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1 Introduction 

Theoretical studies of the so-called "hot" nuclei, i.e., highly excited nuclei with 
the excitation energy distributed uniformly over many degrees of freedom have 
quite a long history [l]. Nevertheless this branch of the nuclear structure theory 
is still quite actual. One of the reasons is the increasing amount of experimental 
data about various hot nuclear systems we get from the deep inelastic nucleus 
- nucleus collisions. Moreover the description of hot nuclear systems is a ha~d 
problem and it seems natural to use in the investigation different theoretical 
approaches. In studying hot nuclear systems theorists often follow the way of 
extending the known models for cold nuclei to the case T # 0. It was done, 
e.g., in the nuclear field theory [2] and in the theory of finite Fermi systems [3]. 
The properties of nuclear excitations from the energy range O - 25 MeV are 
successfully described also by the quasi particle - phonon nuclear model ( the 
QPM) [4-6]. In the present p~per, we extend the QPM to T =J. 0 using the 
methods of the thermo field dynamics ( the TFD) [7]. 

2 The TFD formalism 

Following the papers [8-10], we firstly sketch out the formalis~ of the thermo 
field dynamics. Let us consider a system of nucleons with the Hamiltonian 
H in the thermal equilibrium at ·T # 0. The system is described by the 
partition function of a grand canonical ensemble, and the thermal average of 
any operator A can be written as 

1 
~A~= Tr(exp(-,BH))Tr[A e_x~(-,BH)], 

where ,B = r-1 . The Fock space of the states of the system In) is produced 
by action of the nucleon creation operators at on the corresponding vacuum 
state ID). The standard anticommutation relations are valid for the operators 
at and the corresponding annihilation operators a;,.. Let us formally double the 
space of the states of the system by introducing the so-called "tilde" states In) 
produced by the tilde creation operators at acting on the tilde vacuum state 

IO). The initial and the tilde creation and annihilation operators anticommute 
with each other: 
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aµI0) = 0 , iiµIO) = 0 

For any operator A acting in the initial Fock space there exists its til<le com1-
terpart A acting in the space of tilde states. The tilde operation is defined by 
the rules 

(A+)= (A)+; (A-~)~ AB; (~1A + c2Bf = ~;:A +c;B; (A)= ±A, 
. . 

where c1 , c2 are c-numbers ind the sig~ +(~)is taken for a boso11ic (fermionic) 
operator A. · . . · · ._ 

Now the ti~e - translation operator is not the energy ~perator H, but tlie 
so-called'the;inal Hamilt~nian 1{ = H - iI. iI is the Hamiltonian a~ting in 
the.tilde space and having the same eigenvalues as H: Hin) ='E,,ln) , lilii) =. 
Enln). . . . 

·The doubling of the Fock space gives us a possibility to express the sta- _ 
tistical ensemble average of A as a vacuum expectation value of A ~ A »= 
(O(P)IAI0(P)) if the thermal ( or temperature dependent) vacuum I0(,B)) is de
fined by 

l PEn _ 
IO(P)) ~ ✓Tr(exp(-PH)) ~exp(--2-)ln) 0 In) 

The state I0(P)) is the vacuum for the thermal quasiparticle annihilation 
operators 

P - -+ im - Xiaim - Yiaim 
- - . + Pim = Xillim + Yiaim 

Pim f 0(P)) = Pim I0(P)) = 0 

The transformation { x, y} is a unitary one and due to this the followiug 
anti commutation relations are valid fo~ Pim, P;m, Pim, P;m: 

{P:, Pv} = Dµv , {Pµ, Pv} = {P:, Pt} = 0 

-+ - - - - -
{Pµ ,Pv} = oµv, {Pµ,Pv} = {P:,PtJ = o 

{Pµ,Pv} = {P;,Pt} = {Pµ,Pt} = {P;,Pv} = 0 

The coefficients xi,Yi are the thermal (Fermi in our case) occupation 11un~b~;-s 
of the states In). · · 

xi = ✓1 - ni ' Yi = Fi 
1 

11
i = l + exp(PEj) 
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These relations can be derived from the expression for the particle density in 
the thermal vacuum I0(P)) [7]. In the next section, we shall ;how the validity 
of this statement for the system of the Bogolubov quasiparticles at T -/= 0. 

We use the formalism of the TFD to transform the Hamiltonian of the 
quasiparticle - phonon nuclear model [5, 6] for T -/= 0. The Hamiltonian of the 
QPM consisits of the average fields for protons and neutrons, the monopole 
proton - proton and neutron ~ neutron pairing interactions and the separable 
multipole and spin - multipole particle.. - hole interactions with the isoscalar 
and isovector parts: 

H = Hsp + Hpair + Hph 

We escape here describing thoroughly numerous parameters of the QPM. We 
have to mention only that all of them are supposed to be temperature inde
pendent. It means that the present approach is valid for T ~ 6 MeV. 

3 · The pairing correlations at T -:f. 0 

We organize the following discussion in such a way as to perform the derivation 
as parallel as possible with the T = 0 case. 

The first stage of the transformation of the QPM Hamiltonian at T = 
0 is the canonical Bogolubov transformation from the nucleon creati_on and 
annihilation operators to the quasiparticle ones 

CXim = uiaim - Via:m 

a:!:-= (-)i-mat 
3m 3-m 

The coefficients Uj, vi are chosen to minimize the expectation value of the 
following part of the Hamiltonian H: H' =;== Hsp + Hpair for the quasiparticle 
vacuum I0). As a result, H' becomes diag~nal in the quasiparticle representa
tion: 

H' ~ L £iCXJmCXim 
jm 

The expression for the quasiparticle energy £j can be found, e.g., in ref.[4]. 
We use the same transformation for T -/= 0 as well. But in addition to the 

u, v- transformation of the usual and tilde nucleon creation and annihilation 
operators we make the above-mentioned thermal Bogolubov transformation 
(i.e. { x, y} - transformation) to thermal quasiparticles. So the resulting trans-
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formation has the form: 

( :t ) = ( A ~ ) ( ~~ ) at -B A (Jt 
3m 3m 

ajm Pim 

(1) 

( 
Uj. Vj ) 

A = JI - ni -vi Uj 

B = -Jni( Uj Vj) 
J -Vj Uj 

To choose the coefficients Uj, Vj, Xj, Yi .ye use the condition for a nucleus to be 
in the thermal equilibrium at T = const. It means we have to find a minimum 
of the grand thermodynamic potential n = E - TS. In the calculations one 
has to have in niind that the ground:state energy Eis equal (0(/J)IH'IO(/J)) 
but not (O(fJ)IH'IO(fJ)) [7]. The entropy S of the system is 

S =-=- L(2j + l)(nilnni + (1- ni)ln(l - ni)) 
j 

The calculation of n is straightforword 

n = (O(fJ)IHav(r) + Hpair(r)IOJJ3)) - TS= 

= LT(2j + l)(Ej - >.T)(uini + vj(l - nj))-
j 

-:· ( r (2j -l})u;v,(1,- 2njj)'-rs (2) 

We use in (2) the following notation: Ei is the single - particle energy; Ar 
is the chemical potential; GT is the constant of the pairing interaction. The 
index r is an isotopic index and takes two values, r = n,p. We suppose that r 
is included in the set of shell model quantum numbers [nljr] that we usually 
denote by one index j.· The symbol :ET means that the summation is taken 
only over neutron or proton single - particle states. Correctly speaking, Ei in 
eq.(2) is not exactly the single - particle energy because we included in it a 
renormalization term from the pairing correlations. Now this term depends on 
T. We suppose these terms are much less than possible variations of the single 
- particle energies. 
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After variation of n over ui, vi, ni we h.ave 

. GT 2 2 LT . (E- - >. )u·v· - -(u. -v-) (?J + l)u·v·(l - ?n·) = 0 J. T J] 4 J J . - J J - ] 

j 

(Ej - >.T )(ui -v;) + ~iv/}T LT(2j + 1 )ujvj(l - 2nj )+ 
j 

+T(ln ni _:_ ln(l ~ ~i )) = 0 

For the. coefficients Uj, Vj, ni the following relations.are valid: 

2 _ ~ ( Ej - >.T) , 2 _ ~ ( _ Ej - >.T) 
ui - ? l + ". , v1 - ? l "". 

~ - ~i . - ~, . 

1 
c. = J(Ej - >.1.)2 + ll;, nj = 1 + e:i:p(/3€j) J • 

In its turn D.n Ar are found from the equations: 

l T • ( . Ej-Ar . (1-2nj)) 
NT= 2L (2J + 1) 1 - J(Ej - >.T)2 + ll; 

] . 

,. 1 - 2nj 
·_±_ = LT(2j + 1) J(Ej - >.T)2 + ll;' GT j ' 

NT is the number of nucleons of a given type. 

(3) 

Eqs.(3) are the well known equations for pairing at T =J O with the Hamil
tonian of Bardeen - Cooper - Shrieffer (see e.g. ref.[11]). Using the TFD 
formalism they were derived also in [10]. 

With the above-mentioned expressions for itj, Vj the Hamiltonian 1-l' 
II' - Ii' takes the foi·m: 

1-{' = 1-lsp + 1-lpair = L ci{/JJm/3im - fJt,}jm), 
jm 

i.e. 1-l' becomes diagonal in terms of the thermal quasiparticles. 

4 The rando1n phase approximation 
at T =f 0 

Now we turn to derivation of the ra.ndom phase approximation equation at 
T =J 0. The term 1-lph also has to be written with the creation and anni
hilation operators of the thermal quasi particles ;,, ;3+, fJ, jJ+ but in this case 
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we suppose the coefficients Uj, vi, ni to be known. The corresponding expres
sion of 1i([J+, (J, [J+, fJ) is very long and complicated to be displayed here. 
The point is that one can join different terms of 1iph into the groups with 
the given numbers of creation and annihilation operators, as it has beeu 
done with Hph for the quasiparticles operators (8, 9]. For example, one has 
the terms [J+[J+[J[J, [J+{J+[J[J, [J+{J+[J[J, [J+[J+{J[J, [J+[J+.[J[J etc. _instead of 
o:+o:+o:o: or [J+[J+[J+[J, [J+[J+[J+{J, [J+[J+{J+[J etc. instead of o:+o:+~+o:. More
over, the number of thermal quasiparticles in the. thermal vacuum vanishes 
(0((J)j Ljm /Jtm/Jiml0(fJ)) = 0 as for the number ~f the Bogolubov quasipar
ticles in the quasiparticle vacuum IO)- -So at this stage, one can ;see ·a very 
close correspondence bet..yeen the Bogolubov quasiparticles at T = 0 and the 
thermal quasiparticles at T =J 0. 

Let us introduce the thermal phonon operator ( or the phonon operator 
constructed from the thermal quasi particles): 

Q+ i "' (·'·»i [fJ+ fJ+ l J,»i [fJ-+ fJ-+ l >.µi = 2 L '+'jj' .jm /m' >.µ + '+'jj' jm j'm' >.µ+ 
.. , 

JJ 

+211::, [/JtmPjm,]>.µ - (- )>.~µ</J)f, [/Jjm/Jj'm' ]>.-µ-

( )»-µJ.»i 1/J- fJ- l 2( )»-µ -»i 1/J· fJ- l ) - - '+'jj' jm /m' >.-µ - - _ 11jj' jm i'm' >.-µ (4) 

In eq.( 4) the notation [ ]>.µ means the coupling of single - particle angular 
momenta j,j' to the sum angular momentum A. 

Next, define the ground state of an even - even nucleus as a vacuum for 
the thermal phonon operators 1'110 (/J)): 

Q>.µ;IWo(fJ)) = 0, Q>.µ;lll!o(/J)) = 0, 

and assume that the number of thermal quasiparticles in this new vacuum 
state vanishes: 

(ll!o(/J)I/Jtm/JimlWo(/J)) ~ 0 

The one-phonon states have to be orthonormalized: 

(Wo(fJ)l[Q>.µi, Qt'µ'i'JIWo(fJ)) = 8>.>.'8µµ'8ii' 

(Wo(/J)l[Q>.µi, Qt,µ'i']IWo(fJ)) = 0 

(5) 

From eq.(5) one gets the following constraint on the amplitudes t/J, <P, 17, 'if;,¢>,~: 
1 L »i 2 »i 2 - »i 2 -»i 2 »i 2 , -»i 2 - (tp .. ,) -(</) .. ,) +(1P--1 ) -(</) .. ,) +2(77 .. ,) -2(77 .. ,) =8u,li;i' (6) 2 JJ JJ JJ JJ JJ JJ .. , 

JJ 
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. i/ ., .. 

Then one can express the bifermionic operators like ((J
1
tm , (J! , ] etc. through 

• • J m 
the phonon operators QIµi , Q >.l:'i by tlie transformation which is inverse to 
( 4) and write 1{ in terms of the phonons. The part of 1{ which gives the 
noI1vanishing contribution to the expectation value of the thermal Hamiltonian 
over one-phonon state,.has the form: 

1{RPA = L t:j{/JJm/Jim - fJtmfJim)-
jm 

(>.) (>.) 
1 "' "' ko + pk1 D>.i j;>.i' {(Q+ ( )>.-µQ ) -8 L L . 2A + 1 'T . p-r >.µi + - >.-µi X 

>.µii 1 -r,p=±l 

x(Q»µi' + (-l~µQt-µ;1)-

-(Qtµi + (-)_>.-µQ>.-µi)(Q>.µi' + (-)>.-µQt_µi')} 

»i L,,. » ~F: »i »i -»i -»i D = f..,[u--,( _I-n1· 1-n-,(t/J .. ,+</) .. ,)- ~ 1- l:;;::;(tj} .. ,+</) .. ,))-
,,. 11 11 1 . JJ 11 V .. JV ··1· JJ 11 

• •1 
JJ 

-2vii'JI - ni.;n;;(11Jf, + ~ff,)] 
We write these formulas for the multipole - multipole particle - hole interac
tion 1iph and introduce the following notations: J\ is the reduced single -

.. JJ 

particle matrix element of the multi pole operator; k~>.) , kf) ar~ the coupling 
constants of the isoscalar and the isovector multipole - multipole interactions, 
respectively; uii' = UjVj' +,uj'vi , vii' = UjUj' - vj'v;. Changing the sign of 
r -t :._T means changing n +-+ p. 

In the expression of?{ in terms of the thermal phonons we omit the so-called 
quasiparticle - phonon interaction~ Q[J+ (J and the term like~ [J+ [J[J+ (J. The 
former term doesn't give a contribution to the expectation value of 1{ over 
one-phonon state, the contribution of the last term is supposed to be small in 
the RPA as for the analogous term at T = 0. 

The expectation value of 1{RPA over the one-phonon state Qtµilll!o(/J)) has 
the form: 

(Wo(fJ)IQ>.µi1iRPAQIµilWo(fJ)) = 
1 L { »i 2 »i 2 - »i 2 - »i 2 =- (c:,•+e•l)[(1P••I) +(</J .. 1) -(t/J .. ,) -(</) .. ,) ]+ 2 J JJ JJ JJ JJ .. , 

JJ 

(7) 
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+2(t:. - t: ., )[(TJ~~. )2 + (TJ-~i,)2] }· - ~-1 - ~ (k(>,) + pk(>.))D>.i D.\i 
] J J] . J] 4 2,\ + 1 ~- 0 1 T pT 

. . . T,p=±l 

After variation of (7) at the constraint (6) over 1P,</>,TJ,'i/J,ef>,iJ, one gets the 
homogeneous system of linear equations. It can be resolved if the energy of 
the one-phonon state W>.i is the root of the following secular equation: 

[X;;(w) + X~~(w)](k~>.) + kfl)- 4kt>-lkfl x;;(w)X~~(w) = 1 (8) 

x>-i(w) = _l_~T u>-,)2 (u:i'(l - nj - nj' )(t:j + cj') 
., 2,\ + 1 ~ · 33 ( c + c , )2 - w2 

jj' J J 

_ v:i'(ni - ni' )(t:j - t:j')) 
( £ . _ c .; )2 _ w2 

3 3 · 

For· the bifermionic amplitudes of the one-phonon wave function one gets: 

1P>.i, = ~ f }_ujj' ~ Jl - nj' 
31 V 2fJF (t:; + t:i') - W>.; 

¼f>._,u .. , ~
1
- fff7 ->.; 11 11 v··1v--1 

1/Jjj' =. (c; + €/) + W,\i 

¢/!, = /l_fi~'uii'~Jl-r½' 
11 V 2fJF (t:i + t:j') + W>.; ~ 

f >. ,u . . / q:;:: ffG ->.; _ ii 11 v··1v··1 
</>ii'- _(e:i+c·•)-w>.; 

J . 

¼ f~.,V··' ~ 1- fff7 . ¼P.,v .. , ~ 1- fff7 >.i 11 11 VJ. - 1•1y --1 ->., 11 11 VJ. - ••1y --1 
T/-J=- T/-J=- --. 

11 (t:j-t:j')-w>.; 11 2N;•_ (t:j-t:j')+w>.; 

. ( x>-i( )(k(>.) k(>.))):
2 

N>.i = N>.i(w>.;) + . l - . T W>.i o + 1 . . N~i (w>.;) 
T T x>-, ( ·)(k<>-> - k<>->) T 

-T W>., 0 1 

N;;(w) = 2.\ + 1: x;;(w) . 
2 uw 

The secular eq.(8) is the same as in [12] where. it has been derived using 
the Green function method. This is true for the expressions for the amplitudes· 
1P, </>, TJ as well. The last expressions can be found, e.g., in ref.[13]. One should 
keep in mind that we define the phonon operator in terms of the thermal 
quasiparticles thus giving rise to additional factors proportional to ni and 
(1 - ni) in our expressions. 
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5 Conclusions 

Prior to closing it is necessary to dwell on the paper of N.D.Dang [14] where· 
the attempt to extend the QPM to T =/= 0 using the TFD approach has been 
proclaimed also. Unfortunately, the author didn't understand the meaning of 
the dual tilde states of the TFD and confused them with the time-reversed 
states. So the results of [14], which are in strong contradictionwith the results 
of other authors, are wrong. The same mistake has been made by N.D.Dan'g 
in the paper [15]. 

In conclusion, with the formalism of the TFD we formulate the consistent 
procedure to extend the QPM to T =/= 0 _case. Along this way, we have got the 
equation for pairing as well as the RPA equations at T =/= 0. Our results are iii 
agreement with the earlier results of other authors derived by other methods. 
So we conclude that the TFD is a quite transparent and effective approach 
in the theory of hot nuclei. Our next step will be to extend this approach 
beyond the RPA, i.e., to study the interaction among the thermal phonons 
and quasiparticles. 
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BAOBHH A.If., KocoB n:.c. 
TepMorroJieBoe rrpeo6pa3oBaHHe 
B KBa3UllaCTH11HO-<POHOHHOH MO}J;eJIH 51,!ij)a 

E4-93-417 

Ilpe}J;JIO)KeH cnoco6 o6o6m;eHHSI KBa3utJaCTH11HO-<POHOHHOH MO}J;eJIH Sl}J;pa 
}J;JISI OITHCaHHSI HarpeThIX 51Aep • .ll:JISI 3TOro HCITOJib3OBaH <POPMaJIH3M TepMOITO
JieBOH AHHaMHKH, CJie;:\y51 KOTopoMy raMHJibTOHHaH K<l>M 3anHcaH B TepMHHax 
TeITJIOBhIX KBa3HtJaCTHIJ;. K03<P<PHIJ,HeHThl npeo6pa30BaHH51, CB513hIBaIOm;ero HC
XO}J;HhIH raMHJibTOHHaH K<l>M C TeITJIOBhIM raMHJibTOHHaHOM, onpe}l;eJieHhl H3 
yCJIOBHSI MHHHMyMa OOJibmoro TepMO}J;HHaMHlleCKOro IlOTeHIJ,HaJia B COCT05IHHH 
TeITJIOBOro BaKyyMa. 3aTeM B TeITJIOBOM raMHJibTOHHaHe K <I> M BbIAeJieHa 11aCTb' 
OITHChIBarom;aSI B036y)K}J;eHH51 HarpeTOro 51Apa B npH6JIH)KeHHH CJiyqaii:HOH <l>a-
3hl. BhIBeAeHhl ypaBHeHH51 IIC<l>, KOTOphle coBna}J;aIOT c noJiy11eHHhIMH pattee 
MeTO;:\aMH <PYHKU,HH I'pHHa H JIHHeapH3aIJ,HH ypaBHeHHH ABH)KeHH51. 

Pa6oTa BhIITOJIHeHa B Jia6opaTOpHH TeopeTH11ecKoii: <PH3HKH OM5IM. 

' TipenpHHT Q6,,eAm1e1moro HIICTHT)'Ta ll)J.epHblX HCCJieAOBaHHH, )ly6Ha, 1993 

V dovin A.I., Kosov D.S. E4-93-417 
The Thermofield Transformation 
in the Quasiparticle - Phonon Nuclear Model 

The method of extension of the quasiparticle - phonon nuclear model to 
describe hot nuclei is proposed. For this aim the formalism of the thermofield 
dynamics is used. Following the main principles of the TFD we express the 
Hamiltonian of the QPM in terms of thermal quasiparticles. The coefficients of 
the corresponding transformation are determined by minimizing the grand 
thermodynamical potential of a hot nucleus in the thermal vacuum state. Then 
the RPA part of the thermal QPM Hamiltonian is extracted and the RPA 
equations are derived. They are in agreement with the RPA equations derived 
by the Green function method and the equation-of-motion method. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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