


1. Introduction

It is well known that many basic features of the nuclear vibrational states can be
described within the Random Phase Approximation (RPA), which enables one to treat

some correlations in the ground state.

The ground state correlations (GSC) problem has a long story. This problem was
discussed in refs. {1-11]. There is a rather complete list of references on that subject
in paper[10]. Higher (renormalized) RPA equations, which include corrections for GSC,
have been advanced by several aufhors [1-11}. To apply these methods one needs the one-
particle densities of the correlated ground state. In our calculations we use the approach
suggested in [1,2]. The generalization of this approach to take into account the effect of
GSC on the pairing has been done in ref.[6]. An alternative approach closely related to
the one from refs. [1,2] and differing in the way of eilaluating the one-particle densities of

the correlated state has been proposed in ref.[11].

Being the spatial overlap between the ground state wave functlon and’ the exc1ted
state wave function the charge transition den51ty provides a good test for nuclear mod-

s. The surface nature of the low-lying collective states has been demonstrated in the
experiments on inelastic electron scattering from magic nuclei [12].Such a behavior was
predicted by calculations performed within the Hartree-Fock (HF) approach with effective
forces [13] and the finite Fermi systems theory [14]. The changes of the nuclear densities
due to the zero point fluctuations associated with surface modes in the Ca isotopes were
calculated within the nuclear field theory in ref. [-15],where the quasiparticle distribution
in the ground state was calculated within the RPA. Recent exper}rhenfa.l and theoretical
(based on the random phase approximation (RPA)) studies of the charge transition den-
sities [16,17] to investigate the interplay between single-particle and collective degrees of
freedom in the excitation of the low-lying states in some spherical nuclei are in reasonable
agreement, but the theory gives fluctuations of the transition densities in the interior re-
gion. In RPA, as in HF, the theoretical fluctuations are too large in the nuclear interior,
which indicates a systematic problem of a more fundamental nature (a detailed discussion
can be found in refs. [18,19]).

This long standing problem is not solved up to now. In a recent paper [20] we pointed
out that an inclusion of the GSC beyond the RPA gives a 30% depletion of the charge
transition densities of the first quadrupole state in the interior region of ®Zn. In this
case the blocking effect due to the Pauli principle plays an essential role. Nevertheless

some discrepancy between the experimental density and the calculated one remains.
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In present paper we extend our approach to take into account the effect of the GSC
on the pairing. We consider the charge transition desities of the vibrational states in Zn

isotopes.

2. Formalism

We employ a Hamiltonian including an average nuclear field as the Woods-Saxon
potential, pairing interactions and isoscalar particle-hole (p-h) residual forces in separable
form with the Bohr-Mottelson radial dependence ( see for example {21,22]).
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The notation {r = (n,p)} is used. The single-particle states are speciﬁéd by the quantum
numbers (jm); E; are the single-particle energies; A, is the chemical potential; ’G(,O) and
£ are the strengths in the p-p and in the p-h chanhel respectively. The pair creation
and the multipole operators entenng the sca.lar products in (1) are deﬁned in a'standard
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" where f;;\,) stands for the reduced single particle matrix element.
By performing the canonical Bogolubrov tra.nsfomiation
a}'m = uja}'mb+ (—l)J_m‘Ujaj-m s o (4)

_one can rewrite the Hamiltonian in terms of the bifermion quasiparticle operators and

_their conjugate ones:
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We introduce the phonon creation operators
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where the index A denotes multipolarity and g denotes its z-projection in the laboratory

system. ‘ 2

Using the exact commutation relations between fermion operators one can prove that

the following relation is valid:
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where | 0} is the ground state (we assume that (0 [0} =1), g;7 = ¢j +¢; and % presents

the quasiparticle distribution in the ground state:
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One assumes that | 0) is the phonon vacuum, i.e.

Qaui |0) =0 (9)

and the phonon operators satisfy the linearized equation of motion

[H, Q% | 0) = wai Q% 10) ‘ (10)

Imposing the condition g; = 0, one derives the Well known RPA equatlons Ken-_]l Hara
did the next step beyond the RPA [1] keeping in egs. (7),(9), (10) all the terms containing
the bifermion operators B(j7'; Axt), but replacing the latest by their mean values in the
phonon vacuum. In this approach the equations determining the unknowns g; are derived.
by using eq.(9). As was shown in refs. [1,20]; eqs.(7)-(10) result‘in the following non-
linear system for the phonon energies, amplitudes and quasiparticle distributions in the

ground state:
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Here ¢+ are the two-quasiparticle energles and 'u. i = u_,v s+ ‘v_,'u. . To take 1nto account

the eﬂ'ect of GSC on the pairing one needs to modlfy the standardt BCS equations [1 6].
For the gap

o = @Y (2 + 1)y u,(l 2g;) " (15)
one gets the equation F] a
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and from the particle-number condition:

N = Z (27 + 1)[v
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it is possible to determine the chemical potential A:
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The quasiparticle energies ¢; and coefficients u;, v; can be calculated in the same way as
within BCS. The factors (1 — g;;) take into account the blocking effect due to the Pauli

principle.

As a result we get the self-consistent system of equations to treat the GSC. In the

case of g; = 0 these equations reduce to the usual RPA and BCS equations.

The system of non-linear equations (11)-(18) is solved numerically by means of the
auto-regularized Gauss-Newton iteration process {23,24}, executed by the program-package

REGN [25]. In this way we construct stable solutions of the system with high accuracy.

In the present paper we study the effect of the GSC on the charge transition density
for the vibrational states in spherical nuclei. As an example we consider the chain of the
even Zn isotopes with A = 64 — —70. The charge transition density is calculated by the

formula
1 .
pi(r) = 5 (1 - g)u) (93
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The expression for the two-quasiparticle charge transition density p;j,(r) can be found
for example in (16]. The calculated charge transition densities p}(r) are folded with the
formfactor of the proton charge distribution [26]. Knowing the charge transition density

it is possible to calculate the reduced transition probabilities [27].

3. Details of calculations and results

We performed numerical calculations for the Zn isotopes for which the experimental
data [28] and the RPA results {29] are known. The Woods-Saxon potential parameters
in use are basically the same as in our previous paper [20]. They were chosen to reach a
reasonable theoretical description of the experimental ground state density and the r.m.s.
radius [30]. The pairing constants G? are fixed so as to reproduce the odd-even mass
difference of neighboring nuclei. We always adjust the strength parameters x(* so that

the B(E)) velues were close to the experimental ones.
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The system of eqs. (11)—(18), which treats the GSC self-consistently, describes (via
eq.(13)) the coupling between different vibrations and between all the phonon roots of a
certain multipolarity. Our studies [20] show that the interplay of different roots of the
system of eqs.(11)~(14) is not essential: the contribution from the second root for example
affects the ¢; by no more than 2 %. Thus, one can restrict the sum in eq. (13) to only

the first (collective) root w1thout substantial loss of accuracy.

To study the coupling between different vibrations we took into account A = 2,3,4
terms in egs. (11)-(13), using the same values for the quadrupole, octupole and hexade-
capole constants. According to our calculations for ®Zn the most essential role for the
GSC is played by the quadrupole and octupole vibrations. The values of g; calculated
for the pure quadrupole vibrations(i.e. A = 2, only) are as a rule a few times higher than
those for the pure octupole vibrations (A = 3, only). However, in the case of coupled
(A = 2,3) vibrations the resulting g; are larger than the sum of g¢; (A = 2) and g;
(A = 3) contrary to the RPA case because of the non- linear character of the A-mixing.
The admixture of.the hexadecapole vibrations changes g; by no more than 5 %..So in

what follows we take into account the mixing of the quadrupole and octupole modes only.

The results of our calculations for the quasiparticle distribution in the ground state of
Zn are shown in the table 1. The table 1 contains the results when we take into account
the effect of GSC on g; but neglect the blocking in the pairing due to GSC (¢i(Hara))
and when the blocking is included (g;(B — H ara.)). The q} calculated within the RPA [3]

as
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are giveri in the same table too. As one can see from the table 1 the g; have large
values for the subshe]ls near the Fermi surfa.ce only and the Hera approach gives stronger
correlations in comparison with the RPA. The inclusion of the blockmg in the pairing due
to GSC results'in an-additional enhancement of correlations. A slmxlar behaviour of g;’s

was found for all Zn isotopes. -
The theoretical and experimental values [28-29] for energies and the reduced transition

probabilities of the first quadrupole and octupole states in the Zn isotopes are shown in - -

tables 2,3. As one can see from the table 2 the energy of the 2{ state calculated within the
RPA with the above choice of parameters is usally higher than the experimental vslue, In
the same time the solution of the GSC problem beyond the RPA exhibits a shift up of the
energy wy+ and an essential reduction of the B(E2)-value. To restore the.B(E2) within.
the Hara approach we had to increase, for example, the value of k() by 38% and 23% in
84Zn and ®Zn, respectively. In the last case the resulting energies are shifted down a -

little. The selfconsistent calculations taking intb account the blocking in the pairing give
5



an additional shift down in energies, which are in a better agreement with experimental
data. The increase of k(®) is about 12% for all isotopes in comparison with the RPA

values.

It is worth mentioning that the value of the x(®) for the non-linear problem is quite
larger t‘han the critical RPA constant where the RPA solution becomes complex. For such
values of (%) the use of the procedure [7] where one solves first eqs. (11)-(12) with ¢; =0
and then eq.(13) becomes non-applicable.

It is seen from the table 3 that the GSC with the coupled vibraticns change drastically
the 37 energies. The renormalized values of £ exceed the RPA ones by 11-19 % and
they are smaller than the critical values, in contrast to the quadrupole constants. In the
cases of %Zn and 687Zn, where the experimenta.i B(E3)-values are known, our choice of
pararneters enables us to reproduce energies and transition probabilities simultaneously.

We overesimate apparently the collectivity of the 37 state in " Zn.

It should be noted also that according to our calculations the selfconsistent inclusion
of the GSC in the pairing problem (see eqs. (15)-(18)) garantees the number conservation
with a high accuracy. Calculations without taking into account the: GSC effect on the

pairing lead sometrmes up toa 3% dlfference from the exact particle number.

The figures 1-4 show the transition charge densities from the ground to the first 2+
states in the Zn isotopes. Our calculations for the p}(r) give results which are similar to
the ones of [29], obtained in the RPA with the Skyrme forces, but in contrast with [29]
we did not assign occupation probability to each single-particle orbital empirically. As it
was pointed in [29] the authors were enforced to destroy the self-consistency shifting the
single- partrcle spectrum for the unoccupied orbitals with respect to the occupled ones to

reproduce the experlmental value for the first 2+ state.

As one can see from the figures 14 the RPA reproduces the behaviour of the charge
transition densities qualitatively but it overestimates the interior part of the pMr). The
inclusion of the GSC beyond the RPA (the Hara approach) gives a 30% —35% depletion of
the maximum of the p}(r) in the interior region of the nuclei. The selfconsistent treatment
of the GSC results in a suppression of interior oscilations by factors 2.3 (for 82Zn) - 3.4 (for
"Zn). The calculated p(r) for ®Zn and %6Zn are very close to the experimental data.
Such a depletion is related with the Pauli blocking effect for the proton two—quasiparticle
conﬁguratior‘l’:{2p3/2, 2p3/2}, which is mainly responsible for the interior bump in the charge
transition densities in the Zn isotopes. According to our RPA calculations the proton two-
quasiparticle configuration {2ps/2,2ps/2} gives a contribution about 38% and about 46%
into the norm of the first ‘quadrupole phonon in *¢Zn and in ®8Zn, respectively. The
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inclusion of the GSC redistributes the strength of this configuration over many phonon
roots and s result the contribution into the first root becomes 8.8% in ®Zn and 15.6%
in #2Zn. As it follows from the eq. (19) the GSC supresses the contribution of the partial
two-quasiparticle transition densities having big g;;+. It is seen from the table 1 that the
92py, 18 the biggest for protons and as it was mentioned above plays an essential role in the
structure of the interior part of the transition density for the 2§ states. The configuration
{1f5/2,1f5/2} gives some contﬁbution in the interior part too and the same mechanism of

a supression takes place for it. The amplitudes of the oscilations for the configurations

“with low orbital momenta are bigger than for the ones with high orbital momenta.

“We would like to emphasize that this effect can not be reproduced by any renormal-
ization of the (¥ in the RPA.

The behaviour of the neutron transition densities differs from the proton ones (see
figs.5,6). In the case of ®Zn, for example, the influence of the GSC on the interior part
of the transition density is very weak because the neutron configuration {2ps,2ps/2}
contributes not more than 1.5% in the norm of the 2} state, and the contribution of the
configuration {1fs/2,1f5/2} remains practically the same (about 8%) in all cases. An extra
four neutrons in Zn changes the structure of the neutron part of the 2§ wave function
and the GSC affects mainly the surface part of the neutron transition density. In the this
case the configurations which are responsible of the interior oscillations in % Zn have very

small contribution to the structure of the first quadrupole state.

We calculated the charge transition density for the one-phonon 4% state and did not
find any essential oscillations in the interior region. That is due to the lack of the config-

uration {2ps/2,2p3/2} in such states because of the angular momentum coupling rule.

The fig.7 presents the charge transition density for the 37 state in ®Zn. ‘This density
has a clear surface nature and there are no strong oscillations in the interior region of the
nucleus because of a destructive intenference of the two-quasiparticle partial transition
densities constructed from the single-particle wave functions with different parity. The
same picture takes place in the other Zn isotopes and it is typical for the transition

densities of the octupole vibration states (see [16-19]).

It is interesting to note that the GSC increase slightly the ground state r.m.s. charge
radius up to 4.05 fm in %Zn. Its RPA value is 4.02 fm, compared to the experimental
one 3,99 fm [30].



. Table 1. The quasiparticle distribution in the ground state of Zn

Table 2. Energies and transition probabilities for the 2} states.in the Zn

- nlj neutrons protons

S(RPA) o(Hara) g(B-Hara) | g,(RPA) _g;{Hara) q;(B-Hara)
281/2 0.0052 0.0170 0.0249 0.0132 0.0444 0.0674
1f7/2 0.0155 0.0492 0.0723 0.0307 0.0907 0.1394
2p3/g 0.0561 0.1640 0.2286 0.0894 0.2195 0.2425
1f5/2 0.0438 0.1180 0.1688 0.0333 6.0959 0.1039
2p1/g 0.0722 0.1791 .0.2476 0.0367 0.0960 0.0930
1g9/2 0.0204 0.06885 0.0997 0.0164 0.0564 0.0701

isotopes
A Experiment Calculation
w,MeV  B(E21),e*fm' | wppa, MeV wy,MeV wg_y,MeV B(E21),elfm
64| 0.992 1597 1.16 1.09 0.70 1597
66 | 1.039 1426 1.33 1.27 1.02 1426
68| 1.077 1360 1.39 1.33 1.25 1360
70 | 0.885 2050 1.32 1.25 1.05 2050

e 0

Table 3. Energies and transition probabilities for the 3; states in the Zn

isotopes
A Experiment Calculation
w,MeV  B(E31),e?fm® | wppa, MeV wpy, MeV wp_11,MeV  B(E3 1), fmf
64 | 2.999 - 3.90 ° 3.03 2.69 44000
66 | 2.830 41660 3.89 3.19 2.83 41660
68 | 2.751 38460 3.62 3.06 2.75 38460
70| 2.839 - 3.55 2.77 2.32 | 36000
4.Cont;lusion

In conclusion, we point out that the system of non-linear equations, describing the
ground state correlations beyond RPA selfconsistently was solved in a realistic case. It
was found that such a proper treatment of the GSC leads to 2 suppression by factors
2.3-3.4 in comparison to the RPA of the charge transition density in the interior region
of the Zn isotopes. It follows from our study that the inclusion of the blocking effect
due the Pauli prinsiple enables us to solve the long standing problem of the theoretical
overstimation of the charge transition densities in the interior region of nuclei for the

positive parity vibration states compared to experimental data.

Our preliminary investigation shows that taking into'account the blocking effect for the
proton configuration {2ds/z, 2ds/3} it is possible to get a good description of the interior
patr of the charge transition densities of 2%, 4* gtates in the Nd isotopes. To describe
the surface part one has to take into account in addition the interplay between the one-
phonon and more complex éonﬁgura.tions, so the system of non-linear equations should

be extended. Such calculations are in progress now.
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BiusHue XOppesiuyii B OCHOBHEIX COCTOSIHUAX
Ha 3apSA0BHIE MEPEXOTHBIE IVIOTHOCTH BUOPALIMOHHBIX COCTOSHHMIA
H3yueno BiMgHME KOppeasuuil B OCHOBHHIX COCTOSHHSIX HA 3apAdOBHIE
MEPEXOAHHE IUIOTHOCTH BUOPALIMOHHEIX COCTOSHHIM B CEPHYECKUX SApaX. Be-
X0 3a NpHONMMXeHHEe CAYYalHHX (a3 MPUBOAMT K HEOGXOMMMOCTH pEIIaTh
HEeJMHENHYIO CHCTEMY ypaBHEeHuit., IIpH 3TOM TakXe yUHTHIBACTCS BJAMSHHE
Koppesuuii Ha cnapuBaHue. I1oka3aHo, YTO yueT KOppeasiHil B OCHOBHEIX
COCTOSIHMSIX TIPHBOAMT K CYIIECTBEHHOMY MOAABJIECHHUIO 3aPIAOBHIX M€ PEXOMHBIX
ILIOTHOCTEHM BO BHYTPEHHEN 00JACTH SA€ep MO CPABHEHHIO C PACUETAMH B MpPH-
OMKEeHHMH CTy YalHHX ()a3 K TO3BOJISET ONUCATh KCEPUMEHTA/IbHEE NaHHHE,

Pa60Ta BHIIOMHEHA B JlaGopaTopuu TeopeTnueckoit pusuxku M. H.H.Boro-
miobosa OUSIHU.
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Effect of Ground State Correlations
on the Charge Transition Densities of Vibrational States

The effect of ground state correlations on the charge transition densities of
vibrational states in spherical nuclei is studied. The problem for the ground state
correlations beyond RPA leads to a non-linear system of equations, which is
solved numerically. The influence of the correlations on the pairing is taken into
account too. The inclusion of ground state correlations beyond RPA results in
an essential suppression of the charge transition density in the nuclear interior
in comparison with the RPA calculations and enables one to reproduce the
experimental data.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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