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1. Introduction 

It is well known that many basic features of the nuclear vibrational states can be 

described within the Random Phase Approximation (RPA), which enables one to treat 

some correlations in the ground state. 

The ground state correlations (GSC) problem has a long story. This problem was 

discussed in refs. (1-11]. There is a rather complete list of references on that subject 

in paper[lO]. Higher (renormalized) RPA equations, which include corrections for GSC, 

have been advanced by several authors (1-11]. To apply these methods one needs the one

particle densities of the correlated ground state. In our calculations we use the approach 

suggested in (1,2]. The generalization of this approach to take into account the effect of 

GSC on the pairing has been done in ref.[6]. An_ alternative approach closely related to 

the one from refs. (1,2] and differing in the way of evaluating the one-particle densities of 

the correlated state has been proposed in ref.[11]. 

Being the spatial overlap between· the ground state wave function and· the excited 

state wave function the charge transition density provides a good test for nuclear mod

els. The surface nature of the low-lying collective states has been demonstrated in the 

experiments on inelastic electron scattering from magic nuclei (12].Such a behavior was 

predicted by calculations performed within the Hartree-Fock (HF) approach with effective 

forces [13] and the finite Fermi systems theory (14]. The changes of the nuclear densities 

due to the zero point fluctuations associated with surface modes in the Ca isotopes were 

calculated within the nuclear field theory in ref. [15],where the quasiparticle distribution 

in the ground state was calculated within the RPA. Recent experimental and theoretical 

(based on the random phase approximation (RPA)) studies of the charge transition den

sities [16,17] to investigate the interplay between single-particle and collective degrees of 

freedom in the excitati~n of the low-lying states in some spherical nuclei are in reasonable 

agreement, but the theory gives fluctuations of the transition densities· in the interior re

gion. In RPA, as in HF, the theoretical fluctuations are too large in the nuclear interior, 

which indicates a systematic problem of a more fundamental nature ( a detailed discussion 

can he found in refs. [18,19]). 

This long standing problem is not solved up to now. In a recent paper [20] we pointed 

out that an inclusion of the GSC beyond the RPA gives a 30% depletion of the charge 

transition densities of the first quadrupole state in the interior region of 64 Zn. In this 

case the blocking effect due to the Pauli principle plays an essential role. Nevertheless 

some discrepancy between the experimental density and the calculated one remains. 
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In present paper we extend our approach to take into account the effect of the GSC 

on the pairing. We consider the charge transition desities of the vibrational states in Zn 

isotopes. 

2. Formalism 

We employ a Hamiltonian including an average nuclear field as the Woods-Saxon 

potential, pairing interactions and isoscalar particle-hole (p-h) residual forces in separable 

form with the Bohr-Mottelson radial dependence ( see for example [21,22]). 
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The notation {r = (n,p)} is used .. The single-particle states ar_e specified by the quantum 

numbers (jm); E; are the single-particle energies; >.T is the chemical potential; Gt0l and 

,_(A) are the strengths in the p-p and in the p-h channel, respectively. The pair creation 

and the multipole operators entering the scalar products in (1) are defined in a standard 

fashion: 
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where /A,l stands for the reduced single particle matrix element. 
" 

By performing the canonical Bogolubov transformation 
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one can rewrite the Hamiltonian in terms of the bifermion quasiparticle operators and 

their conjugate ones: 
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I mm 
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We introduce the phonon creation operators 

Qt,,;= ~Elv,;J,A+(jj';>.µ,)-(-1).\-µef,:J,A(jj';>.-µ)] 
.. , 
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where the index >. denotes multipolarity and µ denotes its z-projection in the laboratory 

system. 2 
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Using the exact commutation relations between fermion operators one can prove that 

the following relation is valid: 

1 , , 
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where I 0) is the ground state (we assume that (0 I 0) = 1), qi;' = q; + q;' and q; presents 

the quasiparticle distribution in the ground st;te: 

q· - 1 , - v'2J+l(0 I B(jj;00) I 0) (8) 

One assumes that I 0) is the phonon vacuum, i.e. 

Q.\µi Io) = o (9) 

and the phonon operators satisfy the linearized equation of motion 

[H, QI,,;] I 0) = W,\j Qt,,; I 0) (10) 

Imposing the condition q; = 0, one derives the well known RPA equations. Ken-ji Hara 

did the next step beyond the RPA [1] keeping in eqs. (7),(9),(10) all the terms containing 

the bifermion operators B(jj';>.µ,), but replacing the latest by their mean values in the_ 

phonon vacuum. In this approach the equations determining the unknowns q; are derived 

by using eq.(9). As was shown in refs. [1,20], eqs.(7)-(10) result in the following non

linear system for the phonon energies, amplitudes and quasiparticle distributions in the 

ground state: 
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Here E: ;;' are the two-quasiparticle energies and u;}) ,,;, u;~;' + v;u;': To take i~t~ account 

the effect of GSC on the pairing one needs to modify the staridardt BCS equations [1,6]. 

For the gap 

one gets the equation" 
fl.= G~ L(2j + l)u;v;(l :_ 2q;) ·. 

i 
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and from the particle-number condition: 

(0 I JV IO}= N = L(2j + l)[v; + (u; - v;)q;] 
j 

it is possible to determine the chemical potential .\: 

(j + 1/2) - N = L 
(j' + 1/2)(E;' - .\) (1 - 2q1.-, ) .. 

;' Jt:.2 + (E;' _ .\)2 

(16) 
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The quasiparticle energies e; and coefficients u;, v; can be calculated in the same way as 

within BCS. The factors (1 - q;;') take into account the blocking effect due to the Pauli 

principle. 

As a result we get the self-consistent system of equations to treat the GSC. In the 

case of q; = 0 these equations reduce to the usual RPA and BCS equations. 

The system of non-linear equations (11)-(18) is solved numerically by means of the 

auto-regularized Gauss-Newton iteration process (23,24], executed by the program-package 

REGN [25]. In this way we construct stable solutions of the ·system with high accuracy. 

In the present paper we study the effect of the GSC on the charge transition density 

for the vibrational states in spherical nuclei. As an example we consider the chain of the 

even Zn isotopes with A = 64 - - 70. The charge transition density is calculated by the 

formula 

pf(r) = _21 ~(1 - q1•1·')u(+,)(ip>.i, + ¢,>.i,)l,(r) 
~ 11 11 JJ 11 .. , 

(19) 
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The expression for the two-quasiparticle charge transition density p;;. ., ( r) can be found 
11 

for example in (16]. The calculated charge transition densities p;(r) are folded with the 

formfactor of the proton charge distribution [26]. Knowing the charge transition density 

it is possible to calculate the reduced transition probabilities (27]. 

3. Details of calculations and results 

We performed numerical calculations for the Zn isotopes for which the experimental 

data (28] and the RPA results (29] are known. The Woods-Saxon potential parameters 

in use are basically the same as in our previous paper (20]. They were chosen to reach a 

reasonable theoretical description of the experimental ground state density and the r.m.s. 

radius (30]. The pairing constants G~ are fixed so as to reproduce the odd-even mass 

difference of neighboring nuclei. We always adjust the strength parameters ,_(>.) so that 

the B(E.\) values were close to the experimental ones. 
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The system of eqs. (11)-(18), which treats the GSC self-consistently, describes (via 

eq.(13)) the coupling between different vibrations and between all the phonon roots of a 

certain multipolarity. Our studies (20] show that the interplay of different roots of the 

system of eqs.(11)-(14) is not essential: the contribution from the second root for example 

affects the q; by no more than 2 %. Thus, one can restrict the sum in eq. (13) to only 

th!) first (collective) root with,out substantial l~ss of accuracy. 

To study the coupling between different vibrations we took into account ,\ = 2 , 3 , 4 

terms in eqs. (11)-(13), using the same values for the quadrupole, octupole and hexade

capole constants. According to our calculations for 64 Zn the most essential role for· the 

GSC is played by the quadrupole and octupole vibrations. The values of q; calculated 

for the pure quadrupole vibrations(i.e. ,\ = 2, only) are as a rule a few times higher than 

those for the pure octupole vibrations (,\ = 3, only). However, in the case of coupled 

(,\ = 2, 3) vibrations the resulting q; are larger than the sum of q; (,\ = 2) and q; 

(,\ == 3) contrary to the RPA case because of the non- linear character of the ,\-mixing. 

The admixture of. the hexadecapole vibrations changes q; by no more than 5 %. So in 

what follows we take into account the mixing of the quadrupole and octupole modes only. 

The results ~four calculations for the quasiparticle distribU:tion in the ground state of 
66 Zn are shown in the table 1. The table 1 contains the results when we take into account 

the effect of GSC on q; but neglect the blocking in the pairing due to GSC (q;(Hara)) 

and when the blocking is included (q;(B-Hara)). The q; calculated within the RPA (3] 

as 
1 2,\ + 1 ;;.; )2 

q; = 2 I: 2 · + 1 (<P;;1 
;;.;;' 1 

(20) 

are given_ in the same table too. As one can see from the table ! the q; have large 

values for the subshells near the Fermi surface only and the Hara approach gives stronger 

correlations in comparison with the RPA. The inclusion of the blocking in the pairing due 

to GSC results in an additional enhancement of correlations. A similar b~haviour of q;'s 

was found for all Zn isotopes. · 
The theoretical and experimental values [28-29] for energies and the reduced transition 

probabilities of the first quadrupole and octupole states in the Zn isotopes are shown in 

t_ables 2,3. As one can see from the table 2 the energy of th~ 2t state calculated within the 

RPA with the above choice of parameters is usally higher than the experimental value. In 

the same time the solution of the GSC problem beyond the RPA exhibits _a shift up of the 

energy w2+ and an essential reduction of the B(E2)-value. To restore the.B(E2) within. 
1 " 

the Hara approach we had to increase, for example, the value of 11:<2
) by 38% _and 23% in 

64 Zn and 68 Zn, respectively. In the last case the resulting energies are shifted down a 

little. The selfconsistent calculations taking into account the blocking in the pairing give 
5 



an additional shift down in energies, which are in a better agreement with experimental 

data. The increase of i.(2) is about 12% for all isotopes in comparison with the RPA 

values. 

It is worth mentioning that the value ofthe i.(2) for the non-linear problem is quite 

larger than the critical RPA constant where the RPA solution becomes complex. For such 

values of i.(2) the use of the procedure [7] where one solves first eqs. (11)-(12) with q; = 0 

and then eq.(13) becomes non-applicable. 

It is seen from the table 3 that the GSC with the coupled vib!ations change drastically 

the 31 energies. The renormalized values of i.(3) exceed the RPA ones by 11-19 % and 

they are smaller than the critical values, in contrast to th~ quadrupole constants. In the 

cases of 66 Zn and 68 Zn, where the experimental B(E3)-values are known, our choice of 

parameters enables us to reproduce energies and transition probabilities si_multaneously. 

We overesimate apparently the collectivity of the 31 state in 70 Zn. 

It should be noted also that according to our calculations the selfconsistent inclusion 

of the GSC in the pairing problem (see eqs. (15)-(18)) garantees the number conservation 

with a hig_h. accuracy. Calculations without taking into account the GSC effect on the 

pairing lead sometimes up to a 3% difference from the exact particle number. 

The figures 1-4 show the transition charge densities from the ground to the first 2+ 

states in the Zn isotopes. Our calculations for the pt( r) give results which are similar to 

the ones of [29], obtained in the RPA with the Skyrme forces, but in contrast with [29] 

we did not assign occupation probability to each single-particle orbital empirically. As it 

was pointed in [29] the authors were enforced to destroy the self-consistency shifting the 

single-particle spectrum for the unoccupied orbitals with respect to the occupied ones to 

reproduce the experimental value for the first 2+ state. 

As one can see from the figures 1-4 the RPA reproduces the behaviour of the charge 

transition densities qualitatively but it overestimates the interior part of the pt( r ). The 

inclusion of the GSC beyond the RPA (ihe Hara approach) gives a 30% -35% depletion of 

the maximum of the pt( r) in the interior region of the nuclei.· The self consistent treatment 

of the GSC results in a suppression of interior oscilations by factors 2.3 (for 68 Zn).:.. 3.4 (for 
70Zn). The calculated pNr) for &!Zn and 66Zn are very close to the' experimental data. 

Such a depletion is related with the Pauli blocking effect for the proton two-quasiparticle 

configuration.{2p3/2, 2p312}, which is mainly responsible for the interior bump in the charge 

transition densities in the Zn isotopes. According to our RPA calculations the proton two

quasiparticle configuration {2p3/2, 2p312} gives a contribution about 38% and about 46% 

into the norm of the first quadrupole phonon in 66 Zn and in 68 Zn, respectively. The 
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inclusion of the GSC redistributes the strength of this configuration over many phonon 

roots and as result the contribution into the firs·t root becomes 8.8% in 66 Zn and 15.6% 

in 68 Zn. As it follows from the eq. (19) the GSC supresses the contribution of the partial 

two-quasiparticle transition densities having big q;;,. It is seen from the table 1 that the 

q2p312 is the biggest for protons and as it was mentioned above plays an essential role in the 

structure of the interior part of the transition density for the 2t states. The configuration 

{1/512 , 1/512} gives some contribution in the interior part too and the same mechanism of 

a supression takes place for it. The amplitudes of the oscilations for the configurations 

with low orbital momenta are bigger than for the ones with high orbital momenta . 

. We would like to emphasize that this effect can not be reproduced by any renormal

ization of the nC2
) in the RP A. 

The behaviour of the neutron transition densities differs from the proton ones (see 

figs.5,6). In the case of 66 Zn, for example, the influehce of the GSC on the interior part 

of the transition density is very weak because the neutron configuration {2P3/2, 2p3/2} 

contributes not more than 1.5% in the norm of the 2t state, and the contribution of the 

configuration {1/512, 1/512} remains practically the same (about 8%) in all cases. An extra 

four neutrons in 70 Zn changes the structure of the neutron part of the 2t wave function 

and the GSC affects mainly the surface part of the neutron transition density. In the this 

case the configurations which are responsible of the interior oscillations in 66 Zn have very 

small contribution to the structure of the first quadrupole state. 

We calculated the charge transition density for the one-phonon 4+ state and did not 

find any essential oscillations in the interiqr region. That is due to the lack of the config

uration {2p312,2p312} in such states because of the angular momentum coupling rule. 

The fig. 7 presents the charge transition density for the 31 state in 66 Zn. This density 

has a clear surface nature and there are no strong oscillations in the interior region of the 

nucleus because of a dentructive intenference of the two-quasiparticle partial transition 

densities constructed from the single-particle wave functions with different parity. The 

same picture takes place in the other Zn isotopes and it is typical for the transition 

densities of the octupole vibration states (see (16-19]). 

It is interesting to note that the GSC increase slightly the ground state r.m.s. charge 

radius up to 4.05 fm in 66Zn. Its RPA value is 4.02 fm, compared to the experimental 

one 3.99 fm (30]. 
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. Table 1. The quasi particle distribution in the ground state of 66 Zn 

n)j neutrons protons 

q;(RPA) q;(Hara) q;(B-Hara) q;(RPA) q;(Hara) q;(B-Hara) 

2s1;2 0.0052 0.0170 0.0249 0.0132 0.0444 0.0674 

1h12 0.0155 0.0492 0.0723 0.0307 0.0907 0.1394 

2p3/2 0.0561 0.1640 0.2286 0.0894 0.2195 0.2425 

lfs/2 0.0438 0.1180 0.1688 0.0333 0.0959 0.1039 

2p1;2 0.0722 0.1791 0.2476 0.0367 0.0960 0.0930 

lg9/2 0.0204 0.0685 0.0997 0.0164 0.0564 0.0701 

Table 2. Energies and transition probabilities for the 2t states in the Zn 

isotopes 

A Experiment Calculation 

w,MeV B(E2 i), e2 fm 4 WRPA,MeV WH,MeV wa-u,MeV B(E2 i), e2 fm 

64 0.992 1597 1.16 1.09 0.70 1597 

66 1.039 1426 1.33 1.27 1.02 1426 
' 

68 1.077 1360 1.39 1.33 1.25 1360 

70 0.885 2050 1.32 1.25 1.05 2050 
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Table 3. Energies and transition probabilities for the 31 states in the Zn 

isotopes 

A Experiment Calculation 

w,MeV B( E3 i), e2 fm6 WRP.4,MeV WH,MeV wa-11,MeV B(E3 i),e2fm1 

64 2.999 3.90 
. 

3.03 2.69 44000 -

66 2.830 41660 3.89 3.19 2.83 41660 

68 2.751 38460 3.62 3.06 2.75 38460 

70 2.839 - 3.55 2.77 2.32 36000 

4.Conclusion 

In conclusion, we point out that the system of non-linear equations, describing the 

ground state correlations beyond RPA selfconsistently was solved in a realistic case. It 

was found that such a proper treatment of the GSC leads to a suppression by factors 

2.3-3.4 in comparison to the RPA of the charge transition density in the interior region 

of the Zn isotopes. It follows from our study that the inclusion of the blocking effect 

due the Pauli prinsiple enables us to solve the long standing problem of the theoretical 

overstimation of the charge transition densities in the interior region of nuclei for the 

positive parity vibration states compared to experimental data. 

Our preliminary investigation shows that taking into 'account the blocking effect for the 

proton configuration {2d5t2 , 2d512 } it is possible to get a good description of the interior 

patr of the charge transition densities of 2+, 4+ states in the Nd isotopes. To describe 

the surface part one has to take into account in addition the interplay between the one

phonon and more complex configurations, so the system of non-linear equations should 

be extended. Such calculations are in progress now. 
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Fig.1: Transition charge density from the ground state to the first 2t 
state in 6~Zn. 

solid curves - experimental data [28]; long dashed curve - RPA calculation; 

dashed curve - results with GSC beyond the RPA without the blocking in the pairing; 

dotted curve - results with the selfconsistent inclusion of GSC beyond the RPA. 
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Fig.2: Transition charge density from the ground state to the first 2t 
state in 66Zn. 

Notations are the same as in fig.I. 
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Notations are. the same as in fig.I. 
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dashed curve - results with GSC beyond the RPA without the blocking in the pairing; 

dotted curve - results with the selfconsistent inclusion of GSC beyond the RPA. 
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Notations are the same as in fig.5. 
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Notations are the same as in fig.5. 
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Kapa,i:pKOB ,11.., BopoHoB B.B., KaTapa <I>. E4-93-452 
BJIH.IIHHe KOppe.JI.IIIJ;HH B OCHOBHhlX COCTO.IIHH.IIX 
Ha 3apMOBhle nepeXOAHhle ITJIOTHOCTH BH6pau;HOHHhlX COCTO.IIHHH 

ll3yqeHO BJIH.IIHHe KOppe.JI.IID;HH B OCHOBHhIX COCTO.IIHH.IIX Ha 3apMOBhle 
nepeXOAHhle ITJIOTHOCTH BH6pan;HOHHhIX COCTO.IIHHH B ccpepnqecKHX Mpax. Bhl
XOA 3a npn6JimKeHHe CJiyqaftHbIX cpa3 npHBOAHT K Heo6XOAHMOCTH pemaTh 
He.JIHHeii:HyIO CHCTeMy ypaBHeHHH. Ilpn 3TOM TaK)Ke yqHThlBaeTC.11 BJIH.IIHHe 
KOppe.JI.IID;HH Ha cnapnBaHHe. IloKa3aHo, qTo yqeT Koppe.JI.IID;HH B OCHOBHhlX 
COCTO.IIHH.IIX npHBOAHT K cym;ecTBeHHOMY IlOAaBJieHHIO 3apMOBhlX nepeXOAHhlX 
IlJIOTHOCTeH BO BHyTpeHHeH o6naCTH Mep no cpaBHeHHIO c pacqeTaMH B npH-
6JIH)KeHHH CJiyqaftHhIX cpa3 H IlO3BOJI.lleT OilHCaTh 3KcnepHMeHTaJibHhle AaHHhle. 

Pa6orn BhlITOJIHeHa B Jia6opaTOpnn TeopeTnqecKoii cpH3HKH HM. H.H.Boro
nro6oBa OUSIH. 

Coo6w,em-1e 06i.e;vrneHHOl'O HHCTHT)'Ta Sl,llepHblX HCCJie,11osaHHH. ,lfy6Ha, 1993 

Karadjov D., Voronov V.V., Catara F. 
Effect of Ground State Correlations 
on the Charge Transition Densities of Vibrational States 

E4-93-452 

The effect of ground state correlations on the charge transition densities of 
vibrational states in spherical nuclei is studied. The problem for the ground state 
correlations beyond RPA leads to a non-linear system of equations, which is 
solved numerically. The influence of the correlations on the pairing is taken into 
account too. The inclusion of ground state correlations beyond RPA results in 
an essential suppression of the charge transition density in the nuclear interior 
in comparison with the RPA calculations and enables one to reproduce the 
experimental data. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 
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