


1 Introduction

Theoretical studies of the so-called ”hot” nuclei, i.e., highly excited nuclei with
the excitation energy distributed uniformly over many degrees of freedom have
quite a long history [1}. Nevertheless this branch of the nuclear structure theory
is still quite actual. One of the reasons is the increasing amount of experimental
data about various hot nuclear systems we get from the deep inelastic nucleus
- nucleus collisions. Moreover the description of hot nuclear systems is a hard
problem and it seems natural to use in the investigation different theoretical
approaches. In studying hot nuclear systems theorists often follow the way of
cxtcndlng the known models for cold nuclei to the case T # 0. It was done,

,in the nuclear field theory [2] and in the theory of finite Fermi systems [3].
The properties of nuclear excitations from the energy range 0 - 25 MeV are
successfully described also by the quasiparticle - phonon nuclear model (the
QPM) [4-6). In the present paper, we extend the QPM to T # 0 using the
methods of the thermo field dynamics (the TFD) [7].

2 The TFD formalism

Following the papers {8-10], we firstly sketch out the formalism of the thermo
field dynamics. Let us consider a system of nucleons with the Hamiltonian
H in the thermal equilibrium at-7T # 0. The system is described by the -
partition function of a grand canonical ensemble, and the thermal average of
any operator A can be written as

1
< A>= W—TT[A exp( ﬂH)] :

where 8 = T-'. The Fock space of the states of the system [n) is produced
by action of the nucleon creation operators at on the corresponding vacuum
state |0). The standard anticommutation relations are valid for the operators
a} and the corresponding annihilation operators a,. Let us formally double the
space of the states of the system by introducing the so-called "tilde” states |7i)
produced by the tilde creation operators @} acting on the tilde vacuum state
|0). The initial and the tilde creation and anmhllatlon operators antlcommute
with each other:

{af,a,} =6, , {a,a, }~{au,a+}=0

{au’ v} = 6uv s {auaav} = {a”,a+} =0
{an, 0.} = {a”, af} ={anal} = {au,av} =0
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a#|0) =0 a,,|0) =0

For any operator A acting in the 1n1t1al Fock space there emsts 1ts tlld(_ cou-

terpart A acting in the space of tilde states. The tilde operation is defined by
the rules - . .

(40) = (A)* ; (AB) = AB (e + ‘c;B) = GA+gB;(d) =

where ¢, , ¢, are c-numbers and the 51gn + (-) is takenfor a bos‘ouicv(fe‘rmionic)
operator A.

Now the tlme translation operator is not the enexgy OpLLdLOI H but tlu-

so-called thermal Hamiltonian H = H — H. H is the Hamlltoman acting in

the’ tllde space and having the same elgenvalues as H: H!n) L,lln) Hln) =.

Euln). .

"The doubhng of the Fock space gives us a possibility to cxplcss the sta-

tistical ensemble average of A as a vacuum expectation value of A < A >=
(0(ﬂ)|A|0(ﬂ)) if the therrna.l (or temperature dependent) vacuum |0(4)) is de-
fined by

0(8) = )in) © 15

\ /Tr(ea:p( BH)) Z

operators
-
Bim = T;a5m YiCim
= .
:B_Jm = T;4im + yJaj'm

Biml0(B)) = Bim|0(B)) =

The transformation {z,y} is a unitary one and due to this the following
anticommutation relations are valid for 8;n, ﬂjm, ﬂjm, + :

{ﬂ:’ﬂl’} = 6#u 7{ﬂ/-t‘7,8u} = {ﬂ:’ﬂj} =0
BB = b BB} = 1B B =0
{ﬂmﬂu} = {:8 ,8+} = {ﬂuaﬂ+} = {IB } =

The coefficients z;, y; are the thermal (Ferml in our case) occupdtlon numbuy

of the states |n).
I; = \/i“—ni’ Yi = VMg
METY exp(fE;)

The state IO(ﬂ)) is the vacuum for the thermal quasiparticle a.IlIllhlld.thlL

These relations can be derived from the expression for the particle densxty in
the thermal vacuum |0(8)) [7]. In the next section, we shall show the validity
of this statement for the system of the Bogolubov quasiparticles at T' # 0.
We use the formalism of the TFD to transform the Hamiltonian of the
quasiparticle - phonon nuclear model [5, 6] for T" # 0. The Hamiltonian of the
QPM consisits of the average-fields for protons and neutrons, the monopole
proton - proton and neutron - neutron pairing interactions and the separable
multipole and spin - multipole particle - hole interactions with the isoscalar

and isovector parts:
H= Hsp + Hpair + th

We escape here describing thoroughly numerous parameters of the QPM. We
have to mention only that all of them are supposed to be temperature inde-
pendent. It means that the present approach is valid for T <'6 MeV.

3 The pairing'correia‘tio’ns at T #0

We organize the following discussion in such a way as to perform the derivation
as parallel as possible with the "= 0 case.

The first stage of the transformation of the QPM Hamiltonian at T =
0 is the canonical Bogolubov transformation from the nucleon creation and
annihilation operators to the quasiparticle ones ’ '

e wei — viate
Ujm = Ujlljm — V07—
- j-m +
a; =(-) a5 m
The coeflicients u;,v; are chosen to minimize the expectation value of the

following part of the Hamiltonian H: H' = H,, + Hpqir for the quasiparticle
vacuum |0). As a result, A’ becomes dla.gona.l in the quasiparticle representa-

tion:
e =Y et
= €50 Qim
jm .

The expression for the quasiparticle energy €; can be found, e.g., in ref. {4]-

‘We use the same transformation for T’ # 0 as well. But in addition to the
u, v- transformation of the usual and tilde nucleon creation and annihilation
operators we make the above- mentioned thermal Bogolubov transformation -
(i.e. {z,y} - transformation) to thermal quasiparticles. So the resulting trans-



formation has the form:

Gjm . ﬂ._‘l*_m

7 )

=5 )| )
?’jm -B A im

m m

m(_% J)

b= ‘/_(—v, u,)

To choose the coefficients u;, v;, z;, y; we use the condition for a nucleus to be
in the thermal equilibrium at T' = const. It means we have to find a minimum
of the grand thermodynamic potential = E — T'S. In the calculations one

has to have in mind that the groundstate energy E is equal (0(8)|H'|0(8)) -

but not (0(8)|H'|0(8)) [7]. The entropy S of the system is

§ = = 37(2) + 1)(nglnm; + ("i —n;)In(1 - ;)

J
The calculation of  is straightforword

Q= (O(B)|Haslr) + Hyuir(DIO(8)) ~ TS =

= 3 (25 4+ (B = A)(wdn; + 01 = ny))-

—%<Z (2]+1)u1v1( ' 2nJ)).('-_. TS“"; C e (2)

J

We use in (2) the following notation: ‘E; is the single - particle energy; A,
is the chemical potential; G, is the constant of the pairing interaction. The
index 7 is an isotopic index and takes two values, 7 = n,p. We suppose that 7
is included in the set of shell model quantum numbers [nlj7] that we usually
denote by one index j. The symbol 37 means that the summation is taken
only over neutron or proton single - particle states. Correctly speaking, E; in
eq.(2) is not exactly the single - particle energy because we included in it a
renormalization term from the pairing correlations. Now this term depends on
T. We suppose these terms are much less than p0551ble variations of the single
- particle energies.

After variation of 02 oyer u;,v;,n; we have
A G;, ) L
(Ej — Ar)ujv;— T(u;" — v;")z (27 + Dujv;(1 = 2n;) =0
(B = A = D)+ d0,Gey (2 + Dugvi(1 - 2n5)+
‘ . , J e
+T(Inn; — (1 ~'nj)) = 0

For the coefficients u;, v;,n; the following relations.are valid:

. E, K A»T ' L ' G E’ Z A
u;" 1(1-}-——:———),1)?: (1——‘J /\)
2 &5 . T

- ) 1
=B = A+ A =
€j v ( ) T) + A7 n; 1+617P(/65j)

In its turn A,, A, are found from the equations:

: 1 Toa : EJ'——/\ )
N,=EZ(2Jf1)<1— — )+A,_,(1 ))

i

o=

-4 — L 1 =2ny
=) (25+1 1

i

(3)

N, is the number of nucleons of a given type.

Eqs.(3) ‘are the well known equations for pairing at T" #0 w1th the Hamil-
tonian of Bardeen - Cooper - Shrieffer (see e.g. ref. [ll]) Using the TFD
formalism they were derived also in [10].

With the above-mentioned exp1ess1ons for #;,v; the Hamiltonian H' =
II' — H’ takes the form: :

H, = Hsp + Hpa,ir = ZEJ( fmﬂjm - J771ﬂJm)
m

i.e. H' becomes diagonal in terms of the thermal quamparticles.

4  The random phase approximation
at T # 0

Now we turn to derivation of the random phase approximation equation at
T # 0. The term M4 also has to be written with the creation and anni-
hilation operators of the thermal quasiparticles 8, 8%, 5,41 but in this case



we suppose the coefficients u;,v;,n; to be known. The corresponding expres-
sion of H(B*,B,8%,B) is very long and complicated to be displayed here.
The point is that one can join different terms of M, into the groups with
the given numbers of creation and annihilation operators, as it has been
done with H,, for the quasiparticles operators [8 9]. For example, one has
the terms §*A*BB, B*B*BB, +fA* BB, B*B*BB, B*AAB etc. instead of
atataa or BT BTR, BHATATH, BB etc. instead of a*tatata. More-
over, the number of thermal quasiparticles in the thermal vacuum vanishes
(0(B)] 22 B3 Biml0(B)) = 0 as for the number of the Bogolubov quasipar-
ticles in the quasiparticle vacuum |0). - So at this stage, one can ‘see ‘a very
close correspondence between the Bogolubov qua51part1cles at T'= 0 and the
thermal quasiparticles at. 7' #0.

Let us introduce the thermal phonon operator (or the phonon operator
constructed from the thermal qua.51part1cles).

Xui = 5 Z (1»[’;\;'[ f et 1.[)'\' [ﬂ+—ﬂ ],\,,+

st - T = (=P BBt r

~(P B B — 2 ) BB (4)

In eq.(4) the notation [ ], means the coupling of single - particle angular
momenta j,j to the sum angular momentum . .

Next, define the ground state of an even - even nucleus as a vacuum for
the thermal phonon operators |¥o(8)):

@il Yo(B)) =0 ,me‘l‘l’o(ﬂ)) =0,

and assume that the number of thermal quasiparticles in this new vacuum
state vanishes:

(\I’O( ] :BJmI\IJO( )) ~0

The one-phonon states have to be orthonormahzed:

( )I[Q/\m 7Q L :”\I’o(ﬂ)) =4 ,\15”“:5“1 (5)
qJO(IB)I[QI\}li7 QI—I“';/]l\IJO(.B)) =0

From eq.(5) one gets the following constraint on the amplitudes v, ¢, 1, 1,[:, J), 7

3 Z (W) = (5 + (@')2_@})2+2(n;})2_’(.1;) =68,6 (6)

s

Then one can express the bifermionic operators like (87, , ﬂ ] etc. through
the phonon operators Q,\m ,Q api by the transformation whlch is inverse to
(4) and write H in terms of the phonons. The part of H which gives the °
nonvanishing contribution to the expectation value of the thermal Hamiltonian
over one-phonon state, has.the form: :

Hapa =Y &(B5Bim — BlBim) -

K4 )
8 Z Z ) + 1 D$ D:}T {(Q:\i-;u + (—),\ “Qz\—ui)x

,\“" rp==%1

*(QA,;;’ + (=) _“Q,\_m )
—( ~:\lh,‘;'l'(“)_'\_“Qz\—ui)(Q,\,u' + (- ) —“~j\'_,,,~f)}

DY = 37 fh b (VT= sy f1 =m0+ 635) mm (B35 + 85)
—2v;;4/1 \/ﬁ 17 +17

We write these formulas for the multipole - multlpole particle - holé interac-
tion ’Hp;. and introduce the following notations: f;\, . is the reduced single -

particle matrix element of the multipole operator; k( ) k( ) are the coupling
constants of the isoscalar and the isovector rnultlpole mult;pole interactions,
respectlvely, uj = vy + upv;, vir = ujuy — vpv;. Changing the sign of
T — —T Imeans changmg n & p.

In the expression of H'in terms of the thermal phonons we omit the so-called
quasiparticle - phonon interaction ~ Q8% 8 and the term like ~ 8+ 34% 3. The
former term doesn’t give a contribution to the expectation value of H over
one-phonon state, the contribution of the last term is supposed to be small in
the RPA as for the analogous term at 7' = 0.

The expectation value of Hppy over the one- phonon state Q7 “,I\IIO( )) has
the form: :

( |Qz\m’HRPAQ,\,“|‘IJO(.B)) =
= %Z {(Ej +ep) (W) + (810) = (B)? — (825)°]+

)
1

(7)



1
4+1

Ej(%”+4wPUD¥Dﬁ
p==%1

+ﬂ-—eouww2 + )

After variation of (7) at the constraint (6) over ¥, $,7,%, $,7, one gets the
homogeneous system of linear equations. It can be resolved if the energy of
the one-phonon state wy; is the root of the following secular equation:

(X (w) + XA @)Y + BY) — 4k ORIX N @) X2 @) =1 ()

2
N . 1 : ‘u,].]./v(l —n; - nj')(ej + Ejf)
Xr) 2A+lz s )2< (i teP—w?

i3

v?j,(nj - le/)(Ej - 5]:))

= e P —w?

For the bifermionic amplitudes'of the one-phonon wave function one gets:

fis 1 fyeevEyE
QNT*‘ ( T VoMY (e +ep) +
U,
(

A
At
Vi =
A
¢, = f' i V1= mi/I—ny ¢,\i_ f'uJJ'V \/ﬁ_’
it = QNTN i T Al9 NAz
At
it = (

:,/l—n“/l—n: 1/:/\1,

gitey) —wn "

61+6~:)+w,\, (EJ—{—E ) — w,\i‘
_\/ 2/\@'

CNF = NY(wx) + (

€~ €;1) — wxi T3 = ; (65 —ey) twri

1= X (D 2 g\
T (w’\’)((f;’v +(/\;. ), NX (wai)
X2 (wpi) (kg — k) , .
WA+1 0 Ly
XN
5 g @)

‘The secular eq.(8) is the'same as in [12] where it has been derived using

NY¥(w) =

the Green function method. This is true for the expressions for the amplitudes

¥, ¢,m as well. The last expressions can be found, e.g., in ref.{13]. One should
keep in mind that we define the phonon operator ‘in terms of the thermal
quasiparticles thus giving rise to addltlonal factors proportional to n; and
" (1 - n;) in our expressions.

“ v V- [_1 Jivir V1 = ns/Ay
IN A

5 Conclusions

Prior to closing it is necessary to dwell on the paper of N.D.Dang [14] where '
the attempt to extend the QPM to T # 0 using the TFD approach has been

proclaimed also. Unfortunately, the author didn’t understand the meaning of

the dual tilde states of the TFD and confused them with the time-reversed

states. So the results of [14], which are in strong contradiction with the results

of other authors, are wrong. The same mistake has been made by N.D. Dang

in the paper [15]

In conclusion, with the formalism of the TFD we formulate the consistent
procedure to extend the QPM to T' # 0 case. Along this way, we have got the
equation for pairing as well as the RPA equations at T' # 0. Our results are in
agreement with the earlier results of other authors derived by other methods.
So we conclude that the TFD is a quite transparent and effective approach
in the theory of hot nuclei. Our next step will be to extend this approach
beyond the RPA, i.e.; to study the interaction among the thermal phonons

. and quasiparticles:
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Bnosun A.H., Kocos I.C. ' E4-93-417
TepmonoseBoe npeobpasoBanue
B KBa3HYaCTHYHO~(DOHOHHOI MOZIEH AApa

Tlpennoxen crioco6 06o6menna KBa3uyacTHYHO-(POHOHHOM MOASIH SApa
JUIS ONMMCAHMS HArpeTHX sagep. g 9T0ro HCnoib30BaH (PopMaIn3M TEpMOIOo-
JIEBOI IMHAMMEKH, CJIeays KoTtopoMy ramiuibronnal KOM zanucan B TepMuHax
TEMIOBHIX KBasnuacTu, Koagpuuuentr ripeo0pa3oBaHud, CBA3LIBAIOMIETO HC-
xomuulil raMmmbToHMad KOM ¢ TemIoBEM raMUIbTOHHAHOM, OTIIPEAC/ICHH U3
YCJIOBHSI MMHIMYMA G0JIBILOTO TEPMOAMHAMHYECKOTO IIOTEHIHANA B COCTOSTHAN
TEILIOBOrO BaKyyMa. 3areM B TelioBoM ramiibronuane KOM suienena yacre,
ONKCHBAKOMAA BO30YXKAECHUI HATPETOrO AAPa B MPUOINXKEHHH CTyuaitHoi da-
3H. Brsenenn ypasuenus IIC®, KoTophle COBMANAIOT C NMOIyYEHHEIMH PAaHEE
MeroaaMu byrkuuit ['prHa 1 TMHEApU3anUH yPABHEHHI JBHKCHHUS,

Pa6ora Bunosnena B JJaGopatopuu Treopernueckoit pusuku OUAN,

TIpenpunt OGbERMHEHHOTO MHCTUTYTA SAEPHLIX MCCaenoBanmil. HyOuna, 1993

Vdovin A.I, Kosov D.S. ’ E4-93-417
The Thermofield Transformation ‘
in the Quasiparticle — Phonon Nuclear Model

The method of extension of the quasiparticle — phonon nuclear model to
describe hot nuclei is proposed. For this aim the formalism of the thermofield
dynamics is used. Following the main principles of the TFD we express the
Hamiltonian of the QPM in terms of thermal quasiparticles. The coefficients of
the corresponding transformation are determined by minimizing the grand
thermodynamical potential of a hot nucleus in the thermal vacuum state. Then
the RPA part of the thermal QPM Hamiltonian is extracted and the RPA
equations are derived. They are in agreement with the RPA equations derived
by the Green function method and the equation-of-motion method.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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