

объединенный ИНСТИтут адерных иєєледований дубна

E4-93-55
M.I.Shirokov
«DRESSING» AND BOUND STATES
IN QUANTUM FIELD THEORY

Submitted to «International Journal of Modern Physics A»

I. Introduotion

The interaction of oharged partiolea with photons or a quarkgiuon interaction give rise to bound atates suoh as the hydrogen atom (pe^{-}), the positronium ($\mathrm{e}^{+} \mathrm{e}^{-}$), and hadrans. The problem of determining the states $1 \mathrm{~s}^{\circ}$ of importance in field theories.

Different approaches to this problem are fiown, e.g., nonrelativistic Breit' appramen $11,2 /$, Pothe-Salpeter equation (see the book $/ 3 /$ and bibliography given in ${ }^{\prime} / 4 /$), threemamensional quasi-potontial approanhes (soe $/ 5,6 /$ and referenoes therein).

I shall show here that thi "drassing" formallan given by L.Fad. deev ${ }^{/ 7 /}$ (see also $/ 8$) provides one more appromeh. The idea of the approack is illustrated by using a siapie nonrelativistio model, see sections 2 and 3. The peouliarities of the relativistio oase (the spinor QID) are briefly disoussed in seot.3. The sinple model used in sect. 2 allows one to oonsider an instructive application of the formalism to the so-called multipolar form of OED. Some consequenoes of the "dressed" desoription of particles are discussed in sect.5. In the sumarising sect. 6 I 11st sereral qualitative peculierities of the suggested approach to the bound-state problem.

> 2. Introduction of the "dressed" particle

The definition of "dredsed" partioles and their introduotion proposed in $/ 7,8 /$ need modifications when applied to OED or $9 C D$. The "dressing" acoording to $/ 7,8 /$ requites an infinate series of speoific unitary transformations. 4 simple "partial" dreseing presented here is realised by the simplest of these transfornations applied moreover to a nonrelatiristic field model.

2.1. The model

Coneider the eecond-quantized theory of nonrelativistio spinleas. oharged partioles (named eleotrons below) interacting with photons. The total manilitonian is

$$
\begin{align*}
H= & \int d^{3} \gamma+(\bar{x})\left\{(-i \bar{\nabla})^{2} / 2 \mu_{p}+V(\bar{x})+\frac{e}{2 \mu_{0}}[\bar{A}(\bar{x})(-i \bar{\nabla})+(-i \bar{\nabla}) \bar{A}(\bar{x})]\right\} \psi(x)+ \\
& +H_{p h}, \quad H_{\rho h}=\int d^{3} x\left[\bar{E}^{2}(\bar{x})+\bar{H}^{2}(\bar{x})\right] . \tag{I}
\end{align*}
$$

Here $\psi(\bar{x}) \quad$ is the partiole field satisfying the anticomantation relation $\left\{\psi(\vec{x}), \psi^{t}(\bar{y})\right\}_{+}=\delta(\bar{x}-\bar{y})$. The absenoe of antiparticles is the main simplification as oompered to the spinor QED. Let φ_{n} be the oomplete set of solutions of the equation

$$
\begin{equation*}
\left[-\Delta / 2 \mu_{0}+V_{c}(\bar{x})\right] \varphi_{n}(\bar{x})=E_{n} \varphi_{n}(\bar{x}) \tag{2}
\end{equation*}
$$

Here V_{0} is a part of the potential $V: V=T_{0}+P$ (such that eq. (2) can be solved exactily). In the expaneion

$$
\begin{equation*}
\psi(\bar{x})=S_{n} a_{n} \varphi_{n}(\bar{x}) \tag{3}
\end{equation*}
$$

the coefficients a_{n} satisty $\left\{a_{m}, a_{n}^{+}\right\}_{+}=\delta_{m n} ; \quad S_{n}$ denotes the sum over discrete values of $n, n=0,1,2,3, \ldots$ and the integral over continuous values. Inserting (3) in the rhs of eq. (I) along with the usual expansion of the electromagnetio potential $\bar{A}(\bar{x})$ in photon operators one obtains

$$
\begin{equation*}
H=S_{n} E_{n} a_{n}^{+} a_{n}+S_{m} S_{n} P_{m n} a_{m}^{+} a_{n}+T+S_{\bar{k}} k C_{\bar{k}}^{+} C_{\bar{k}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
T=S_{m} S_{n} S_{\bar{k}}\left[T_{m n}(\bar{k}) a_{m}^{+} a_{n} C_{\bar{k}}+T_{m n}^{+}(\bar{k}) a_{m}^{+} a_{n} c_{\bar{k}}^{+}\right] \tag{5}
\end{equation*}
$$

Here $T_{m n}^{\dagger}(\bar{k})=T_{n m}^{*}(\bar{k})$ and $T_{m n} \sim e$. The index \bar{k} denotes the photon momentum along with the photan polerization λ and $S_{k}=\int d^{f} k S_{\lambda}$.

The hamiltonian H commutes with $N=S_{n} a_{n}^{+} a_{n}$, the operator of the number of eleotrons. So the model oan be oonsidered in the sectors of the total Fock space which correspond to ilxed H ralues. In each suoh seotor the model is equivalent to the first-quantized theory of N electrons, interacting with photons (ot. $/ 9 y^{\prime}$, ch. $6 ; / 10 /$, ch. XIII, §46).

Let us represent $S_{m} S_{n} T_{m n} a_{m}^{+} a_{n}$ as the product $a^{+} T a$ of the row $a^{+}=\left(a_{c}^{+}, a_{1}^{+}, \ldots\right)$, matrix T with elements $T_{m n}$ and the column a. ghen, H can be written as

$$
\begin{equation*}
H=a^{+} E a+a^{+} P a+S_{\bar{k}} k C_{\bar{k}}^{+} C_{k}+S_{k}\left[a^{+} T_{\bar{k}} \alpha C_{\bar{k}}+a^{+} T_{k}^{+} \alpha c_{\bar{k}}^{+}\right] \tag{6}
\end{equation*}
$$

Here E is the diagonal matrix: $E_{m n}=E_{n} \delta_{m n}$.

2.2. Mressed" creation- destruotion operatozs

Consider the transition $m \rightarrow$ nk from the state "el eotron 18 1n the state $(m)=\boldsymbol{a}_{m}^{+} \Omega_{0}$ with the enezgy E_{m}, no photons"
into the state" eleotron is in (h), one photon with the energy $X^{\prime \prime}$. The corresponding anpititude. $T_{n m}^{*}(\bar{k})$ is nonzero oren if the energy is not conserved: $E_{m} \neq E_{n}+K$, the case $E_{m}<E_{n}$ being the example. Rere "energy" means the proper value of the free part $H_{0}=a^{+} E a+S_{R} K C_{k}^{+} C_{\bar{k}}$. of the total Eaniltonian. The corresponding probability in unit time interval (the probability of the transition for a large time interral t dirided by t) is cero in the case of energy nonconservation, e.g., see $/ 10 /$ oh. VIII, $\$ 29$. Let us call such transitions (and the corresponding elements of T) "rirtual".

In order to deliver the theory from unphysical virtual transitions, one nust renove from $\mathrm{B}^{\text {the }}$ corresponding interaction terms replacing them by others oorresponding to physical prooesses. For this purpose, new operators α_{n} and $\sqrt{\bar{k}}$. 111 be introduced instead of the old a_{n} and C_{k}. so that the Hamiltonian H when expressed in terms of α, γ would not give rise to the virtual transitions. Let the old operators be expressed in terms of the new ones by means of a unitary transformation

$$
\begin{equation*}
\alpha_{n}=W \alpha_{n} W^{+} \quad, \quad c_{k}=W \gamma_{k} W^{\prime+} \tag{7}
\end{equation*}
$$

(here W is a function of the new operators). Then, α, γ would satisfy the same oommutation relations as a, c do. Replacing a, c in eq. (6) by the r.k.s. of eq. (7) we find the expression of B in terms of $\alpha_{1} \gamma$ (let us denote the expression by K)
$H(a, c)=H\left(W \alpha w^{+}, W \gamma u^{+}\right)=W H(\alpha, \gamma) w^{+} \equiv K(\alpha, \gamma)$.
The relations of the kind $W a^{+} W^{+} W a W^{+}=W a^{+} a W^{+}$were used. Eq. (2) means that in order to get $K(\alpha, \gamma)$ one must substitute α, γ for a, 0 in eq. (6) and then caloulate the produot $W H(\alpha, \gamma) W$:

The following W will suit our purpose

$$
\begin{align*}
W & =\exp i S_{m} S_{n} S_{\bar{k}}\left[Z_{m n}(\bar{k}) \alpha_{m}^{+} \alpha_{n} \gamma_{\vec{k}}+h . c .\right]= \\
& =\exp i S_{\bar{k}}\left[\alpha^{+} Z_{\bar{k}} \alpha \gamma_{\bar{k}}+\alpha^{+} Z_{\bar{k}}^{t} \alpha \gamma_{\bar{k}}^{+}\right] \equiv \exp A . \tag{8}
\end{align*}
$$

$$
Z_{m n}(\bar{k}) \text { is supposed to be of the order } e^{l} \text { aloing with } T_{m n}(\bar{k}) \text {. }
$$ To calculate $W H W^{\dagger}$, one may uso the formula

$$
\begin{equation*}
e^{A} H e^{-A}=H+[A, H]+\frac{1}{2}[A,[A, H]]+\frac{1}{6}[A,[A,[A, H]]]+\ldots \tag{9}
\end{equation*}
$$

The following tro rinds of commutators occur when calculating WHW! The first one is

$$
\begin{equation*}
\left[\alpha^{+} Z_{\bar{k}} \alpha^{\prime}, \alpha^{+} E \alpha\right]=\left[\alpha^{+} Z_{\bar{k}} \alpha, \alpha^{+} E \alpha\right] \gamma_{\bar{k}} . \tag{10}
\end{equation*}
$$

The result of the caloulation of the commutator in the r.h.s. of (IO) cen be represented as $\alpha+\left[Z_{\bar{k}_{1}} E\right] \alpha$, where $\left[Z_{\bar{k}}, E\right]=Z_{k} E-E Z_{k}$ is the matrix with the elements

$$
\left[Z_{\bar{k}}, E\right]_{m n}=Z_{m n}(\bar{k})\left(E_{n}-E_{m}\right) .
$$

The second kind occurs, e.g., when calculating $W \alpha^{+} T_{\bar{k}}^{+} \alpha \gamma_{k}^{+} W^{+}$:
$\left[\alpha^{+} Z_{\bar{k}} \alpha \gamma_{\bar{k}}, \alpha^{+} T_{\bar{k}^{\prime}}^{+} \alpha \gamma_{\bar{k}^{\prime}}^{+}\right]=\alpha^{+} Z_{k} \alpha \alpha^{+} T_{\bar{k}^{\prime}}^{+} \alpha \delta_{\overline{k_{1}} \bar{k}^{\prime}}+\alpha^{+}\left[z_{\bar{k}}, T_{\bar{k}^{+}}^{+}\right] \alpha \gamma_{\bar{k}^{\prime}}^{+} \gamma_{\bar{k}}$.

After the normal ordering the first term in the r.h.s. eq. (il) becomes

$$
\begin{equation*}
-\alpha_{m}^{+} \alpha_{m}^{+}, \alpha_{n} \alpha_{A^{\prime}} \exists_{m n}(\bar{k}) T_{m^{\prime} n^{\prime}}^{+}\left(\overline{L^{\prime}}\right) \delta_{\bar{k}, \bar{k}^{\prime}}+\alpha^{+} Z_{\bar{k}} T_{\bar{k}^{\prime}}^{+} \alpha \delta_{\bar{k}, \bar{x}^{\prime}} \tag{12}
\end{equation*}
$$

Here summation over $m, m^{\prime}, n, n^{\prime}$ is 1mplied; $Z_{\bar{k}} T_{\bar{k}}^{+}$is the matrix product of $Z_{\bar{E}}$ and $T_{\bar{z}}^{+}$.

The final result for $K=e^{A} H e^{-A} \quad$ can be represented as

$$
\begin{equation*}
k=K_{2}+k_{3}+k_{4}+\ldots \tag{13}
\end{equation*}
$$

Here $K_{2} \quad 1 \mathrm{~s}$ a sum of bilinear terms of the kind $\alpha^{+} \alpha, \gamma^{+} \gamma$ including terms of the order e^{2}, originating from (11), see the last term in (12); K_{3} is trilinear and of the order e^{1}; K_{4} denotes tetralinear terms $\sim e^{2}$. The explicit expressions for K_{2}, K_{3}, K_{4} are given below.
2.3. Trilinear terms K_{3}

Let us show that the chosen transformation (8) 1s capable of removing from K the virtual trilinear interaction terms whioh are present in K_{3} :

$$
\begin{equation*}
K_{3}=S_{-} \alpha^{+}\left\{T_{\bar{k}}+i\left[Z_{k}, E\right]+i x Z_{k}\right\} \alpha \sqrt{k}+h . c . \tag{14}
\end{equation*}
$$

It is implied that $P=Y-Y_{0}$ is of the order e^{2} and, therefore, the term $\alpha^{+}\left[Z_{k}, P\right] \alpha \gamma_{K}$ is not included in (14). The matrix elements

$$
\begin{equation*}
T_{m n}(\bar{k})+i Z_{m n}(\bar{k})\left(E_{n}-E_{m}+k\right) \equiv \mathcal{T}_{m n}(\bar{k}) \tag{15}
\end{equation*}
$$

of the curly brackets in (14) can be made zero by setting

$$
\begin{equation*}
Z_{m n}(\bar{k})=i T_{m n}(\bar{k}) /\left(E_{n}-E_{m}+k\right) \tag{16}
\end{equation*}
$$

In contrast with the models considered in $7,8 /$ the denominator In (16) can be zero or small. Then, the relative $Z_{m n}(\bar{k})$ cannot be considered as being of the order e^{i}, as we have supposed. If Z is large, then one should consider along with (14) the trilinear terms resulting from normal ordering of pentalinear (and other multilinear) terms, see below subsection 2.5.

If $E_{m}<E_{n}$, then the denominator in (16) exceeds $\omega_{n m}=E_{n}-$ - E_{m}. Let us assume that $T_{m n}(\bar{k}) \omega_{m m}^{-1} \sim e^{l}$.. Then, $\mathcal{T}_{m n}(\bar{k})$ can be made zero in this case which corresponds to the strongly virtual transition. Suppose also that $T_{n n}=\mathcal{T}_{n n}=0$. I use below the memanic notation $\mathcal{T}_{\mu 4}=0, \quad d$ and $"$ denoting "down" and "up".

If $E_{m}>E_{n}$, then the denominator module can be, egg., smaller than the "transition width" $\Gamma_{\text {mn }}$, which corresponds to the probaidilaity of the transition $m \rightarrow n k$, see $/ 11 /$, $\S 12$. I_{n} a typical case, one has $\Gamma_{m, 1} i \omega_{m n} \sim e^{2}\left(\omega_{m n} \alpha_{m n}\right)^{2} \sim 10^{-6}$. (see $/ 11 /$, $\alpha_{m n}$ is the. transition dipole moment). If $\left|k-\omega_{m n}\right| \sim \Gamma_{m n}$, then $Z_{m n}=i \tau_{m n}\left(k-\omega_{m n}\right)^{-t}$ is of the order $e / e^{2} \sim \bar{e}^{-1}$. If only $Z_{m n} \sim e^{d}$ is allowed, then it. follows from (15) that $\mathcal{T}_{\text {mn }}(\bar{k})$ is equal exactly to $T_{m n}(\bar{k})$ at $k=\omega_{\text {mn }}$ Moreover, $\mathcal{T}_{m n}(\bar{k}) \cong T_{m n}(\bar{k}) \quad$ if $\left|k-\omega_{\text {inn }}\right|<\varepsilon_{m n} \quad$, provided $\Gamma_{m n} \ll \varepsilon_{m n} \ll \omega_{m n}$. For example, one can let $\varepsilon_{m n}=\omega_{m n}\left(\omega_{m n} d_{m n}\right)^{2}$ To simplify the following exposition, let us assume the Ansatz:
$\mathcal{T}_{m n}|\bar{k}\rangle=0$ at $\left|K-\omega_{m n}\right|>\mathcal{E}_{m n}$, i.e., in the case of sizable energy nonconservation in the transition $u \rightarrow d k$ (though the nonconservation is much less than in the strongly virtual transition $d \rightarrow u k$).
2.4. Radiative correction to the electron Hamiltonian

Consider the bilinear terms of K

$$
\begin{align*}
& K_{2}=\alpha^{+} E \alpha+\alpha^{+} P \alpha+S_{\bar{k}} k \gamma_{\bar{k}}^{+} \gamma_{\bar{k}}+ \tag{17}\\
+ & \alpha^{+}\left\{S_{\bar{k}} Z_{\bar{k}}\left(-\frac{1}{2}\left[Z_{\bar{K}}^{+}, E\right]+\frac{1}{2} k Z_{\bar{k}}^{+}+i T_{\bar{k}}^{+}\right)+\text {h.c. }\right\} \alpha
\end{align*}
$$

The seoond line has its origin from the normal ordering of tetralinear terms in $K=W H W^{+}$, see (12). It is oonvenient to write the matrix elements $U_{m n}$ of the curly brackets in eq. (17) by using \mathcal{J} instead of Z, see (15)

$$
\begin{align*}
& U_{m n}=-\frac{1}{2} S_{k} S_{e}\left\{\frac{1}{k-\omega_{m e}}\left[T_{m e}(\bar{k})+\mathcal{T}_{m e}(\bar{k})\right]\left[T_{2 n}^{+}(\bar{k})-T_{e_{n}}^{+}(\bar{k})\right]+\right. \tag{18}\\
&\left.+\frac{1}{k-\omega_{m \ell}}\left[T_{m e}(\bar{k})-\mathcal{T}_{m e}(\bar{k})\right]\left\{T_{2 n}^{+}(\bar{k})+T_{e_{n}}^{+}(\bar{k})\right]\right\}
\end{align*}
$$

The seoond line in eq. (17), 1.e., $\alpha^{+} U_{\alpha}$, is of the same character as $\alpha^{+} \rho \alpha$ and gives rise to the nonzero contribution of the order e^{2} to the amplitude of the transition from the state "|n|, no photons", to the state "|mi, no photons". In partioular, it gives rise to an additional electron scattering as ompared to the scattering which is due to V_{0} and P. The residual trilinear interaction

$$
\begin{equation*}
\mathcal{J}=S_{\bar{k}} \alpha+J_{\bar{E}} \alpha \gamma_{\bar{E}}+h . c \tag{19}
\end{equation*}
$$

on also give rise to transitions of that type in the seoond order of the perturbation theory. Let us show that the matrix elements $\gamma_{m n}(\bar{k})$ specified in subsection 2.3 give zero transition amplitudes for virtual transitions $n \rightarrow m, n \neq m$. These amplitudes are given by eq. (29.19) from $/$ IO/

$$
\begin{equation*}
a_{m n}^{(2)}(t)=\sum_{\alpha} \frac{\langle m| \mathcal{T}|\alpha\rangle\langle\alpha| \mathcal{T}|n\rangle}{W_{\alpha}-E_{n}}\left[\frac{e^{i\left(E_{m}-E_{n}\right) t}-1}{E_{m}-E_{n}}-\frac{e^{i\left(E_{m}-W_{\alpha}\right) t}-1}{E_{m}-W_{\alpha}}\right] . \tag{20}
\end{equation*}
$$

Bore $|m\rangle=\alpha_{m}^{+} \Omega_{a} \quad, \quad|\alpha\rangle=\alpha_{l}^{+} \gamma_{K}^{+} \Omega_{0} \quad$ i $\quad \sum_{\alpha}$ is $S_{e} S_{E}$ $W_{\alpha}=E_{\ell}+K$. Using (19) one obtaining

$$
\begin{equation*}
a_{m n}^{(2)}(t)=S_{l} S_{\bar{k}} \frac{\mathcal{T}_{m_{e}}(\bar{k}) \mathcal{J}_{e n}^{+}(\bar{k})}{E_{e}+k-E_{n}}[\ldots] . \tag{21}
\end{equation*}
$$

Due to $\mathcal{T}_{\mathcal{a}_{u}}=\mathcal{T}_{u d^{\prime}}^{+}=0$, see subsection 2.3 , one has $\ell<m 1 n$ (m, n). Then $m \neq n$, the surviving terms of the sum S_{ℓ} vanish because the supports of $\mathcal{T}_{m_{g}}(\bar{k})$ and $\mathcal{J}_{\text {en }}^{+}(\bar{k})$ do not intersect. Indeed, $J_{m e}(\bar{K}) \neq 0$ at $\left|k-\omega_{m e}\right|<\varepsilon_{m e}, J_{e_{n}}{ }^{+}(\bar{K}) \neq 0 \quad$ at $\left|k-\omega_{2 n}\right|<\varepsilon_{2 n}$. and the distance $\omega_{i m n}$ between $\omega_{m e}$ and $\omega_{n e}$ is assumed to be much larger than $\mathcal{E}_{\text {mine }}$ and $\varepsilon_{\ell n}$.

Consider tho shift of the energy of the state $\alpha_{n}^{+} \Omega_{0} \quad$ which is due to \mathcal{J} in the order e^{2} :

$$
\begin{align*}
\Delta_{\mathcal{J}}(n) & =P \sum_{\alpha} \frac{\langle n \mid \mathcal{J} / \alpha\rangle\langle\alpha \mid \mathcal{J} / n\rangle}{W_{l}-E_{n}}= \tag{22}\\
& =-S_{l} P S_{\bar{k}}\left|\mathcal{J}_{\ell n}(\bar{k})\right|^{2}\left(k=\omega_{n e}\right)^{-1}
\end{align*}
$$

eeg., see $/ 1 / \$ 35$, and $\$ 53 ; / 11 /, \$ 13$. For the ground level $n=0$ one obtains $\Delta_{T}(0)=0$ beoause $\mathcal{J}_{o e}=0$ for all ℓ (remember that $\mathcal{J}_{d u}=0$). For the same reason one has for mol

$$
\begin{equation*}
\Delta_{\mathcal{F}}(1)=-P S_{\bar{k}}\left|\mathcal{T}_{10}(\bar{k})\right|^{2}\left(k-w_{10}\right)^{-1} \tag{23}
\end{equation*}
$$

The shift $\Delta_{J}(n)$ for $n=2,3, \ldots$ In represented by the sum of several terms $(\mathscr{R}=0,1, \ldots, n-1)$, each term being similar to (23). Due to Ansatz, see subsection 2.3, each such term an be represented as follows:

$$
\begin{aligned}
& \int_{\omega_{n c}-\varepsilon_{n c}}^{\omega_{n c}-\delta} \frac{k^{2} d k}{k-w_{n e}^{\prime}} \int d \Omega_{k} \Sigma_{\lambda}\left|\mathcal{T}_{n \varepsilon}(\bar{k}, \lambda)\right|^{2}+ \\
& +\int_{\omega_{n e}+\delta}^{\omega_{n c}+\varepsilon_{n e}} \frac{k^{2} d k}{k-\omega_{n e}} \int d \Omega_{k}\left|\mathcal{J}_{n e}(\bar{k}, \lambda)\right|^{2} .
\end{aligned}
$$

Here $\delta \rightarrow 0$ originates from the principal value prescription P in eq. (22), (23). The first integral in (24) is negative, the second one is positive. This allows one to make $\Delta_{g}(n) z e r o$. For this purpose, let $T_{n g}(\bar{k})$ be equal to $T_{n!}(\bar{K})$ in that term of (24) which has the least module. Suppose this is the first term. In the second term of (24) let $\mathcal{T}_{n j}(\bar{k})$ be equal to $T_{n c}(\bar{k})$ in an interval $\left(\omega_{n c}+\delta, \omega_{n t}+\varepsilon^{\prime}\right), \varepsilon^{\prime}<\varepsilon_{n i} \quad$ (and be zero outside it). One has to choose ε^{\prime} so that the term module would be equal to the first term module.

Now I return to the discussion of eq. (18). Note that the terms of the r.h.s. of (18), which contain $\mathcal{T}_{m_{c}}(\bar{k}) \mathcal{T}_{e_{n}}{ }^{+}(\bar{k})$, are zero on the same ground as $a_{m n}^{(2)}(t)$ and $\Delta_{J}(n)$ are. The terms containing $T_{m E}(\bar{k}) \mathcal{T}_{2_{n}^{+}}^{+}(\bar{k})$ are zero if $n=0$ because of $\mathcal{J}_{d_{A}}=0$. In the case $n>0$, the corresponding integrals of these terms are expected to be muchamaller than the integrals of $T_{m e}(\bar{\kappa}) T_{e_{n}}^{+}(\bar{k})$. The reason is that the integrals of $T_{m e}(\bar{k}) T_{c n}^{+}(\bar{k})$ over $|\bar{k}|$ are taken over small int ervals $\omega_{n \varepsilon}-\varepsilon_{n t} \leqslant|\cdot \bar{K}|<\omega_{n c}+\varepsilon_{A c}$, cf. (24). In particular, all terms in eq. (18) which contain T do not surely contribute to the possible divergencies of $\mathcal{U}_{m n}$. S_{o}

$$
\begin{equation*}
U_{m n} \cong-S_{e} \operatorname{P} \xi_{\bar{k}} \frac{i}{2}\left[\frac{1}{k-\omega_{n e}}+\frac{1}{k-\omega_{m e}}\right] T_{m e}(\vec{k}) T_{l n}^{+}(\vec{k}) \tag{25}
\end{equation*}
$$

Let us comment on the appearance of the principal value P in (25). The r.h.s. of eq. (18) has no singularities at $K=w_{\text {ne }}$ and $K=W_{\text {met }}$ because according to Ansate the differences $T_{e_{n}}^{+}(\bar{k})-\mathcal{J}_{n}^{+}(\bar{k})$ and $T_{m c}(\bar{k})-\mathcal{J}_{m e}(\bar{k})$ vanish at these values of k. Therefore, (lg) does not alter if $\int_{0}^{\infty} d k$ is understood as $P \int_{c}^{-a} d k$. The introduction of the principal value P allows one to give sense to the separate terms of eq. (18) which have the above singularities, the r.h.s. of eq. (25) or $S_{E} P S_{E} T_{m e} \mathcal{T}_{2 n}^{+}\left(k-\omega_{m a}\right)^{-1}$ being the example.

Note that the transformation W, eq. (B), with an arbitrary Z (not setisifing eq. (16), $1.0 ., \mathcal{T}$ being also arbitrary) leads to

$$
\begin{equation*}
u_{n n}=-S_{k} S_{\bar{E}}\left\{\left|T_{n e}(\bar{E})\right|^{2}-\left|T_{n c}(\bar{E})\right|^{2}\right\}\left(K-\omega_{n c}\right)^{-1} \tag{26}
\end{equation*}
$$

Like $P_{n n}$ this is a correction to the energy E_{n} of the electron state $|n\rangle$. Using (22) one has

$$
\begin{equation*}
U_{n n}+\Delta_{J}(n)=-S_{e} P S_{\bar{k}}\left|T_{e n}(\bar{k})\right|^{2}\left(k-w_{n \Omega}\right)^{-1} \equiv \Delta_{T}(n) \tag{27}
\end{equation*}
$$

Here $\Delta_{T}(n)$ is the well known level shiftom e^{2}, resulting from the original interaction T, eq. (5). So the sum $U_{n n}+\Delta_{J}(n)$ is invariant under the transformation W. With \mathcal{T} chosen as above onc has $\Delta_{T}(n)=0$ and $U_{n n}$ becomes the total radiative correction of the order e^{2} to E_{n}.

The term $\alpha+\mathcal{U} \alpha$ can be called the radiative correction to the electron Hamiltonien $\alpha^{+} E \alpha+\alpha^{+} P \alpha$. It can be shown that the most aivergent part of $U_{m n}$ is proportional to $(\bar{p})_{m n}^{2}$, \bar{p} being the eleotron momentum operator (the demonstration is similar to the nonrelativistic calculation of $\Delta_{T}(n)$, see,e.g., $\left.{ }^{/ 22 /}\right)$. So, the name "potential" or even "quesi-potential" is unsuitable for $\alpha+U \alpha$. The texm $\alpha+U \alpha$ gives also all radiative corrections of the order e^{2} to the electron soattering on the external potential V and to the eleotron level exergies.

2.5. Tetralinear and other interaction terna

Using the matrix $i\left(T_{k}+\mathcal{T}_{k}\right) / 2$ instead pof the combiuation $-\frac{1}{2}\left[Z_{\bar{k}}, E\right]-\frac{k}{3} Z_{k}+i T_{k} \quad$, see (15), one con write the terms K_{4} fromeq. (13) in the form

$$
\begin{align*}
K_{4} & =\alpha^{+}\left[Z_{\bar{k}}, \frac{i}{2}\left(T_{\bar{k}^{\prime}}+\mathcal{F}_{\bar{k}^{\prime}}\right)\right] \alpha \gamma_{\bar{k}} \gamma_{\bar{k}^{\prime}}+h . c_{.}+ \\
& +\alpha^{+}\left[Z_{\bar{k}}, \frac{i}{2}\left(T_{\bar{k}^{\prime}}^{+}+\mathcal{T}_{\bar{k}^{\prime}}^{+}\right)\right] \alpha \gamma_{\overline{\bar{k}^{\prime}}}^{+} \gamma_{\bar{k}}+h_{1} c_{.}+ \tag{28}\\
& +\alpha_{m}^{+} \alpha_{m^{\prime}}^{+} \alpha_{n} \alpha_{n^{\prime}}\left\{Z_{m n}(\bar{k})\left(-\frac{i}{2}\right)\left(T_{\bar{k}}^{+}+\mathcal{T}_{k}^{+}\right)_{m^{\prime} n^{\prime}}+h_{1} c_{1}\right\} .
\end{align*}
$$

Summations over all repeated indioes are implied. The terms of the kind $\alpha^{+} \alpha \gamma^{+} \gamma$ describe the photon scattering on the electron. The terms $\alpha+\alpha \gamma \gamma+$ h.c. give rise to the rirtual transition of the electron from the ground state $\alpha_{1}^{\dagger} \Omega_{0}$ to an exoited one with ellission of two photons. The teras $\alpha^{+} \alpha^{+} \alpha \alpha$ oontribute to the elect-ron-eleotron soattering in the two-sleotron sector (they vanish in the ono-ale otron seotor).

In the aimplified oonsideration presented here only sereral first terms of the infinite series for $K=W H W^{+}$were discussed.

The triple and higher repeated commatators from eq. (9) give rise to pentalinear terms of the order e^{3} and other multilinear terms. Hormal ordering of $\alpha^{+} \alpha \gamma \gamma \gamma^{+}$or $\alpha^{+} \alpha \alpha^{+} \alpha \gamma$ gives trilinear terms of the order e^{3} which were not taken into acoount here.
3. Radiative correction to the partiole-particle interaotion

One can add to the model Hamiltonian (I) the Coulomb interaotion of electrons

$$
\begin{equation*}
I_{c}=\frac{1}{2} \int d^{3} x \int d^{3} y \psi^{t}(\bar{x}) \psi^{+}(\bar{y}) \frac{e^{2}}{4 \pi|\bar{x}-\bar{y}|} \psi(\bar{y}) \psi(\bar{x}) . \tag{29}
\end{equation*}
$$

The last liae in eq. (28) is similar to (29) and can be named the radiative correction to I_{c} which results from the transversal photon exohange.

Now assume for simplicity that $V_{o}=\mathrm{P}=0$. Then, one oan take the electron momenta \bar{p} as the indioes n. Ons oan show that the main part of the radiative correction renormalizes the eleatron mass: $p^{2} / 2 \mu_{0}$ in eq. (I) is repleced by $p^{2} / 2 \mu$, where μ corresponds to the observable electron mass ${ }^{a}$. Therefore $\alpha+E \alpha+\alpha+\mathcal{U} \alpha$ assumes the form $\int d^{3} p \alpha_{p}^{4}\left(p^{2} / 2 \mu\right) \alpha_{\bar{p}}$. Let us oollect toge ther all the terms from K_{2} and K_{4}, eq. (28), which oontain the electron operators only and caill them $\mathbb{K}_{\text {part }}$

$$
\begin{equation*}
K_{\mu a r t}=\alpha_{\bar{p}}^{+} \frac{p^{2}}{2 \beta^{\mu}} \alpha_{\bar{p}}+\alpha_{\bar{p}_{1}}^{+} \alpha_{\bar{p}_{2}}^{+} I\left(\bar{p}_{1}, \bar{p}_{2} ; \bar{p}_{1}^{\prime}, \bar{p}_{2}^{\prime}\right) \alpha_{\bar{p}_{1}^{\prime}} \alpha_{\bar{p}_{2}^{\prime}} . \tag{30}
\end{equation*}
$$

The integration over $\bar{p}, \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{1}^{\prime}, \bar{p}_{2}^{\prime}$ is implied; I is the sum of (29) and the last line from eq. (28), In the two-eleotron sector, the socond-quantised operator (30) is equiralent to the first-quantized operator having the olements

$$
\begin{gather*}
\left\langle\bar{p}_{1}, \bar{p}_{2}\right| K_{p \operatorname{mirt}}\left|\bar{p}_{1}^{\prime}, \bar{p}_{2}^{\prime}\right\rangle= \\
=\left(\frac{p_{1}^{2}}{2 \mu}+\frac{p_{2}^{2}}{2 \mu}\right) \delta\left(\bar{p}_{1}-\bar{p}_{1}^{\prime}\right) \delta\left(\bar{p}_{2}-\bar{p}_{2}^{\prime}\right)+2 I\left(\overline{p_{1}}, \overline{p_{2}} ; \bar{p}_{1}^{\prime} \bar{p}_{2}^{\prime}\right) . \tag{31}
\end{gather*}
$$

a) It is implied that a eut-off is intreduoed inte the interaction terim in eq. (I) and the main oontribution to $\alpha^{+} U \alpha$, Whioh 1 s proportional to p^{2}, is anall as compared with $p^{2} / 2 \mu_{0}$. In addition, α^{+}U α sontains, i.s., a maller term proportional to p^{4}.

Fore $\left|\bar{p}_{1}, \bar{p}_{2}\right\rangle=\frac{1}{12} \alpha_{p_{1}}^{+} \alpha_{\frac{1}{2}}^{+} \Omega_{0}$
-The equation for proper veotors of the oparator (31) is

$$
\begin{gather*}
\left(\frac{p_{1}^{2}}{2 \mu}+\frac{p_{2}^{2}}{2 \mu}\right) P_{E}\left(\bar{p}_{1}, \bar{p}_{2}\right)+\int d^{3} \rho_{1}^{\prime} \int d^{2} p_{2}^{\prime} 2 I\left(\bar{p}_{1}, \bar{p}_{2} ; \bar{p}_{1}^{\prime}, \bar{p}_{2}^{\prime}\right) P_{E}\left(\bar{p}_{1}^{\prime}, \bar{p}^{\prime}\right)= \\
=E \mathscr{P}_{E}\left(\bar{p}_{1} ; \bar{p}_{2}\right) \tag{32}
\end{gather*}
$$

The second-quantized expressio: por the proper vector \mathscr{P}_{E} is

$$
\begin{equation*}
\varphi_{E}=\int d^{3} p_{1} \int d^{3} p_{2} \varphi_{E}\left(\bar{p}_{1}, \bar{p}_{2}\right) \frac{1}{\sqrt{2}} \alpha_{\overline{p_{1}}}^{t} \alpha_{\bar{p}_{2}}^{+} \Omega_{0} \tag{33}
\end{equation*}
$$

The vector P_{E} can be used to describe the initial and Pinal two-electron states instead of $\alpha_{\hat{p}_{1}^{\cdot}}^{+} \alpha_{\bar{p}_{\alpha}}^{+} \Omega_{\nu}$. In otrer nords, (33) can be used as the zeroth approximation functions for the perturbation theory with the interaction $K-K_{p a r t}-\frac{\mathrm{K}}{\mathrm{ph}}$. This approach allows one, e.g., to take exactly into account the Coulomb interaction of electrons.

In the case of two electrons, there are no proper vectors of $K_{\text {part }}$ which would correspond ts bound states. Our model must be enlarged in order to discuss two-particle bound states. One can consider besides the electron Pield ψ another nonrelativistic field φ aescribing the positively charged particles (protons, \mathcal{M}^{+}mesons) which have an analogous trilinear interaction with photons. The relevant generalized unitary transformation W would give rise to an operator $K_{\text {part }}$ oontaining the negative and positive particle orea-tion-destruction operators. In the sector "one electron, one proton", one would obtain the equation of the kind (32) with different masses μ_{e} and $\mu_{p} \because$. It would have solutions describing bound states (of the hydrogen atom).

To be able to consider the positronium, one needs the relativistic spinor QED. Its Hamiltonian also has trilizear interaction term, Coulomb interaction being added in the Coulomb gauge. Both these interactions now give rise to the electron-positron pair creation and annihilation, so that the number of electrons is not conserved. The papers $/ 7,8$ have dealt with such a case and have provided suitable transformation W which removes virtual interaction tems from $K=W H W^{\dagger}$. Let us consider that part $K_{p a r t}$ of K which oontains only electron-positron operators. Now $K_{\text {part }}$ gives rise to pair oreation. To obtain the first-quantized equation of the kind (32) for the el eotron-positron bound states, one can projeot this $K_{\text {part }}$ onto the oorresponding sector "one electron, one positron" by eliminating
from $X_{\text {part }}$ the terms oreating pairs, see, e.g., /13/. So only a part of $\mathrm{K}_{\text {part }}$ (which was oalled $\mathrm{x}_{\text {part }}^{\text {no }}$ pair in $/ 13 \%$ should be used for detemination of the positronium states.

Another way is possible which is in the line of our "dressing". One must perform an additional unitary transformation $W_{4}=\exp A_{4}$; where $A_{4} \sim e^{2}$ and is tetralinear in the electron-positron operators $\alpha, \beta, \alpha^{+}, \beta^{+}$. The task of W_{4} is to remove from $\mathbf{K}_{\text {part }}$ the tetralinear terms giving rise to pair creation, e.g., $\alpha+\beta+\alpha+\alpha$. The remaining tetralipear terms would oommute with operators of the electron and positron numbers and can play the role of the socond term in the r.h.s. of eq. (30).

Let us note in conclusion that one can add to $K_{\text {part, eq. (30), }}$, sextalinear terms of the kind $\alpha^{+} \alpha^{\dagger} \alpha^{\dagger} \alpha \alpha \alpha$ resulting fram higher commutators in eq.(9). These terms describe three-particle inter actions irreduoible to the two-particle interactions, discussed above. In the three-partiole ctor, one would obtain the equation for proper vectors $\phi_{E}\left(\vec{p}_{1}, \bar{P}_{4}, p_{3}\right)$ which takes into aocount these irreducible three-particle forces.

4. Radiative potential-like correction
 in the multipolar form of OED

The radiative correction $\alpha^{+} \mathcal{U} \alpha$, considered in sect.2, can be used to discuss a trouble with the multipolar form (NF) of OED. The form has been suggested by Fower and Zienaus $/ 14 \%$ and was developed in subsequent papers, e.g., see references $2-9$ oited in ${ }^{\prime 15 /}$. In MF the interaction term may be expanded in a series of electric and magnetic multipoles (moments) of atoms or moleoules. MF has calculational advantages and is widely used, see references I0-16, cited in $115 /$.

But the Hamiltonian of $M F$ has a specific quadratioally divergent potential-like term. Which is denoted nere by $P_{\perp}(\bar{x})$, see eq. (35) below: \dot{A} regularized modifioation of M has been suggested in $/ 15 /$ in whioh P_{\perp} becomes a innite potential. But then it reveals its another deficienoy: it is oonfinement potential, see /16/ sect. 2.4 and "Note added in proof" in the end of sect.3.2 in /15/. As is known, there is no confinement in the realm of eleotromagnetic phenomena.

It will be shown in this seotion that the radiative correction. $\alpha+U \alpha$ oontaing a part which oancels P_{\perp}.

In the long-iength wave approximation, the second-quantized version of the nonrelatiristio MF Hamiltonian is of the form (e.g., Cf. /19/,

$$
\begin{equation*}
H=\int d^{3} x \psi^{+}(\bar{x})\left\{\frac{\hat{p}^{2}}{2 \mu_{0}}+V_{0}(\bar{x})+P_{\perp}(\bar{x})+e \int_{0}^{\bar{x}} d \bar{l} \cdot \bar{E}(\bar{l})\right\} \psi(\bar{x})+H_{p h} . \tag{34}
\end{equation*}
$$

I consider here only this nonregularized version, the regularized one an be dealt with in a similar way. The last term in the curly brackets in (34) contains the integral $\int d \bar{l} \cdot \bar{E}(\bar{e})$ taken along the straight line connecting the centre of the potential ∇_{0} with the point \bar{x}, the electron coordinate.

$$
\begin{equation*}
P_{\perp}(\bar{x})=\frac{e^{2}}{2} \sum_{m, n} \int_{0}^{\bar{x}} d l_{m} \int_{0}^{\bar{x}} d l_{n}^{\prime} \delta_{m n}^{\perp}\left(\overline{l_{-}} \bar{i}^{\prime}\right), \quad m, n=1,2,3 . \tag{35}
\end{equation*}
$$

115j Here $\mathcal{\delta}^{\perp}$ is the transversal part of the S-function, eng., see $^{\text {(}}$ $115 j^{\prime}$. Only the electric -dipole part of the MF interaction is consdered because just this part gives the radiative correction cancelling P_{1}. Using eq. (3) and standard expansion of the transverse electric field $\overline{\mathrm{B}}(\overline{\mathrm{x}})$ in photon operators one can reduce (34) to the form (4) with $P_{=}=p_{1}$ and

$$
T_{m n}\left(\bar{k}_{1} \lambda\right)=\int d^{3} x \varphi_{m}^{*}(x)\left[i e(2 \pi)^{-3 / 2} \sqrt{\frac{k}{2}} \int_{0}^{\bar{x}} d \bar{c} \cdot \bar{E}_{\lambda}(\bar{k}) e^{i \bar{k} \bar{l}}\right] \varphi_{n}(\bar{x}) .
$$

It can be shown that

$$
\begin{equation*}
\left(P_{\perp}\right)_{m n}=\int d^{3} k \Sigma_{\lambda} \frac{1}{k} S_{l} \cdot T_{m e}(\bar{k}, \lambda) T_{e_{n}}^{+}(\bar{k}, \lambda) \tag{36}
\end{equation*}
$$

Now let us use eq. (25) for $U_{m n}$. The identity ($\left.k-\omega\right)^{-1}=$

$$
=k^{-1}+w k^{-1}(k-w)^{-1} \quad \text { allows one to separate from } \quad \mathcal{U}_{m n}
$$

the part

$$
-S_{e} P \int d^{3} k \Sigma, \frac{1}{k} T_{m e}(\bar{k}, \lambda) T_{e_{n}}^{+}(\bar{k}, \lambda),
$$

which is equal to $-\left(P_{\perp}\right)_{m n}$. So

$$
\begin{gather*}
\alpha_{m}^{+}\left(E+P_{1}+U\right)_{m n} \alpha_{n}=\alpha_{m}^{+}\left(E_{m n}+U_{m n}^{\prime}\right) \alpha_{n} \tag{37}\\
U_{n=1}^{\prime}=-S_{e} P S_{\bar{k}} \frac{1}{2}\left[\frac{\omega_{m e}}{k\left(k-\omega_{m e}\right)}+\frac{\omega_{m e}}{k\left(k-\omega_{m e}\right)}\right] T_{m l}(\bar{k}) T_{e n}^{+}(\bar{k}) .
\end{gather*}
$$

This means, in particular, that the shift $U_{n n}$ of the energy of the
state $\alpha_{n}^{+} \Omega_{\text {, }}$ bas a contribution (whioh is the nont divergent part of $U_{n n}$) whioh cancels the level shift resulting from P_{\perp} in the first order of perturbation theory. Just this oancellation has been proven in $17 /$, see eqs. ($6-51$) - ($6-66$) there. It hes been shown above that $U_{m n}$ contains the contribution which calcels the potential
P_{\perp} as a whole, not only its diagonal elements.
Hote that the oancollation ocours in the Banilitonien $K=W H W^{+}$ containing besides residual trilinear terms \mathcal{T} also tetralinear and other interaction terms. Let us-show that the oanoellation can be aocounted for in the frames of the initial expression (34) for the hamiltonian. For th1s purpose we use the equivalence theorem stating the equality of two \dot{s}-matrioes, one being caloulated by using $\mathrm{I}_{\text {int }}=$ $x-K_{0}, K_{c}=\alpha^{\dagger} E \alpha+S_{k} K / l_{k}^{\ddagger} \gamma_{k}$, and the other by using $B_{\text {int }}=$ 日 $-H_{0}, H_{0}=a^{+} E a-S_{\bar{k}} k C_{E}^{+} C_{k}$. This theorell follows from the fant that "dressed" añ "bare" He1senberg operators tead as $t \rightarrow-\infty$ or $t \rightarrow+\infty$ to the same "in" or "out" operators $18,18 /$. Stress that $\mathrm{F}_{\text {int }}$ contains the teril $\alpha^{+} \mathcal{U}^{\prime} \alpha$, see eq. (37), while $\mathrm{E}_{\text {int }}$ must contain P_{\perp}. This means that in order to calculate the $S_{-m a t r i x}$ by usiag (34), one must treat P_{\perp} as a perturbation term along with the trilinear interaction (though P_{\perp} is sureiy "larger" that V_{0} in all senses). This presoription gives grounds to the handing with P_{\perp} which has been usea in $/ 14,17 /$. The term P_{L} plays the role similar to the mass renormalization term $S_{m} \bar{\psi} \psi$ in the spinor $Q E D$. Its sole function in $\mathbf{M F}$ is to oanoel (the most divergent) part of the radiative correotion to $\alpha^{+} E \alpha$.

5. Some oonsequenoes of the "dressed"
 description of particles

New electron and photon operators, α, γ, introduced in sect.2, can be represented in terms of the old ones $a, 0$ by using eqs. (7) and (9), e.g.,

$$
\begin{equation*}
\alpha_{n}^{+}=a_{n}^{+}-i S_{\bar{k}} S_{m}\left[Z_{m n}^{\prime}(\bar{k}) a_{m}^{+} c_{k}+Z_{m n}^{+}(\bar{k}) a_{m}^{+} c_{\bar{k}}^{+}\right]+\ldots \tag{38}
\end{equation*}
$$

Now one- and many-particle states oan be defined by using α, γ For example, new onemeleotron states are described by the vectors $\alpha_{n}^{+} \Omega_{0}=W^{+} a_{n}^{+} \Omega_{0}$. One of the, consequences of this desoription is the nenvanishing mean value of the transversal eleotric field operator in the states

$$
\left\langle\alpha_{n}^{+} \Omega_{0}, \bar{E}\left(\bar{x}\left|\alpha_{n}^{+} \Omega_{0}\right\rangle=\left\langle a_{n}^{+} \Omega_{0}, W \bar{E}(\bar{x}) W^{+} a_{n}^{+} \Omega_{0}\right\rangle \neq 0\right.\right.
$$

unlike $\left\langle a_{n}^{+} \Omega_{0}, \bar{E}(\bar{x}) a_{n}^{+} \Omega_{0}\right\rangle$ which vanish. This means that $\alpha_{n}{ }^{t}$ creates besides the charged partiole also a relevant transversal electric field. Remind that in the Coulomb gauge, the one-electron state similarly possesses a nonvanishing electric field but the longitudinal (coulomb) one, see $/ 19 /$. By the above reason, the operater α^{\dagger} and the particle created by it can be called "dressed".

Note that only a simple partial "dressing" was realized in sect.2. The relevant "dressed" ground state $\alpha_{0}^{+} \Omega \Omega_{0}$ turns out to be more stable than the "bare" one $a_{0}^{+} \Omega_{0}$ in the following sense: it is stable under the one -photon emission but it can virtually emit two photons due to the interaction $\alpha^{+} \alpha \gamma \gamma+h . c$, see eq.(28), the corresponding amplitude being of the order e^{2}.

Notwithstanding the difference between "dressed" and "bare" states, the above-mentioned fact of the equality of the corresponding S-matrices does hold in the sense specified in the preceding section. In other words, the S -matrix is invariant under the dressing transformation (as well as the total level shift $U_{n n}+\Delta_{J}(n)$, see sect.2).

There exist observable phenomena which cannot be described by the S -matrix. The most known example is the time evolution of an unstable state. Consider the electron which at $t=0$ was in the excited "dressed" state $|n\rangle=\alpha_{n}^{+} \Omega_{0}$. The usual definition of the nondeoay probability $N(t)$ is

$$
N(t)=|\langle n| \exp (-i H t)| n\rangle\left.\right|^{2} .
$$

$\mathbb{N}(\mathrm{t})$ is known to be equal approximately to $\exp (-\Gamma \mathrm{t})$, eng., see $/ 11 /$ $\$ 13 ; / 20 /$. The one-photon transitions into the lower states. m give the main contributions to Γ, so $\Gamma=\Sigma_{m} \Gamma_{m n}(x)$ at $x=E_{n}$, where

$$
\begin{equation*}
\Gamma_{m n}(x)=2 \pi S_{\bar{k}}\left|\mathcal{T}_{n m}(\bar{k})\right|^{2} \delta\left(x-E_{m}+k\right), \tag{39}
\end{equation*}
$$

see $/ 11 /$, eq. (85). This value for Γ coincides with the value which has Γ in the "bare" formalism (the initial state being described by $a_{n}^{+} \Omega_{0}$) with the interaction T, eq. (5). This follows from the equality $\mathcal{T}_{n m}\left(\omega_{n m}\right)=T_{n m}\left(\omega_{n m}\right)$, see sect.2.3. But the function $\Gamma_{m n}(x)$ has a finite support in the "dressed" formalism: it follows from eq. (39) that $\Gamma_{\operatorname{mn}}(x)$ vanishes if x is outside ($E_{n}-\varepsilon_{m n}, E_{n}+\varepsilon_{m n}$) because $\mathcal{T}_{n m}(\bar{k})$ vanishes if K is outside $\left(\omega_{n m}-\varepsilon_{m n}, \omega_{n m}+\varepsilon_{m n}\right)$. This changes the "line shape" $P(k, t)$ which is defined as the probability that photon energy is equal to k, if measured at the moment t in the transition $n \rightarrow m k$. If $t \gg 1 / r$, then
$P(k, t) \cong \frac{1}{2 \pi} \Gamma_{m n}(x)\left\{\left[x-E_{n}+\Delta(x)\right]^{2}+\Gamma^{2}(x) / 4\right\}^{-1}, x \equiv k+E_{m}$,
 differs from the Lorentzian one

$$
\frac{1}{2 \pi} \Gamma_{m n}\left(E_{n}\right)\left\{\left(k-w_{n+1}\right)^{2}+\Gamma^{2}\left(E_{n}\right) / 4\right\}^{-1}
$$

by outing on the wings: (40) vanishes if k is outside the interval $\left(\omega_{n m}-\varepsilon_{m n}, \omega_{n m}+\varepsilon_{m n}\right)$. As to the value of $\varepsilon_{m n}$, it satisfies the inequalities $\Gamma_{m n} \ll \varepsilon_{m_{n}} \ll \omega_{m m} \quad ;$ no further restriction for $\mathcal{E}_{m n}$ was found in sect.2. The cutting becomes more prominent in the distribution $P(k, t)$ at $t<1 / r$, which is, equal to the square of the module of the expression (119b) in $/ 20 /$. For the explicit formu-
 small t by using the Mössbauer effect.

The cutting of $\mathcal{J}_{m n}(\bar{k})$ as compared with $T_{\text {mn }}(\bar{k})$ results also in the additional deviations of the exact nondeoay lam $N(t)$ from $\exp (-\Gamma t)$, egg., see $/ 20 /$. The nonexponential behaviour of $\mathbb{N}(t)$ has not yet been observed, see the paper $/ 22 /$ which contains references to theoretical and experimental papers on this topic.

6. Summary

The way of "dressing", suggested in $/ 7,9 /$, is modified here for the case when "dressed" states can be unstable. The pecularities of the "dressed" excited atom states were discussed in sect.5. The "dressing" allows one. to define new zeroth approximation $K_{\text {zero }}=K_{\text {part }}+K_{\text {photon }}$ see sect.3) to the total Hamiltonian K which differs from its standard free part K_{0} by addition of terms renormalizing the particle mass and (quasi) potential terms. In the case of the eleotron bounded by an external potential, the latter give rise to radiative level shifts. The determination of $K_{z e r o}$ allows one to propose a new approaioh to the problem of finding bound states such as the positronium in QED and hadrons in OCD. These bound states are defined as proper vectors of the Hermitian operator $\mathrm{K}_{\text {part }}$ in suitable sectors of the theory Hilbert space. The quantityfive comparison of the obtained (quasi-)potential terms with analogous terms of other approaches was not the purpose of this paper. Let us mention only some qualitative peculiarities of the proposed approach.

The operators $K_{\text {zero }}$ and $K_{\text {part }}$ are parts of the total Hamiltonian. This is not the case in other approaches though its (quasi) potentials are also calculated by using the field $\dot{L}_{\text {lagrangian }}$ or $\mathrm{H}_{\mathrm{a}}-$ miltonian (more specifically the relevant Feynman diagrams).

When calculating (quasi-)potentials from Feynman diagrams, one way obtain different expressions coinoiding on the "energy shell". The nonuniqueness like that is absent in the proposed approech.

The approach does not contain excess variables such as relative time or energy in the Bethe-Salpeter equation.

References

1. A. T.Akhiezer, V.B. Berestetskif. Duantum Bleotrodynamics (Interscience, Mew York 1965).
2. W.Lucha et al. Physics Reports, 200, N 4, 128 (1991).
3. C.Itzykson, J.-B. Zuber. Quantum Field Theory (McGraw-Hill, Mew York 1980) oh. 10.
4. N. Nakanishi ed. Behaviour of the solutions to the Bethe-Salpeter equation. Prof. Theor. Phys.Suppl. H 95 (1988).
5. A. A.Logunov, A.N.Tavkhelidze. Nuovo Cim. 29, 380 (1963).
6. L. Klein, t. H. Lee. Phys.Rev. DIO , 4308 (1974).
7. L. D. Faddeev. Dokl. hkad. Nauk USSR, 152, 573 (1963).
8. M. T.Shirokov, M.M. Visinescu. Hev. Roumaine de Phys. 19, 461 (1974).
9. S.S.Schweber. An introduction to relativistic quantum field theory (How, Peterson, Elmsford (1961)).
10.L. I.Schiff. Quantum Mechanios ($\mathrm{K}_{\mathrm{c}} \mathrm{Graw}-\mathrm{Hill}$, New York, 1955).
10. A. Messiah. Quantum Mechanics (Morth-Hoiland, Amsterdam, 1961), v.2, ch. XXI.
11. E. A. Bethe, E.s.Salpeter. Quantum mechanics of one- and two-electron atoms (Springer, Berlin 1957), $\$ 19 \beta$.
12. h. Le Yaovanc et al. Badron transition in the quark model (Gordon and Breach, New York 1988) ch.3.3.
14.E.A.Power and S.Zienau. Phil.Trans. Roy. Soc. 251 ; 427 (1959).
15.M. I. Shirokov, Intern. Journ.Mod. Phys. Al, 7065 (1992).
16.M.I.Shirokov, JINR preprint E2-92-269 Dubna, 1992.
17.R.G. Woolley, Adv. Chem. Phys. 33, 153 (1975).
13. R. Faag, Phys.Rev. 112, 669 (1958).
14. P.A.M.Dirac. The principles of Quantum Mechanics,4th ed. (Clarendon, Oxford 1958) ch. XII, §80.
15. M.L.Goldberger, K.M.Watson. Collision Theory (John Wiley, New York, 1964), ch.8.
21.C.S.Wu et al. Phys.Rev, Lett. 5, 432 (1960). 22.E. B. Norman et al. Phys.Rev. Lett. 60, 2246 (1988).

> Recalved by Fublitehing Department on February 22, 1993.

