


I. Introdustion

The interaction of obharged partiocles with photons or a guark-
gluon interaction give rise to dound states such as the hydrogen
atom (ps™), the positronium (e*e™), and hadrons. The problem of de-
termining the states is' of importance in field theories.

Different approaches to this problem are known, e.g., nonre-
lativistic Breit's approach /1,2/ » Bethe-Salpeter equation (see the
vook 73/ ana biblibg:nphy given in ‘/), three~dimensional quasi-po—
tential approaches (see 3,6 and references therein).

I shall show he;; that the "dressing® formalism given by L.PFad~
deev /7 (ses also ) provides one more approach. The idea of the
approack 1s illustrated by using a simple nonrelativistio model, see
sections 2 and 3. The peculiarities of the relativistic oase (the
spinor QED) are briefly discussed in sect.3. The simple model used
in sect.2 allows one to oonsider an imstructive application of the
formalism to the so-called multipolar form of QED, Some consequences
of the "dressed™ desoription of particles are discussed in sect.S.
In the summarising sect.6 I 1ist several gqualitative peculiarities
of the suggeated approach to the .bound-state protlem.

2. Introduction of the "dressed” particle
creation-~ destruotion operators

The definition of "aressed” partioles and their introduoticn
proposed in /1,8/ need modifiocations when applied to QED or QCD. The
*aressing® acocrding to /1,8 requifes an infinite series of specific
unitary transformations. 4 simple “partial" dreseing presented here
is realised by the simplest of tkhese transformations applied more-
over to a nonrelativistic field model.

2,1. The model

. Coneider the second~quantized theory of nonrelativistio spin-
less. oharged particles (named eleotrons below) interacting with
photons. The total Eamiltonian 1s

H=fa*yt (21§60 o, + VIR) +£ mm(.;am-‘- APy,
t Hph Hot =S a'x [€27) + Ho(R)). ¢
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Here (%) is the particle field satisfying the antiéommu-

tation relation il’l(i') l/*( IL S(x—# « The absenoe of anti-
particles is the main simplification as compared to the spinor QED.
Let V,. be the complete set of solutions of the equation

[~2fap, + UK ] (5] = £,40,(5). ()

Here V, 1s a part of the potential Vi V=T + P {(such that
eqe(2) can be solved exactly). In the expansion

Wi = S, antp (3) ()

the coefficiemts {, satisfy 5 a'n, qn+f+=é;,,; Sn denotes the
sum over discrete values of n ,n=0,1,2,3,... and the integral over
continuous values. Inserting (3) in the rhs of eq. (I)__along with
the usual expansion of the electromagnetioc potentlal A(x) 1in
photon operators one obtalns

H g E,. a,.a,,+$ S pmnaman+7_+\5 KC ck, €))]

S - , /- , i
T= Sm Sn SE [7;m ‘K)a:a Qn C; +7,,-,,, (K}d;ﬂ,, [,t]_ )
Here '7:‘(2}:7;:(&') and Ima™& . The index K  denotes the
photon momentum along with the photon polariszation A andSEsfd-LEA_

The hamiltonian H commutes with A= S,,a,}‘a,, » the operator of
the number of eleotrons. So the model oan be oonsidered in the sec-
tors of the total Fock space which correspond to fixed N wvalues., In
each such sector the model 1s equivalent to the first—guantized
theory of N electrons, interacting with photoans Cot. 9 s Che 6 /1 /
ch. XIII, §46l. .

Let us represent S S, 7,;,. a. Gn  as the product atTa of the
row gt= Cat,a' ,...), matrix T with elements 7,,, ' and the
column { . Then, H can be written as

H=a*Ea + a*Pa+S§kez Co v S [atTace +a'Tlacz ]. (6

Here E 1= the diagonal matrixt Emn = Ea Son .
2.2. "Dressed" creatlon- destruotion operators

Consider the transition m —» nk from the state "eleotron 1s
in the state \m)= &2}, R, with the energy E,, , B0 photons"
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into the state” electron 1is in {h) , one photon with the energy K'-
The corresponding amplitude T (K) is nonzero evenm if the
energy is not oonserveds E,, & E,t K s the case E,<E, being
the example. Rere "energy™ means the proper value of the free part
H,=atEa *I-S;KC;CE . of the total Eemiltonian. The correspond-
ing probability in unit time interval (the probability of the transi-
tion for a large time interval t divided by t) is gexro in the case of
energy nonconservation, e.g., see 10/ oh, VIII, §29. Tet us call
such transitions (and the corresponding elements of T) ®rirtual®.

In order to deliver the theory from unphysical virtual transi-
tions, one must remove from H the corresponding interaction terms
replacing them by others corresponding to physical proocesses. For
this purpose, new operators o, and ﬁ; wlll be introduced instead
of the 01d 4, and [z - so that the Hamiltonian H when expressed in
terms of ol , would pot give rise to the vii-tuai transitions.
Let the 0ld operators be expressed in terms of the new ones by means
of a unltary transformation

a,= Wota WY c'E=»W/,‘-W*_ o

(here W  1s a function of the new ope;-ators). Then, d,/‘ would
satisfy the same oommutation relatione as & , £ do. Replacing s,
¢ in eq. (6) by the r.h.s. of eq. (7) we find the expression of H

in terms of o, )" (let us denote the expression by K )

Hia,c)= HIWWH Wy ih*)= W HE I W= K(w, ),

The relations of the kind WatW'Wal't= Wata wt were used.
Eq. (2) means that in order to get K{of,)") one must substitute'a,/-
for a;0 in eq. (6) and then caloulate the produot W H(« rhwt
The following W  will suit our purpose
- : =y gt N
Weexpi$, S, Se[ 2 (B)Ghot Vi + hoc ] =

o 8)
v =exP‘-S“'[°(+2fd/E +d*z‘§“(}:‘+JEe3I’A. (

_Z,,.,\UE) is supposed to be of the order e! along with Toun (B).
To caloulate WH W‘r ', one may use the formula



A, A _
€°He "=H+[AH]+ $[ALAH]]+AALALAH]]]+... ®)
The following tvo kinds of commutators ocour when calculating WHW_'
The first one 1s
[o(fzfo(/’z,ol*Eu(]=[o(fzid’drE°(J}E_' (10)

The result of the caloulation of the commutator in the r.h.s. of
(I0) can be represented as 43(*[2.-‘ E]ot wherefz;,E]=z,;E-E%
is the matrix with the elements

[Zk-, E]m,. = Zmn (£) (En"' En ).
The second kind occurs, e.g., when calculating Wo('E—fO(/’K-* M’f_.

. t
[ Zz e o LIl ] = ot o "(’Efﬂfé‘m' +o(*'[7:,7;7d/3"/’3.

Qv
After the normal ordering the first term :L'n the T.h.s. eq. (11)
becomes
gt e -
Ol O by Sy g (E) T 1 () S + A1 Z To'ol S, (12)
4

Here summation over m,mhyn,n’ 1s implied; Z- T’ is the matrix pro-
duct of Z; and T* .

The final result tor K= e He can be represented
as .

K=K, + Ky + K, +... (13)

Here K; 18 a sum of bilimear terms of the kind = of*ol , /"/’
including terms of the order €2 , originating from (11), see the
last term in (12); K3 1is trilinear and of the order el 3 K, deno-
tes tetralimear temms ~g? . The explicit expressions ror k, K_', N
K, are glven belaw,

2,3. Trilinear tems K,

Let us show that the chosen transformation (8) 1is capable of
removing from K the virtual trilinear interaction terms whlich are
present in K,



K= S o' Te oil e E]sinZe Jufo s hoe a0
It is implied that P = V.. V  is of the order €% and, therefore,
the term ott[Zf, P]alﬁ is not included in (14). The matrix elements

,,.,.Ut)Hz,.,.(U(E.“:m*'k);Z:,(E) (15)
of the curly brackets in (14) can be made zero by setting
Zon(8) =i Toy ()] ( E-Ep +K). e

In contrast with the models considered in 71,8/ the denominator
in (16) can be zero or small. Then, the relative Zmq (K). cannot
be considered as being of the order e y as we have supposed. If z
is large, then one should consider along with (14) the trilinear
terms resulting from normal ordering of pentalinear (and other multi-
linear) terms, see below subsection 2.5.

It B < E , then the denominator 1n (16) exceeds &= B -
- By Let .us assume that T Ut)w e - » Then, fu?) can be
'made zero in this case which corresponds to the strongly virtual
transition. Suppose also that 7;” = Z';, =¢) . I use below the mne—
monic notation T =D, d and 4  denoting "down" and “up™.

Ir E > E y? then the denominator module can be, e.g., smaller
than the "tra.ns:.t:l.on width" I;,, » Which corresponds to the probabi-
1lity of the transition m — nk, see n ’ §12. In a typlcal case,
one has Mo, /wp,~8%(Wmn dma }1~_{0—£ . (see /11 » 4, 1s the
transiiion gipole moment). If 1K= &mplv l:n, then A, =¢ Tmnl ¥ —w,m,)'j
15 of the order efgz~g* . If omlyZ,,, 1s ellowed, then it-
follows from (15) that _7' tk) 1is equal exactly to T, (K)at K=,
Moreover, T £)% 7;"“‘; 1f [K-t,, j< £ ion » DProvided
r, <<£m(<u).,‘ . For example, -one can let [, = =ty {Wiwn dpy)?

To simplify the follawing exposition, let us assume the Ansatz?®
Ten (E}=D 2t [K-tmpl >Ewa » Leeey in the case of sizable
energy nonconservation in the transition u —4 dk (though the non-
conservation is much less than in the stromgly virtual transition

a— uk)

2.4. Radiative correotion to the electron Hamiltonian

Consider the bilinear terms of K
Ky = oLE o +olt Pot + S; xn/“ s
+ ot § Sy Ze (- S122 E]4 AKE LT « e doL
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The seocond line has its origin from the normal ordering of tetrs-
linesr terms in K= WHW?! , see (12). It 1s oonvenient to write
the matrix elements ”nm of the curly braokets in aq.(l?) by

using 7 instead of ¥ , smee (15)

LR AN e KT o R R
18

i -
- e [ e (€)= T (E,][El[, +Z;+(E)]].

The seoond line in eq.(17), i.e., Lt Ut s i8 of the same
charaoter as oftPol and gives rise to the nonzero contribution of
the order ez to the a.mplv:l.tude of the transition from the state
* [n), no photons™, to the state "[m), no photons®. In partioular,
1t gives rise to an additional electron scattering as oompared to
the scattering which is due to V, and P . The resigual trilinear

interaotion
f:gio(*z:o(ﬁ-f/).c, : _ (19)

oan also give rise to transitions of that type in the seoond order
of the perturbation theory. Let us show that the matrix elements

.7,:,,(2) specified in subseotion 2.3 give zero transition amplitudes
for virtual transitions n — myn # m. These amplitudes are given
vy eq. (29.19) from

' ((Em-E, )t ‘Bt
D) <MI7'N><°"-7"")[8‘ 4_e —1] (20)
ma ] %~ En Em-En Em - *

Bere Im)=ofd Q, y =o'y, 518 8, 85;
Wi=Ep+K , Using (19) one obtains



A= §, §; Tme E1T0) (>

E tk-g,

Due to 7;;, Td , see subsection 2.3, one has £« min
(myn). When m % n, the survliving terms of the sum Sg vanish
because the supports of Z._, (&) -and _Z,: (g do not intersect.
Indeed, T, (KY#0 at 1K= Wmelefpe » Z’,—,*w) #0 at
{K-Why[c £,  and the distance (/wn Detween af,, and i,
1s assumed to be much larger than £, and £y, -

Consider the shift of the energy of the state ol Q, which
1s due to J  1in the order £2%

A, )= P 5, ITHIT ) _ ‘
M"En (22)

==5, PSe LI tB) | (K=o )4,

e.g.y StE 1/ 435, and <\53' /11/ §13 . For the ground level )
n=0 one obtains A_,rla) =y beoause Té, =¢ for all ¢ (remember
that ,7- = {/ ). Xor the same reason one has for n=l

A1) =- PS f (k)l"(u o)™ -4 ' » (23)

The shift A (h)  for n=2,3,... in represented by the sum of
several terms ( f = 0,1,...,0-1), each term being similar to (23).
Due to énsatz, see subseotion 2.3, each such term can be represen-
ted as follows:

Wae - §

2
[ L fa9,5, | T NP+
[} £‘ “I)!
he (24)

‘0-1& + Eng

N fdn.‘l:rmai‘

Wyes $ k “dnl
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Here S - originates from the principé.l value prescription
P in eqs. (22),(23). The first integral in (24) is negative, the
second one 1s positive. This allows one to make Aj,(njzero. For this
purpose, let J,, (k) ‘be equal to T,, (&) 1in that term of (24) which
has the least module. Suppose this is the first term. In the second
term of (24) let f/;_,(k') be equal to T, (&) in an interval
(Wit 8, Wap+€') | E'afp (and be gero outside it). One has to
choose g’ so that the term module would be equal to the first tem
module. . .
Kow I return to the disoussion of eq.(lB). Note that the terms
of the r.h.s. of (18), which contain \7:;3‘5) ‘n*(-ii) , are zero
on the same ground as Cl,(::[f) and A_(nj) are. The terms con-
taining T, (E)yg:[,z, are gero if n=0 because of 7, =y,
In the case n > 0, the corresponding integrals of these terms are
expected to be muchsmaller than the integrals of T, (&) 7::(:?} .
The resson is thet the integrals of T, (&) “'UE) over |kK| are
taken over small intervals &Wny-fuy < |- ®| <t +£€nc 2 SE (24). 1n
particular, all- terms in eq. (18) which oontain T 4o not surely
oontribute to the possible divergencies of Z{M,, . So

’ s K 1 - +

it
E 2Ly whe k-thme PRLIA

Let us comment on the appearanoe of the principal value P in
(25). The r.h.s. of eg. (18) has no singularities at K=,
and K= W,,, because aocording to dnsatz the differences
Th@) - Tt and Ty, ()= T, (R) vanish at these values of
k. Therefore, (18) does not alter if _);“dk is understood as P_/:a;e.
The introduotion of the principal value P allows one to give sense
to the separate terms of eq.(18) which have the above singularities,
the r.h.s. of eq. (25) or S PS: Toe .7::(&-‘0,.,)" being
the example.

Note that the transformation W , eq. (B), with an arbitrary

Z  (not satisfying eq. (16), i.e., 7 being also arbitrary)

leads to

Unn =-S5 LT DP- 1 )P (o) o)

Like P..,. this is a correction to the energy £, of the eleotron
atate ({nd) . Using (22) one has



um." A.Tl")=—5¢ PSE ’ -,;”(E)IZ&'Wn()-la AT'.(',)' C27) -

53

Here A-,- {n} is the well known level shifteg? , resulting from the ori-
ginal interaction T, eq. (5). So the sum ian + A.T(", is inva-
riant under the transformation W/ . With 7° chosen as above onu
has Agy(n}=0 and {{n, becomes the total radiative correction
of the order €¢* %o E, .

The term ot Uol can be called the radiative correction to
the electron Hamiltonien of{*Eol= of*Pol | It can be shown that the
most divergent part of Ymn 16 proportional to [;5):"‘ » p
beilng the electron momentum operator (the demonstration is similar
to the nonrelativistic calculation of A.,-(n} ’ see,e.g.,/12 ). So,
the name “potential™ or even "quasi~potential™ is unsultable for
o{tUdd . The texrm oftUo gives also all radiative corrections of
the order €% to the electron soattering on the external potential

VV end to the eleotron level energies.

2.5. Tetralinear and other interaction terms

Using the matrix ¢{ Tz *J7 M2 insteadzof the combinmation
‘f [Z,E]-£Z+iTk , sea (15), one can write the terms K,
from eq.(13J) in the form

K= L8z, ST+ To)]od fo fir + b+
+°(‘f[2“-'£(75**757')]d}’,;f/} thes (28)

+ ol ol Ol oy { B0 () (~E) (T 4522 s + bt ).

Summations over all repeated indices are implied. The terms of the
kind oftyl "j’ describe the photon scattering on the electron. The
terms ol*ol r + he. glve rise to the virtusl transition of the
electron from the ground state off s, to an excited one with emis-
sion of two photons. The terms ol olnl contTibute to the elest-
ron-4leotron scattering in the two-slectron sector (they vanish in
the ons—electron seotor). )

In the mimplified oonsideration presented here only several
first terms of the infinite series for K=W'H W" were discussed.

A
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The triple and higher repeated commutators from eq. ¢)) give rise

to pentalinear terms of the order €3 and other multilinear terms.
Normal ordering of o o ]’]‘ or of*tadold [  glives trilinsar terms
of the order €3 which were not taken into acoount here.

3. BRadiative correction to the partiole-particle interaotion

One can add to the model Hamiltonian (I) the Coulomd interac-
tion of electronms

=4 fa'x {d prey (g)q“;_-J Y )yix),

The last line in eg.{28) is similar to (29) and cen be named the
radiative correction to Ic which results from the transversal
photon exchange.

Now assume for simplicity that Va= P=0 « Then, one can
take the electron momenta F as the indioces n. Ons can sht_:w that
the main part of the radiative correction renormalises the electron

(29)

mass? Pa/l/“o in eq.(I) is replaced bsr Pz/zln s Wwhere carres—
ponds to the observable electron mass . Therefore o/tEof 4ot Ul
assumes the form fd’po{F (Pz/i’ﬂ)"(p . 'Let us collect together all

the terms from K, and K, , eg. (28), which oontain the electron

operators only and c,ail 'them Kpaz-t

Krurt‘df é%‘ d+ d' I(f’up&; Pllpa) o(ﬁ- (30)

The integration over p,f, Pi, p') P’ 1s implied; I is the sum of
(29) and the last line from eq.(28), In the two-eleotron sector, the
second-quantized operator (30) is equivalent to the first-quantized
operator having the elements

(F:;Fz ‘ K,u‘rt lﬁ‘,ﬁ!):
(£ + g% YS(P-F) S ) + 2TE B P ). GL

]

») Tt 1s implied that a cut-—off is intreduced inte the interaction
term in wq.(I) and the main comtribution te «* Uol, whioh is pro-
portional teo P 1s small as compared with p*/z Y In addition,
oLt Ud oontunﬂ, ¢.g.) & smaller term proportiomal to p¥ .

1n



- = + :
Here lP,,P,)zéd" 0(;‘ Qa_ . The equation for proper veotors of
the operator (21i) is

£y 2 - - -
(£ £ )% ha) S dp Jdy 200, 5 B R )=
=EP (P B) (32)

The second-quantized expresgio:‘ for the proper vector ';DE is
= =~V 1 .t Lt
Pe = [d2p J’p, B (f, B ) otg X5 R (33)

The vector ‘PE can be used to describe the initlal and final
two—electron states instead of d;?:‘o(g 2 . In otker words,
(33) can be used as the zeroth approximation functions for the per-
turbation theory with the interaction K —« K a.rt"K h* This approach
allows one, e.g., to teke exactly into account the Cculomb interac-
tion of electrons. :

In the case of two electrons, there are no proper vectors of
Kpart which would correspond to bound states., Our model must be en-~
larged in order to discuss two-particle bound states. One can consi-
der besides the electron field ('U another nonrelativistic field
describing the positively charged particles (protons, /M* mesons)
which have an analogous trilinear interaction with photons, The rele-
vant generalized unitary transformation W  would give rise to an
operator Kpart contalning the negative and positive particle crea-
tion~destruction operators. In the sector "one electron, one proton®,
one would obtaln the equation of the kind (32) wlth different masses
_/“e and /MP ", It would have solutions describing bound states
(of the hydrogen atom).

To be able to consider the positronlium, one needs the relativis-
tic spinor QED., Its Hamiltonian also has trilinear interactlon term,
Coulomb interactlon being added in the Coulomb gauge. Boththese in-
teractions now glve rise to the electron-positron palr creation and
annihilatig?, s0 that the number of electrons is not conserved. The
papers /7 have dealt with such a case and have providedse. suitable
transformation W  which removes virtual interaction tems from
K= WH W' . Let us consider that part er.rt of K which oontalns
only electron~positron operators. Now K art gives rise to pair orea-—
tion. To obtain the first-quantized equation of the kind (32) for the
eleotron-positron bound states, one can projeot this K art onto the
oorresponding seotor "one electron, one positron" by eliminating
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from K ar the terms oreating pairs, see, e.g.,/ 3/. So only a part
of ‘part which was oalled xgzrfair 10 713/) should be used for
determination of the positronium states.

Another way is possiﬁle which is in the 1line of our "“dressing®.
One must perfon an additional unitary transformation W, = exp A
where A4~ e and 1s tetralinear in the electron-positron onerators

’ogf,/s' . The task of '4 is to remove from K rt the tetrali-
near terms giving rise to palr creation, e.g., oftSfo¢?o( + The
remaining tetralipear terms would commute with operators of the
electron and positron numbers and can play the role of the second
term in the r.h.s. of eq. (30).

Let us note in conclusion that one can add to K, ., eq. (30),
sextalinear terms of the kind of*oltoliXolol ‘resulting from higher
commutators in eq. (9). These terms describe three-particle inter -
actions irreduclble to the two-particle interactions, discussed
above. In the three-particle ~ctor, one would obtain the equation
for proper vectors % (f,f., Ps}  which takes into aocount these
irreducible three-particle forces.

4. Radiative potential-like correction
in the multipolar form of QED

The radiative correction AtUA s considered in sect.2, can
be used to discuss a trouble with the multipolar form (MF) of QED,
The form has been suggested by Fower and Zienau and was develo-
ped in subseqhent papers, e.g£., see references 2 = 9 ocited 1n/15/

In MF the interaction term may be expanded in a geries of electric
and magnetic multipoles (moments) of atoms or molesules. MF has cal-
culational advantages and is widely used, see references I0-16, cited
in /15/ ) )

But the Hamiltonian of MF has a specific quadratiocally divergent
potential-like term .which is denoted here by P, (i) see eq.(35)
below. A regularized modification-of M has been suggested in ns/
in which PJ. becomes a finite potential., But then it reveals its
another deficlenoy! it is oonﬁhement potential, see 16 sect.2.4

" and "Note added in proof® in the end of gect.3.2 in /15/. 4s 1is known,
there is no confinement in the realm of electromagnetic phenomena.

It will be shown in this seotion that the radiative oorrection

ol Ut oontains a part which oancels P, .

In the long-length wave approximation, the second~quantized ver-

sigx} of the nonrelativistio MF Hamiltonian is of the form (e.g., of.

)
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He [ £« 1+ PG+ o, 4 EI} 31 - .
(34)

I bonsider here only thls nonregularized version, the regulari-
zed one oan be dealt with in & similar way. The last term in the
curly brackets in (34) contains the integral Jfd¢Z:E(f) taken
along the atraight line connecting the centre of the potential V
with the point X 9 the electren coordinate.

BlE)= &5 | [t del S (E8) , mn-s23. O

., Here SJ' 1s the transversal part of the S—funotion, e.g.y See
/15/ . Only the electric-dipole part of the MF interaction is consi-
dered because just this part gives the radiative oorrection cancel~
ting B, . Using eq. (3) and standard expansion of the transverse
electric field E(x) in photon operators one can reduce (34) to the
form (4) with P=)), and

Kom = . (RS
Toa R )=[d% Pl [ie@@n ) " VE [de-Ek)e ™ 13,
It can be shown that -

(PL)ne = J4% 3, & S T (B0 T (RA). e

Now let us use eq.(25) for umn The identity (k- w)"'
=k wit(k-w)! allows one to separate from  Zm,

the part
=S Pld* s, + Toe (R TH(E, D),
which is equal to ={; ), « 50

O(I\:“(E" P_"-& 'l«l),,,, Ol,l =°‘:(Elnn + u:”. )01,,.
iy (37

Wme
u S PS& z[x(x ~Wne) k(k—k),.,)]‘,;!(z_)'];:["‘)-

This means, in partioular, that the shift u,,, of the energy of the

14



state ol )y bas a contribution (which is the most divergent part

of u,,,. ) which ocancels the level shift resulting from & in the

first order of perturbation theory. Just this oancellation has been

proven 1n /17, see eqs. (6-51) ~ (6-66) there. It has been shown

above that 'u,.,. contains the contributlon which calcels the potential
P, as a whole,not only its dimgonal elements.

Note that the cancellation ocours in the Hamiltonian K=WHW?
containing besides residual trilinear tems ]' also tetralinear
and other interaction terms. Let us-show that the cancellation can
be aocounted for in the frames of the initial expression (34) for the
hamiltonian. For thls purpose we use the equivalence theorem stating
the equality of two S-natrioes, one being caloulated by using xmt-
‘K-K , Kﬂ’_"ded*SE'K)’E'/;' » and the other by using E, .= H-
-H, B =a'Ea - KO} € . This theorem follows from the faot
that "dressed™ and "bare" Heisenberg operators tend as t+-% or
t—rto0 to the same ®in" or "out” operators 8,18/ | 8iress that
K, contains the term ot Ul , see eq.(37), while B, , must con-
tain P, . This means that in order to calculate the S—matrix by using
(34), one must treat I} as a perturbation term along with the trili.
near interaction (though B is surely "larger" that ¥, ia all senses).
This prescription gives grounds to the handling with lehich has
been used in 14,17/ . The term P, plays the role similar to the mass
renormalization texrm Sm ¢ in the spinor QED. Its sole function
in MF 15 to oanoel (the most divergent) part of the radiative correc—
tion to oltEot .

5. Some oonsequenoes of the "dressed"
description of particles

New electron and photon c;pe'lz.-ators~ al,}’ s introduced in
sect.2, can be represented in terms of the old ones a,c by using

sqs. (7) and (9),. e.g., .
okt =0t~ S S [ Znn (B) 0L O + 2 (R) 02 CE T 4. C o8)

~Now one- and many-particle states oan be defined by using a(,"
For example, new one~slsotron states are described by the vectors
ot S, =WtarQ, . One of thé,consequences of this description is
the nonvanishing mean value of the transversal eleotrioc field opera-

tor in the states

(o' R, 5 E(F) ATy =Lat 0, WEDW! 20, #0
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unlike {a} Q,, E(X) a,.*s‘z,) which vanish. This means that of}
creates besides the charged partiole also ‘a relevant transversal
electric field. Remind that in the Coulomb gauge, the one-electron
state similarly possesses a nonvanishing electric field but the
longitudinal (Coulomb) one, see /19/. By the above reason, the ope-
rator ol and the particle created by it can be called "dressed”.

Note that only a simple partial "dressing®™ was realized in
sect.2. The relevant "dressed™ ground state o(:ﬂ,, turns out to
be more stable than the “bare® one LZJ'.QQ in the following sense:d
it is stable under the one-photon emission dut it can virtually emit
two photons due to the interaction o("'oll’f-}- h.c, see eq.(28), the
corresponding amplitude being of the order e? .

Notwithstanding the difference between “dressed" and "bare"
states, the above-mnentioned fact of the equality of the corresponding
S-matrices does hold in the sense specified in the preceding section.
In other words, the S-matrix is invariant under the dressing trans—
formation (as well as the total level shift u,,,,fdj_(n) , see
sect.2).

There exist observable phenomena which cannot be described by
the S-matrix. The most known example is the time evolution of an
unstable state. Consider the electron which at t=0 was in the excited
"dressed" state In)=olf§), . The usual definition of the nondeoay
probability N(t) is

N =) {nlexp(-itt) ind |2

N(t) 1s known to be equal approximately to exp (-rvd, e.2., see
§13; 20 . The one—photon transitions into the lower states . m
give the main contributions to I , so '=5 [, (x) at X=E,
where

/11/

i;ll\lx)=127i5£l‘7:m(‘?))z S(’(’Emfﬁ()’ (39)

see /11/, eq. (85). This value for r coinoides with the value
whioh has I© in the "bare" formalism (the initial state_being de-
scribed by a,.'Q., ) with the interaction T, eq. (5). This follows
from the equality Jp,, (Wam)=T,, (W) s See sect.2.3. But the
function [, (x) has a finite support in the “dressed" formalism:
it follows from eq. (39) that [/, {x) vanishes if x is outside
(En=~Epp, Ent Emn ) because ,‘7""',“(2) vanishes if K is out-
side ( Wnm ~Emn 5 Wpm + Emn ). This changes the "line shape"
P(x,t) which is defined as the probability that photon energy is
equal to ky if measured at the moment t in the transition n ——> mk.
1f t >> 4+ , then '
' 16



Plt)z L1 ) f[x-E s a00]2 Mo 3 , X% K+ e,,,‘, (+0)

£.8.5 see /. eq. (113); /20/ eq. (122b). The distribution (40)
differs from the Lorentzian one

2‘1;, ’:n (E")f[k‘ “}nm )2_‘_ PI(E')/" }--J

by cutting on the wings: (40) vanishes if k 1s outside the inter-
val (WhgEmn, ym+émn)e AS to the value of £, , it satisfies
the inequalities r..u. << Ema < Wan 3 no further restrioction for
EM, was found in sect.2. The cutting becomes more prominent in the
distribution P(k,t) at t < ”p s which is equal to the square of
the module of the expression (119b) in 2 « For the explicit formu-
la see 2 . This paper has reported a measurement of P(k,t) at
small t by using the Mdssbauer effect.

The cutting of 7., (k] as compared with 7,..(K) results
also in the additional deviaSions of the exact nondeoay law N(t)
from exp(-I1t), e.g., see /2% The nonexponential behavieur of
N(t) has not yet been obsarved, see the paper ' 22/ which contains
references to theoretical and experimental papers on thls topic.

6. Summary

The way of "dressing®, suggested in /7’8/, is modified here
for the case when "dressed” states can be unstable. The .peculiari-
ties of the "dressed™ excited atom states were discussed 1n sect.5.

The "dressing" allows one- to define new zeroth approximation
Kyaro = Kpart +Kphoton see sect.3) to the total Hamiltonlan K
whioh differs from 1ts standard free part Ko by. addition of terms
renormalizing the particle mass and (quasi) potential terms. In the
case of the eleotron bounded by an external potential, the latter
give rise to radiative level shifts. The determinagion of Kzero
allows one to propose a new approaoh to the problem of finding
bound states such as the positronium in QED and hadrons 1n QCD. These
bound states are defined as proper vectors of the Hermitian operator
Kpart in suitable sectors of the theory Hilbert space. The gquanfita-
tive comparison of the obtained (quasi-)potential terms with analo-
gous terms of 6ther approaches was not the purpose of this paper.
Let us mention only some qualitative pecullarities of the proposed .
approaoh. i .

The operators Kzero and xpart are parts of the totallﬂhmil-
tonian. This is not ttre case in:other appréaches though its (quasta
potentials are also calculated by using the field Lagrangian or Ha.
miltonian (more specifioally the relevant Feynman diagrams). .
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When calculating (quasthotentiala from Feynman diagrams, one
may obtain different expreasions coinciding on the “energy shell™.
The nonuniqueness like that is ahsent in the proposed approach.

The approach does not contain excess variables such as relative
time or energy in the Bethe-Salpeter equation.
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