to (3) to calcu.ate fission barriers

BPST(A,Z) = BY(Z*[A) - A(A, Z) + 6°977(A, 2). (8)

For A{A, Z) it was proposed o use the same Cameron’s corrections (5) or (6), while
for 69677( A, Z) it was suggested to usc the following approximation:

0, for even Z and even N ;
696T(A,Z)={ &, forodd A; (9
267, forodd Z and odd N ;

&7 = 1.248 MeV [20).
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For the macroscopic part of the fission barriers B}(Z?/A) it was proposed to use the
LDM results in the parametrization of Cohen and Swiatecki [21]

B‘,’(Z’/A) _ B;,DM(csea)z

23 J 0.83(1 ~z)?, for2/3<z<1;
asd {0.38(3/4 1), for1/3<z<2/3, (19)

where the fissility parameter z is given by

ES 224

=Ec _ , 1
"= 388 = (ac/2as){1 = k(N — Z)/AT] (an
as = 17.9439 MeV ,
{ ac = 0.7053 MeV , (12)
k=1.7826 ,

(LDM parameters from (7])
and the sutface EZ and Coulomb E energies of a spherical nucleus are given by
ES = as{l — K[(N — Z)/A]} AP, (13)
E'g =acZ?]AY3 (14)

The phenomenological representation (}0) approximates very well the macroscopic
LDM fission barriers (see fig.2) which provides satisfactory agreement of BfS™™ with
the experimental data and, as B}’G" are easily computed, it may be successfully used
in Monte Carlo simulations of nuclear reactions involving fission.

LDM approaches. In the LDM the experimental ground state mass for a nuclear
equilibrium deformation a® is given by

Moy = Mipu(e®) + S%(N, 2) + P°(N, Z), (15)

where M2, is the LDM macroscopic mass, S®(N,Z) and PY(N, Z) are shell and
pairing corrections, respectively. For a nucleus undergoing fission (superscript ) with
a deformation of at the saddle-point we have

M? = M5 (a’) + SH(N, 2) + P/(N, 2). (16)
Substituting (15,16) into (1), we get

By = [Mipy(a’) — Mipp(a®)] +
+ [SH(N,2)- SN, Z)} + [P/(N,2) - P(N, Z)). (17)



Commonly, in the literature the last equation is written in the following form !:
By = B} — §W,, + §W,,, (18)

where B} is the macroscopic LDM fission barrier, §W,, = S°(NV, Z) is the ground
state shell correction and §W,, = SY(N, Z) + Pf(N,Z) ~ P*(N, Z) is shell and pairing
(or more exactly, the increase in the pairing energy between the transition state and
ground state) corrections at the saddle-point. Usually (see, e.g., [1]), one makes the
assumption that for a nucleus undergoing fission the major shell structure effects are
destroyed as the nucleus deforms from the equilibrium ground state shape to the saddle-
point one, i.e., S*(V,Z) = 0. In general, up to now it is not a common point of view
in the literature what is to be used for §W,; in (18). So, certain authors {see, e.g.,
{1, 22] neglect this term; others (see, e.g., {16, 17, 20]) use different phenomenolrgical
approximations for this term and, at last, the third group of authors (see, e.g., {23])
fits this term from the best description of experimental data.

In the notation of Nix {27], the potential energy of a deformed charged drop relative
to the spherical drop, i.e., the macroscopic LDM fission barrier Bg is given by

B? = Es—Eg-}-Ec—Eg:
((Bs ~ 1) + 2z{Bc — 1)|E2 = b(z) ES. (19)

Here EY and E¢ are the Coulomb energies of a spherical and a deformed drop, re-
spectively; E3 and Es are the total surface energy of a spherical and a deformed drop,
respectively; z is the fissility parameter defined by (11); Bs and B are the relative
surface and Coulomb energies depending on the deformation of the drop and are tab-
ulated (together with b(z)) in [27] as functions of the fissility parameter z; EZ and
E2 are defined by (13) and (14). The values for the constants as, ag and k obtained
from the best existing LDM fit to nuclear masses and fission barriers [7] are given by
(12). In other models, the values of these constants differ from (12), which also results
in changing b(z) and B}. Fig. 2 shows the function 8(z) calculated with Myers and
Swiatecki’s parameters (12), in the framework of the single-Yukawa modified LDM of
Krappe and Nix [13] with the parameters

ac = 0.7448 MeV , (20)

{as =24.7 MeV ,
k=40,

(for the nuclear radius parameter ro = 1.16 MeV and the range of the Yukawa function
a = 1.4 fm), and in the framework of the Yukawa-plus-exponential modified LDM of

n the present work, we confine ourselves to the analysis of only the one-humped fission barriers.
In the case of transuranium nuclides the heights of double-humped fission barriers Bf and Bf are
expressed by B} = f/(oq) - W, + EW,",, whetre f’(u.-) is the macroscopic fission barrier and 6W,‘,
is the shell correction for the i-th maximum of the potential energy which is counted off the liquid
drop potential energy at the corresponding deformation, oy % 0.3 snd ap % 0.6, SWA ~ 2,30 MeV
snd 5W3 ~ 0.50 MeV {24]; and §W,, is calculated in the LDM [7]. (For a more detailed information
about double-humped fission barriers see [23]-[26].)
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Krappe, Nix and Sierk [14] with the parameters

as = 21.7 MeV .

ac =0.7322 MeV ,

a=0651m, (21)

ro=1.18 fm ,

k=2.04;
together with the approximation for b(z) in the parametrization (10) of Cohen and
Swiatecki [21]. One can see that for medium and hcavy nuclei the old approximation
of Cohien and Swiatecki (10) agrees very well with the LDM {7] prediction for b(z), and
being easily computed, may be successfuily used in numerical calculations.
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Fig. 2. Macroscopic fission barriers (nnits of £3) as functions of the fissility parame-
ter z for the LDM parameters [7) from [27) (marked as N69); in accordance with Cohen and
Swiatecki’s [21] parametrization (10} (marked as CS63); for the single-Yukz'va modified LDM
of Krappe and Nix [13] (matked as KN74); ard for the Yukawa-plus-exponential modified
LDM ([14] (marked as KN579).

For nuclei along Green's approximation to the line of B - stability [28]

] N - Z =044%(A +200). (22)
in fig. 3 we comp: re macroscopic fission barriers calculated in the LDM with Myers and
Swiatecki’s parameters {7], in the single-Yukawa modified LDM [13], in the Yukawa-
plus-exponential modified LDM [14], and in the LDM with parameters of Pauli and
Ledergerber [8]

ac = 0.720 MeV (W)

{as = 19.008 MeV ,
k=284,
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Fig. 3. Comparison of macroscopic fission barriers calculated for nuclei along Green's
approximation to the line of # — stability in the LDM with Myers and Swiatecki’s parameters
[7] (marked as MS67); with Pauli and Ledergerber’s LDM parameters [8] (marked as PL71):
in the single-Yukawa modified LDM [13] (marked as KN74); in the Yukawa-plus-exponential

modified LDM [14] (marke¢ as KNS79), and obtained with Sierk’s subroutine BARFIT {15]

(marked as 586). The experimental points are from {11, 53].

For comparison, this figure also shows the experimental data from refs. [11, 53]
and the resulis (marked by abbreviation 586) obtained (for L = 0) with the subroutine
BARFIT of Sierk {15] which provides fission barrier heights as a function of Z, A, and
angular momentum L by a multiparameter approximation of results obtained by the
Yukawa-plus-exponential modified LDM with the following parameters

as = 21.13 MeV ,

ac = 0.7448 MeV ,

a=0.62 fm, (24)

ro= 116 fm ,

k=23,
One can see that for medium nuclei fission barriers calculated with Pauli and Led-
ergerber’s parameters (23) are the highest (B_‘;('""’ (PLT1) = 55.13 MeV) and those
calculated in the LDM '7] are the second highest (B?("'"](MSM) = 52.99 MeV,
whereas those calculated in the sirgle-Yukawa and Yukawa-plus-exponential models
lying somewhat lower (BJ™**/(K N74) = 43.03 MeV, B)(™?(X N 579) = 52.99 MeV,
B{(™Y(586) = 41.03 MeV). The three models KN74, KNS78, and 5§86 that include
the finite range of nuclear force and the diffuse nuclear surface yield results that are
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very similar to each other, although for all nuclei the barriers calculated with the
Yukawa-plus-exponential model [14] are slightly higher than those calculated with the
single-Yukawa model (13], and Lhé global approximation of Sierk [15] provides the low-

est barrier heights.
In the present paper, we test seven models to calculate macroscopic fission barriers,

namely, proposed in: [16] (marked as BITG73); (17] (marked as BG77); [7] (marked as
MS67); (8] (marked as PL71); [14] (marked as KNS79); [13] (marked as KN74); and
[15]) (marked as S86). For 6W,, we test three scts of values, namely, the Cameron’s
corrections A(Z, N) defined by egs. {5) and (6), and LDM shell corrections with Myers
aud Swiatecki’s (7] parameters. For §W,, we test two sets of values, namely, as defined
by egs. (7) and {9).

In table 1, fission barriers calculated by phenomenological [16] and semiphenomeno-
logical [17) methods with Cameron’s [18] and Truran, Cameron and Hilf’s {19 shell and
Ppairing corrections are compared with the experimental values from the summary table
IV of ref. [11].

One can see that both these methods give results quite consistent with experimental
data, although for lighter nuclei the approach proposed in [16] predicts fission barriers
slightly closer to the experimental data and vice versa for heavier nuclei, independently
of what shell corrections from {18, 19] we use. The results obtained with different shell
corrections from [18, 19] differ appreciably only for neutron-rich and neutron-deficient
cuclei. In these cases the use of shell corrections from [19] scems to be more preferable.

The results of calculations of macroscopic fission barriers by models [7, 8, 13, 14, 15}
with Myers and Swiatecki’s [7] shell corrections for microscopic parts of barriers are
compared in table 2 with the samec experimnental data. One can see that all these
methods provide fission barriers quite close to the experimental data.

Figs. 4 and 5 show fission barriers calculated with methods proposed in [16, 17,
7, 13, 8, 14] for nuclei along Green's approximation to the line of 4 - stability to-
gether with the experimental data. As one can see, for heavy nuclei all methods
provide lission barriers in goed agreement with experimental data. For this option the
semiphenomenological approach of Barashenkov and Gereghi [17] permanently over-
estimates the experimental data for nuclei lighter than Ph. Apparently, the Yukawa-
plus-exponential modified LDM {!4] provides the best agreement of calculated barriers
with the experimental data for the nuclei along the line of 3 - stability.

Excitation energy dependence of fission barriers . The change of properties of
atomic nuclej with increasing excitation energies influences strongly the nuclear fissility.
The calculations by methods of Tomas-Fermi [31] and Hartree-Fock [30] predict that
"thermal” effects must lead to the B; decrease. The investigations [30]-{33] of the
dependence of By on nuclear temperature T show that the dependences of Coulomb
E2 and surface EJ energies on T are the following:

Es(T) = Es(0)[1 - 877
Ec(T) = Ec(0))1 ~ oT?), (25)



Table 1

Calculated in the framework of refs. (16, 17] (with shell and pairing corrections from [18]
and [19]) and experimental (taken from the summary table [V of ref. [11]) values of fission
barriers for isotopes of different nuclei

Isotope || Exp. Present calculations by different methods
[11] BITG73[16] BITG73[16] BG77(17] BGT77[17]
shell & pair. shell & pair. shell & pair. shell & pair.
corr. from [18] | corr. from [19] | corr. from [18] | corr. from [19]
Bruy [| 27.3 27.65 25.62 32.40 30.36
1%Ta,.m || 26.2 24.04 29.93 27.72 25.49
1880s.6 Il 23.7 22.62 25.22 23.77 21.25
187036 || 22.5 22.36 25.24 23.82 20.86
1860s.¢ || 22.5 21.59 24.49 22.85 20.54
Blrr., || 22.8 21.74 24.14 23.01 21.19
18y || 217 20.49 23.49 21.92 19.78
198 Hggo || 21.8 22.11 19.72 21.40 20.61
017, || 22.3 22.47 21.12 22.60 21.27
209B1es || 22.6 24.24 24.68 24.10 23.66
207 Bigs | 21.2 21.91 22.75 22.77 21.69
2poe. ([ 18.6 19.62 19.44 19.24 20.05
Mpo, || 21.5 20.21 20.91 20.80 20.74
Mopge, (204 19.93 21.47 21.21 21.48
3440 || 16.8 15.32 17.45 17.39 18.00
227 Ragg || 8.30 8.22 8.91 8.53 8.22
23T hey || 6.44 7.35 7.48 7.30 7.55
T heg || 5.95 6.65 6.71 6.46 7.33
B2Pagq, || 6.18 6.09 6.77 6.95 6.45
290y 6.29 6.71 6.32 6.24 7.01
2380 g, 5.60 6.13 5.63 5.51 6.86
B0/ || 6.40 6.56 6.32 6.28 6.69
26¢, 1l 5.44 6.00 5.54 5.57 6.50
250, I 5.75 6.32 6.05 6.23 6.31
B4y, || 5.30 5.66 5.28 5.40 6.09
2304 |} 5.49 6.05 5.72 6.11 5.87
B8N pgs || 6.04 6.01 6.24 6.46 6.15
BT Npgs || 5-49 5.46 5.47 5.75 5.97
i " Pug, || 4.60 5.76 4,73 4.75 6.32
M2 Pyqq || 4.70 5.48 4.57 4.67 6.10
41 Pyy, |f 6.20 5.93 5.26 5.45 5.97
M0Pyq, || 4.85 5.38 4.58 4.73 5.83
9Pygy || 5.48 5.83 5.28 5.52 5.67
B Pyg, (| 4.70 5.29 4.51 4.82 5.49
338 Pyy, || 4.55 5.00 4.28 4.68 5.10




Table 1 (continued)

Isotope || Exp. Present calculations by different methods
1] | BITGTI[6] | BITG73[i6] BG7I(17] BCTIIT]
shell & pair. shell & pair. shell & pair. shell & pair.
corr. from [18] | corr. from [19] | corr. from {18] | corr. from [19)

M Amgs || 6.7 5.70 5.48 5.81 5.77
M2 Amgs || 6.40 5.60 5.47 5.88 5.53
1 Amgs || 6.00 5.05 4.80 5.17 5.38
20Cmgs || 4.10 5.35 3.66 4.04 5.69
M8Cmgg || 4.25 5.56 4.22 4.44 3.60
26Cmgs || 4.35 5.37 4.08 4.44 5.45
M4 Cmes || 4.25 5.13 3.94 4.38 5.25
2Cmgs || 4.25 5.06 3.97 4.47 4.99
M0Cmgs || 4.15 5.00 3.92 4.57 4.68
%0Bkg, | 5.80 5.51 4.90 5.37 5.27
9 Bkgy 4.35 5.15 4.52 4.85 5.22
320 for || 3.65 4.94 3.26 3.81 4.95
BOC fos || 3.95 5.18 3.81 4.23 4.88
8C fos || 3.85 5.01 3.72 4.25 4.75
HM8C fos || 3.85 4.80 3.60 4.2 4.57
B4y || 3.35 4.50 3.00 3.66 4.36
M8 Fmie || 2.75 4.40 3.41 4.13 4.04
26 Prnygs || 2.55 4.36 3.50 1.28 3.83
M5 FPmage || 2.62 4.84 4.23 5.10 3.7
MEPmie || 262 4.33 3.50 4.44 3.57

where the nuclear temperature T 1s given by
T=+Ela; E=E —Ay.

llere £* and a are the excitation energy and level density parameter of a nucleus,
respectively. Ay = x - 14/v/A [MeV] is the pairing energy of a fissioning nuclei; x = 0,
1, or 2, respectively, for odd-odd, odd-even, or even-even nuclei. For conslants a and
8 in {30] it was found that

1-1073MceV~?
6.3157 - 10~*MeV~2. (26)

a

B

Barashenkov et al. [29) proposed to estimate the dependence of By on E* by the
following empirical relation

il

B/(E) = B,(0)/(1 + \/EJZA) @)
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Table 2

Calculated in the framewurk of different models {macrascopic H}’ — in accordance with
[7, 8, 13, 14, 15] and shell corrections from {7}) and experimental (taken {rom the summary
table IV of ref. [11]) values of fission barriers for isotopes of different nuclei

Isotope || Exp. Present calculations by different ..aethods
[11] [MS67(7] | PL7I[8] | KN74[13] | KNS79[14] | 586(15] | S86(15]
without with sheli
shell cor. | cor. from [7]
T3y 1 27.3 28.28 28.93 24.85 27.01 24.13 25.59
19T a4, |' 26.2 25.49 25.73 22.44 24.69 22.12 21.43
1880506 it 23.7 21.25 20.89 18.77 20.31 19.03 18.06
1870506 || 22.5 20.86 20.81 18.96 20.27 18.84 17.78
1860506 || 22.5 20.24 20.79 19.21 20.30 18.65 17.87
¥1)ry || 22.8 21.19 20.65 18.93 20.45 17.98 18.31
189 0y || 21.7 19.78 19.84 18.65 19.72 17.63 17.11
1987000 | 21.8 | 2061 [ 2017 | 19.99 20.85 14.60 18.81
20170, || 22.3 21.27 20.71 20.74 21.55 13.61 19.71
209B4q || 22.6 23.66 22.4 22.04 23.37 11.94 22.30
07 Bigs || 21.2 21.69 20.94 21.03 21.94 11.70 20.49
M Pgq, || 18.6 20.05 18.78 18.45 19.72 11.00 18.82
2Pge, | 215 20.74 19.70 19.60 20.68 10.90 19.60
20Pgg, || 20.4 21.48 20.65 20.77 21.67 10.79 20.40
23 Atg: || 16.8 18.00 17.13 17.27 18.13 4.90 17.02
%7 Ragg || 8.30 8.22 6.39 5.46 7.09 1.81 7.1¢
“BThey || 6.44 7.55 5.82 5.00 6.39 6.34 6.51
B2Pheg If 3.95 7.33 5.76 5.06 6.36 6.30 24
Mpa {618 || 645 5.34 5.0 5.95 5.49 5.63
2390qq 6.29 7.01 5.41 4.80 5.84 5.06 3.04
281y, 1§ 5.60 6.86 5.39 4.87 5.84 5.03 5.93
27 || 6.40 6.69 5.35 4.94 5.83 4.99 5.80
2600; I 5.4 6.50 5.2 4.99 5.80 4.94 5.66
250/, || 5.75 6.31 5.27 5.02 5.75 4.89 5.50
B, || 5.20 6.09 5.13 5.05 5.69 4.84 5.33
B30y, 5.49 5.87 5.02 5.06 5.60 4.78 5.14
38 Vngs It 6.04 6.15 5.09 4.98 5.56 4.34 5.37
BT Npgs || 5.49 5.97 5.02 4.99 5.52 4.29 0.23
244 Py, || 4.60 6.32 4.97 4.62 5.39 3.95 5.46
282Dy, | 4.70 6.10 4.97 4.79 5.42 3.88 5.32
241 Py, 1| 6.20 5.97 4.94 4.86 5.41 3.84 5.22
240 Pyeq || 4.85 5.83 4.90 4.91 5.38 3.79 &.11
239 Pugy || 5.48 5.67 4.84 4,95 5.34 3.75 4.97
28 Pugy || 4.70 5.49 4.77 4.97 5.28 3.70 4.83
B8Py 4.55 | 510 | 4.57 497 511 | 358 4.48
11
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Table 2 (continued)

Isotepe || Exp. Present calculations by different methods
[11} [MS67[7] [ PL7i[8) ] KN74{13] | KNS79{14] | S86[15] S86[15]
without with shell
L shell cor. | cor. from [7]
T Amy, || 6.21 5.77 4.77 4.74 5.25 338 5.05
M hmey || 6.40 5.53 4.72 4.86 5.23 3.30 4.86
M Armgs |} 6.00 5.38 4.68 4.90 5.20 3.25 4.75
P0Cmee || 4.10 §  5.69 4.46 4.36 4.87 3.05 4.91
H8Cmpe || 4.25 5.60 4.55 4.56 5.00 2.99 4.89
M5Cmge |} 4.35 5.45 4.58 4.70 5.07 2,93 . 4.80
MCmog || 4.25 5.25 4.56 4.82 5.07 2.85 4.65
M20mge || 4.25 4.99 4.47 4.88 5.01 2.75 4.43
HO0Cmgs || 4.15 4.68 1.31 4.89 4.88 2.65 1.15
250Bkyy (| 5.80 5.27 4.36 4.53 4.76 2.58 4.63
By || 4.35 5.22 4.39 4.62 4.8¢ 2.55 4.61
B0 fos || 3.65 4.95 4.16 4.49 4.54 2.22 4.38
30C fos | 3.95 4.88 4.23 4.66 4.64 2.16 4.25
M5C foe || 3.85 4.75 4.24 4.78 4.68 2.08 4.26
M8Cfas 1| 3.85 4.57 4.20 4.84 4.66 2.00 4.11
54 Frrgeg || 3.35 4.36 3.89 4.56 4.26 1.55 3.96
M Pmi | 2.75 4.04 3.89 4.84 4.31 1.33 3.71
Mg || 2.55 3.83 3.77 4.82 4.21 1.25 3.51
5 Fmeo i 2.62 3.71 3.69 4.7, 4.13 1.21 3.39
MM pmice i 2.62 3.57 3.59 4.74 1.04 1.16 3.25

Earlier, by means of the classical thermodynamics Yamaguchi [34] has derived the

{ollowing relation:
B/(E) = B/(0)(1 ~ E/Fy),

where Ey = aTg, Tp =~ 9 MeV.

At last, one has to mention the recent attempt of Newton, Popescu and Leigh [35]
to interpolate the results of Garcias et al. [36] ? on the evolution of the fission barriers
as a function of temperature and angular momentum by a simple formula that can be
incorporated in a statistical model code.

In the present paper we estimate the influence of thermal” eifects on By (see figs.
4 and 5) in two ways, namely, by meaus of relation (25) with @ and 3 given by {26) for
a = A/10 (the results are marked by abbreviation SCM76), and by phenomenological
relation (27) (the results are marked by abbreviation BGIT74). One can see that the
phenomenological approach (27) provides a stronger decrease in By with increasing

?Recently Garciss ¢t al. [36] have made calculations of nuclear fission barriers by using a Thamas-
Fermi model, which self-consistently incorporates the effects of rotations and temperature, with the
Skyrme S%%** force. But this method is too difficult 1o be used in Monte Carlo calculations of fission

processes.
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excitation energy in comparison with the approach (25). This is most appreciable
for medium weight and light nuclei with the energies of excitation above 50 MeV.
"Thermal” effects may cause a tenfold increase of the nuclear fis:ility for Z2/A < 27
(see, for example, [37]).
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Fig. 4. Comparison of fission barriers predicted by phenomenological [16] (marked as
BITG73) and semiphenomenological [17] (marked as BG77) approaches with the experimen-
tal data [11, 53] for nuclei along the line of 3 - stability. The solid lines are the results for
zero excitation energy (smooth lines — only the macroscopic part of By; "irregular” lines
- with Cameron’s [18] shell and pairing corrections). The dashed lines show the results of
calculations for excited nuclei for the values of excitation energies E indicated in the figure.
The results of calculations for the dependence of fission barriers on the excitation energy as
proposed in ;29] are marked by the abbreviation BGIT74; and for the one proposed in [30],
by the abbreviation SCM76.

The dependence of fission barrier heights on the rotation of nuclei . In
ref. [38] from the measured angular correlations and distributions of fission fragments
produced in the bombardment of ***T'h targets with different projectiles it has been
found that in the case of proton-induced reactions the upper limits of the mean angular
momenta transferred to the fissioning nuclei are small. As one can see from table 3,
only a :mall fraction of the grazing angular momentum is left in the fissioning nuclei.

The high reiative angular momentum in the enirance channels seems to be taken
away by the cascade ejectiles or by fast pre-equilibrium particles [38]. Therefore, in
calculations of such reactions in the first order it is possible to neglect the dependence
of By on the angular momenta L of fissioning nuclei. On the contrary, in heavy-ion
induced reactions the momenta of fissioning nuclei are high (see, e.g., {4]) and the
dependence of By on L must be taken into account.
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Fig. 5. Comparison of fission barriers calculated in the framework of the LOM (7] {(ab-
breviation MS67), the LDM [8) (abbreviation PL71), the Yukawa-plus-exponential modified
LDM [14) (abbreviation KNS78), and the single-Yukawa modified LDM [13] (abbreviation
KN74) with the experimental data [11, 53] for nuclei alorg the line of 8 - stability. The
remaining notation is the same as in fig. 4.

Several approaches for the description of fission barrier dependence on the angular
momenta of rotating nuclei are used to dale.

One of the most extensively used and perhaps the most successful theoretical model
for this purpose is the Rotation-Liquid-Drop Model (RLDM) of Cohen, Plasil and
Swiatecki [9]. However, questions have been raised about the general validity of the

RLDM {39, 40].



Table 3
The mean angular momentum transfers < L > of fissioning nuclei and the maximum
possible angular momentum in the entrance channel, i.e., the grazing angular momentum
Imaz for different reactions [38]

System || B, MeV [ lnae, B[ < L >R
p+2ITh 140 25 4
250 35 1
500 49 1
1060 70 1
d+7Th 70 25 13
140 37 11
500 72 5
1000 102 5
a+2Th 250 75 17
1000 148 7
o+ Au 280 72 28

Later on Mustafa et al. [10] have proposed a model which differs from the RLDM in
the shape parametrization and in the calculation of the Coulomb, surface, and rotation
encrgies. The authors of [10] used the two-center-model shape parametrization which
allows for Lriaxial shapc variations and a continuous transition from one-center to
two-center shapes with a smooth neck. Mustafa et al. [10] calculated the surface
energy with the Yukawa-plus-exponential folding function of Krappe, Nix and Sierk
(14] which incorporates the cffects of the finite range of nuclear force and the diffuse
nuclear surface, and calculated both the Coulomb and rotation energies with surface
diffuseness described by the Yukawa folding function.

A further development of this approach has been done by Sierk [15]. Sierk used
a highly accurate numerical techniques, a flexible shape parametrization which allows
accurate cstimation of the convergence of results as a function of the number of degrees
of freedom of the nuclear shapes considered, and a more perfect set of parameters for
calculations in comparison with [10]. In addition, Sierk has approximated his results
for many hundreds of nuclei in a useable form in two computer subroutines BARFIT
and MOMFIT which provide accurate values for fission barrier heights and saddle-
point moments of inertia as functions of Z, A and L, and can be casily incorporated
in statistical evaporation models.

At last, one has to mention the [ollowing pk.nomenological approach frequently
used in statistical calculations (sec, e.g., [16, 41]) to estimate the dependence of B, on
L. In this approach one assumes that the nuclear rotation energy Ep is not available
for excitation energy released in the fission and evaporation processes. This implies
that the fission barrier By(L) for a fissioning nucleus with the angular momentum L

can be written as
By(L) = By(0) ~ (Ef - ER). (28)
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Here Ef and Ejf are nuclear rotational energies for the ground state and at the saddle-
point, respectively
B9 L(L + )R’
R 2Jr6 ’
L(L + )R
WUy
Jop = 0.4M,r2 A%, (30

Ef = (29)

L is the angular momentum of nucleus, M, is ‘the nucleon mass, and for the moment
of inertia of a nucleus at the saddle-point J,, the values calculated and plotted in (42]
or tabulated in [21] are used.

As one can see from fig. 6, Strutinsky’s [42] results for moments of inertia of nuclei
at the saddle-point are very close to Cohen and Swiatecki’s ones [21]; thus, concrete
numerical calculations may be done with any of them.
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Fig. 8. Comparison of Strutinsky’s [42] and Cohen and Swiatecki’s [21] prediction for
moments of inertia of nuclei at the saddle-point as functions of the fissility parameter z.

As an example, fig. 7 shows macroscopic fission barri.rs of rotating nuclei with
uiferent values of angular momentum £ calculated in accardance with (28-30) with
the LDM (7] parameters and Strutinsky’s [42] values for J,,, and, for comparisen,
fission barriers computed with Sierk’s subroutine BARFIT as functions of the mass
number for beta-stable nuclei.
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Fig. 7. Calculated fission barriers for rotating nuclei with different values of the nu-
clear angular momentum L as functions of the mass number for beta - stable nuclei. Lower

fig.: the LDM [7) with Strutinsky’s [42] values for moments of inertia of nuclei at the saddle-
point, in accordance with(28-30); upper fig.: predictions of Sierk's [15] subroutine BARFIT.
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One can see that for small values of the angular momentum L and A < 200 the
phenomenclogical approach (28-30) with the LDM [7] predicts significantly higher val-
ues for fission barriers than the Yukawa-plus-exponential model [15]. But for 4 > 200
and/or high values of the nuclear angular momentum L the resnlis obtained in both
these approaches are similar.

Fig. 8 shows fission barrier heights calculated within different models for 537,
17805, and ***Np nuclei as functions of the angular momentum /. One can see that
fission barriers calculated phenomenologically by (28-30) in the LDM [7] with Struti-
nsky’s values for moments of inertia of nuclei at the saddle-peint are similar to those
calculated in the Yukawa-plus-exponential model {5] and to Mustafa's et al. [10] pre-
dictions. Our concrete calculations show that Sierk’s subroutine BARFIT [15] nceds
about a tenfold increase of computing time in comparison with calculations according to
(28-30). Thus, in conciete Monte Carlo calculations which need much computing time
to obtain a good statistics we can successfully use the phenomenological approach (28-
30) to cstimate the dependence of fission barriers on the angular mmomentum of nucleus.
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Fig. 8. Calculated fission barriers as functions of the angular momentum for 5376,
17605 and 22N p. Solid and dashed lines are our calculations in accordance with (28-30) for
the LDM [7) and Strutinsky’s {42] values for moments of inertia of nuclei at the saddle-point
for 7o = 1,4 fm and ro = 1.2 fm, respectively. The op=n circles show the tabulated results of
Mustafa et al. [10]. The solid circles are the resulls obtained with the subroutine BARFIT
of Sierk [15).



3. Analysis of fissility of excited compound nuclei

The mcin relationship for particle emission and fission widths. In this sec-
tion, we will use the fission barriers considered above to analyze the energy dependence
of the fissility of different excited compound nuclei. In the Weisskopf statistical theory
of particle emission [42] and ihe Bc' v and Wheeler [44] theory of fission the partial
widths T; for the emission of a particie j (j = n,p,d,2,> He,a) and T for fission are
expressed by the following approximate formulae (units: & = ¢ = 1; see, e.g., {23, 41)):

U,-B,
(25; + 1)m; i .
= 2 [ Bt - B - E)EaE, (31)
U;-B,

1
= 7, - B, — .
By =gy | iU Br- BXE (32)

Here p., p;, and ps are the lcvel densities of a compound nucleus, residual nucleus
produced after the emission of the j-th particle, and of fissioning nucleus at the fission
saddle peint, respectively; m;, s; and B; are the mass, spin and the binding energy of
the j-th particle, respectively; By is the fission barrier height. In the present work, we
calculate the binding energies of particles through the use of Cameron’s {18] formulae;
ol..( E) is the inverse cross-section for absorption of the j-th particle with kinetic energy
E by the residual nucleus. We use here for o7 (E) the approximation proposed by
Dostrovsky [45]:

o B) = T (14 ) (33)
where
Cam = TR Ry = FOA}f ;o= 1.51m;

_an -3,
n,.-O.lG-l-Z.ZAH ;

B = (2.12477° ~ 0.05)/ars .

For charged particles 8;. = V; , where V; is the eflective Coulomb barrier and the
constants a; are calculated for every concrete nucleus by interpolation under the values
given in ref. [45). The angular momentum L dependence of the level density is taken
into account by the relation p(E*, L) = p(U,0) where U = E* — Ep and Eg are
respectively, the "thermal” and rotational energies of the nucleus;

U=E -EB—D ;Uj=E" - Ef -8, U= E*~Ef— ;.

T, 5o



Here E* is the lotul excitation energy of the compound nucleus; E§, E;fl, and E',’z are
tbe rotationral energies for the compound, residual, and fissioning nucleus at the saddle
point, respectively, and are determined by the formulae (29,30);

A =x12/+/A.; A= x 12/\/Asj;and Ay = x - 14/+/ A (in MeV)

are the pairing energies for the compound and residual nuclei, and for the fission
saddle point, respectively, A;; = A. — A; where A. and A; are the mass numbers of
the compound pucleus ard of the j-th particle, respectively.

tu the Fermi-gas approach for the nuclear level density

p(E") = Const - exp{2VaE"} ,
for particle emission I', and fission 'y widths {3i-32), one obtains (see, e.g., [46]):

(255 + D)mje,72A%

v

{(U; ~ By)[1 + (k; — 1)ezp(k;)] ~

s rajexp(2ve.)
~ [6+ (K} — 3k} + 6k; — 6)ccp(k,))/(4a,)} (34)
p, = Lt (= Dezplty) 55

drasezp(2/als)
where B, = B, — 8 ; By, = Bi+V; 1 k; = 2\/;,~(U,- ~Bj); &/ = 2/a(T; - By}

2
a, aj, and ay are the level density param t: ¢ for the comnpound and residual nuclei,
and for the fission saddle point, respectively.
In the case of transuranium nuclei, when deuble-humped fission barriers are used,

we define the fission width by the expression (see, e.g., [23]):

I'al'p
ry=—22 6
Al tywrey o (36)
where 1’4 and 'y are the partial widths for the corresponding scdd'e points. We
calculate each of these widths by formula (35) with the own shell correction.

Compurison with Experiment. By now a lot of experimental data are available
on the nuclear fissility and fission cross-section of heavy nuclei induced by different
probes (see the reviews [1}-{4]}. The fissility is the ratio of the fission cross-section
to the inelastic interaction cross-siction Py = oy/0is. For a given excited compound
nucleus the fissility may be esti..ated as the ratio of pariial widths I';/I',,;, where
F,0.=I‘,+EJ.F,-.

We have analyzed, by using formulae (34-35) and fission barriers regarded above,
practically all the data on nuclear fissility published in the review {1]. Let us show here
only some exemplary results. As an example, measnred [1] and calculated fissilities
for 182y 1880 1897 and '"3ILu nuclides are sl.own in fig. 9. The calculations
were performed with fission barriers from ref. [14] without taking into account the
dependence of By on the excitation energy E*, with Cameron’s [19] shell and pairing
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corrections, the third Iljinov, Mebel’s et al. systematics for the level density parameter
without an explicit taking into account of collective eflects, for “he values of the ratio
ay/an indicated in the figure.
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Fig. 8. Excitation energy dependence of the fissility T'y /Ty, of different nuclei. Curves
are the results of our calculation with KNS79 [14] fission barriers, C70 [19] shell corrections,
the third Iljinov, Mebel et al. {23] systematics lor the level density parameter without the
explicit taking into account of collective cffects. Experimental po.nts were taken from the
review [1]. The used values for the ratio ¢4/a, are shown iz figure.

One can see that in this approach one obtains a good description of experimental
data. Our analysis shown that for every nuclide it is possible to select a concrete madel
for the fission barrier, shell and pairing corrections, a systematics for the level density
parameter, and to fit the value of the ratio a;/a,, for obtaining a very good description
of the experimental data. But it is not possible to describe well the experimental
fissilities for all nuclides with a fixed set of these options.

The calculated fissilities are the most sensitive to the used values of the ratio a;/a,.
As an example, fig. 10 shows how the calculated fissility of the excited *%Ir nuclide
depends on the ratio as/a,. One can see that for high excitation energies E* > 50
MeV a small increase of the ratio ay/a, from 1.04 to 1.13 results in an increase of the
calculated fissility more than one order of magnitude.

Fig. 11 shows the fissilities of the *¥Jr nuclide for the ratio as/a, = 1.114, the third
Iljinov, Mebel’s ¢t al. [23) systematics for the level density parameters, Camerou's [19]
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Fig. 10. Dependence of the calculated fissility of the excited 8%/r compound nucleus
on the used values for the ratio ag/an. The remaining notation is the same as in fig. 9.

shell and pairing corrections calculated with different fission barriers, namely, BITG73
[16); BG77 [17]; MS67 [7); PL71 [8]; KN74 [13}; KNS79 (14]; and $86 [15] without tak-
ing into account the deperdence of By on E*. One can see that for this option all the
used fission barriers provide a correct description of the shape of the calculated curves,
and by fitting the value of the ratio as/a, it is possible to obtain a good description
also for the absolute value of the fissility for cach regarded model for By.

An example of the dependance of the calculated fissilities on the form of the energy
dependence of the fission barriers B;(E*) is shown in fig. 12. Our analysis shows
that for the interval of excitation encrgies regarded here it is possible to fit the value
of the ratio ag/a, to describe the data with the dependences By{(£*) proposed both
by Barashenkov et al. (29] and by Sauer et al. {30], as well as without an explicit
dependence of By on E*. To elucidate better this question, it is necessary to analyze
the fissilities and fission cross-sections in a larger range of incident/excitation energies.

An example of influence of the angular momentum on the fissility of an excited
fissioning nucleus is shown in fig. 13. Onc can see that for small values of the angular
momentum L < 20 (that is realized, e.g., in the case of nucleon-nucleus interactions
at intermediate energies) we can neglect the dependence of the fission barriers on the
angular momentum in calculations of the nuclear fissilities. On the contrary, for high
values of L (that is realized, e.g., in heav; i.2-induced reactions) taking into account
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Fig. 11. Dependence of the fissility of the exited 8 Jr compound nucleus on the fission
barriers used in the calcuiations. The remaining notation is the same as in fig. 9.

the dependence By(L) not only increases the absolute values of the fissilities several
orders of magnitude but also significantly changes the shape of the dependence of
nuclear fissility on the excitation energy of a rotating fissioning nucleus.

Fig. 14 shows how the theoretical fissility depends on the systematics for the level
density parameter used in the calculations. One can sce that Malyshev's systematics
for a(Z, N) provides a good description of the shape (and by fitling the ratio as/a,,
of the absolute value) of the nuclear fissility as a function of E* only for low values
of E*. Cherepanov and lljinov's [47] and lljinov, Mebel’s et al. [28] systematics for
a(Z, N, E*} allow one to obtain a good description of the data in a larger interval of
E*, reproduce very close results and seem to describe the data better than the popular
systematics of Ignatyuk et al. [48).

4. The fission cross-section

In this section, we incorporate all the above-considered systematics for fission bar-
riers, shell and pairing correciions, level density parameters, and formulae for the
calculation of the fission width in the Cascade-Exciton Model {CEM) of nuclear reac-
tions [50] and calculate the fissio: cross-section for intermediate-cnergy proton-induced
reactions. A detailed description of the CEM may be found in [50]. Therefore, we state
here only that the CEM assumes that the reactions occur in three stages.
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Fig. 12. Dependence of the fissility of the exited **Ir compound nucleus on the form of
t1 e excitation energy dependence of fission barriers B;(E*). The remaining notation is the

same as in fig. 9.

The first stage is the intranuclear cascade in which primary particles can be rescat-
tered several times prior to absorption by, or escape from the nucleus. The excited
residual nucleus formed after the emission of the cascade particles determines the
particle-hole configuration that is the starting point for the second, pre-equilibrium
stage of the reaction. The subsequent relaxation of the nuclear excitation is treated
in terms of the exciton model of pre-equilibrium decay which includes the description
of the equilibrium evaporative stage of the reaction. The CEM uses the Monte Catlo
method to simulate all three stages of the reactions.

The fission cross-section oy is determined by the ratio of the number N of fission
events to the total number N, of Monte Carlo simulations

/S 67

oy = a'in.Pf = a’in'ﬁi = a'g:om‘IT‘ ]
where 0in = geomNin /Ny is the total reaction cross-section; N;, is the total number of
simulated inelastic interactions; ogeom i9 the geometrical cross-section for the projectile-
target interaction. In the case of low-fissioning nuclei (e.g., gold) N; << N, and as a

consequence, a large number of cascades should be calculated to obtain the value o;
with a sufficient statistical accuracy, and the calculation of ¢; becomes extremely
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time-consuming. Therefore, here, besides the direct calculation of the fission cross-
section through expression (37), following Barasnenkov et al. [29], we have carried
out Monte Carlo sampling by means of the statistical functions W, = Hf—_x wy; and
W; =1—W,, where W, is the Monte Carlo calculated probability for the nucleus to
"drop” the excitation energy £* hy the chain {cascade) of N successive evaporations
of particles; Wy is the probability for the nucleus to fission at one of the chain stages;
wn; = 1 — toy; is the probability of particle emission at the i-th stage of the evaporative
cascade; wy, is the corresponding fission probability which is easy to determine using
the formulae (34-35) for the widths T'; and Iy, After the subsequent averaging of the
W; value over the total number N;, of the cascades followed, and the multiplication
of the result by the corresponding total cross-section oy, for inelastic interactions, we
obtain the following expression for the fission cross-section:

Nin

a1 =352 Wik (38)

As an example, the incident energy dependences of experimental and calculated
within this formula fission crozs-sections for ‘sroton-gold and -uranium interactions are
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notatica is the same as in fig. 9.

shown in fig.15. We performed these calculations with Cameron’s {18] shell and
pairing corrections, third Ijinov, Mebel's et al. [23] systematics for the level density
parameter, Krappe, Nix and Sierk’s [14] fission barriers with the dependences B(E*)
proposed by Barashenkov et al. [29), by Sauer et al. [33], as well as without a de-
pendence of By on E*. The values used for the ratio a;/a, are shown in the figure.
One can see that by choosing the corresponding values for the ratio as/a, the CEM
reprodiuces correctly the shape and the absolute value of the fission cross-sections in
the interval of bombarding energies regarded here, independently of the form of the
dependence By(E") used in the calculations. Analogous results have been obtained
also for other targets. A more detailed analysis of fission processes in the framework
of the CEM will be done in a separate paper.

4. Summary and conclusion

Thus, the review and comparative analysis of the models for description of fast-
computing single-humped fission barriers for statistical calculations are given. Our
analysis shows that the simple and not time-consuming phenomenological approaches
of Barashenkov et al. [16, 17] provide equally good descriptions of the experimental
fission barriers with Cameron’s [18] and Truran, Cameron and Hilf’s {19] shell and

26



pairing corrections both very convenient for Monte Carlo calculations. Nevertheless,
for neutron-rich and neutron-deficient nuclei the use of the shell corrections from ref.
[19] seems tc be more preferable. When one uses the Myers and Swiatecki's [7] shell
corrections popular in the description of nuclear fission, the Yukawa-plus-exponential
modified LDM [14] provides the best agreement of calculated By with the experimental
data for the uuclei along the line of #-stability.

T

— i T

o p + 'TAu

€ 150F 1 - BGIT74 (ar/a,=1.08) 1
~ 2 — SCM78 (ar/an=1.15)

o
|

- B#f(E) (a;/a,=1.19)
S 100k o= f( (a;/ 5 oL

=
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500+ & — SCM76  (ac/a,=1.04) |
3 - Bef(E) (a;/a,=1.05)

0 ) 1 1 Iy b
100 300 500 700
T (MeV)

Fig. 15. The energy dependence of the fission cross section for nuclei of gold and ura-
nium. Calculations were performed with KNS79 [14] fission barriers, Cameron’s [18) shell
and pairing corrections, third Iljinov, Mebel’s et al. [23] systematics for the level density
parameter, for the dependences of By on E* proposed by Barashenkov et al. (BGIT74) [29],
by Sauer et al. (SCM76) [30], as well as without the dependence of B; on E*. The values
used for the ratio ay/an are shown in the figure. The experimental points are taken from the
summary table 159 of the monograph [51].

Our estimation of the reduction of the fission barrier heights with increasing ex-
citation energy £° has shown that the phenomenological approach (27) proposed by
Barashenkov et al. [29] provides a significantly stronger decrease of By with increasing
E* in comparisen with the approach (25) of Sauer ef al. [30]. "Thermal” effects may
cause about a tenfold increase of the nuclear fissility for medium weight and light nuclei
with the excitation energies above 50 MeV.
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It has been shown that if one takes into account the dependence of fission barriers
on the angular momentum of a fissioning nucleus, the phenomenological approach
with formulae (28-30) provides results similar to those obtained by Mustafa’s et al.
{10] and Sierk’s [15] models, but needs about ten times shorter computing time in
comparison with the subroutine BARFIT of Sierk and, therefore, is more convenient
for Monte Carlo calculations. For all this, let us note that Strutinsky’s [42] results for
the moments of inertia of nuclei at the saddle-point are very close to the Cohen and
Swiatecki’s {21} ones, so the concrete numerical calculations may be done with any of
them.

Nuclear fissility Py for different excited compound nuclei as functions of the excita-
tion energies E* have been studied. We performed a detailed analysis of the dependence
of theoretical fissilities on the models for By and functional forms By = B¢(E°) and
B; = By(L), on the systematics for the level density parameter, and on the values of
the ratio ag/a, used in calculations. It has been found out that for every nuclide it is
possible to select a concrete model for By, a(Z, N, E*), shell and pairing corrections,
and to fit the ratio as/a, for obtaining an excellent description of experimental data.
But it is impossible to describe well the experimental Py simultaneously for all the
nuclides with a fixed set of these options. The theoretical Py are the most sensitive to
the values of the ratio ay/a, used in calculations. We nave found out that Cherepanov
and Jljinov’s [47] and lljinov, Mebel's et al. [23] systematics for a(Z, N, E*) allow one to
obtain a good description of nuclear fissilities in the hole interval of excitation energies
regarded here, reproduce very close results and seem to describe the data better than
the popular systematics of Ignatyuk et al. [48].

It has been shown that the Cascade-Exciton Model of nuclear reactions is able
to reproduce correctly the shape and the absolute value (let us recall that the CEM
predicts the absolute values for all calculated characteristics and does not require any
normalization to adjust the results) of the fission cross-sections for proton-nucleus
interactions at intermediate energies. This fact, together with a good description of
proton- and neutron-induced particle production published in [50, 52}, indicate the
predicative power of the CEM aud the possibility of using the CEM to provide nuclear
data at intermediate energies needed for different important applications, e.g., for the
transmutation of long-lived radionuclides produced in reactors with a spallation source.

From our point of view, very voluminous but unco-ordinated experimental data
on fission processes obtained by now in separate measurements do not permit one to
discriminate various models for fission barriers and to determine simultaneously the
value of the ratio as/a,. New complex data on fission processes, measured simultane-
ously with the characteristics of all emitted particles and fragments for such reactions
where the fission cross-section is of the same order of magnitude with the particle-
and fragment-production cross-sections, and the analysis of all these data in a unique
approach may clear up these questions. Such "complete” measurements are possibie
and desirable in the near future at the FOBOS setup in the JINR FLNR.

The auihior would like to thank A.J. Sierk who kindly sent him the subroutines BARFIT

and MOMFIT used in this work. Helpful discussions with E.A. Cherepanov, M.G. Itkis
and V.V. Pashkevich are gratefully acknowledged.
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