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and few bound states in it. In the framework of the microscopical approach the OCR Output

by the repulsive core in the potential. In this case the potential has a small depth

Pauli principle. However, the Pauli principle can effectively be taken into account

on the first nonoccupied level since the transition to lower levels are forbidden by the

are used, for example, to describe cx-decay. It is assumed that an wparticle is located

interaction, a very deep nucleus—nucleus potential can be obtained. These potentials

preferable for the calculations. By using the density independent nucleon-nucleon

nuclei to construct UN(R). The question is which nucleon-nucleon forces are most

folding procedure of nucleon-nucleon interaction with the nucleon densities of colliding

A detailed analysis [5] of various theoretical schemes testifies great efficiency of the

larger than the Q—reaction value.

contradictory results since the absolute value of the potential minimum is essentially

not valid. In this case the proximity potential leads to a very deep potential pocket and

of medium and heavy nuclei. However, for strongly asymmetric DNS its application is

of nuclei. The proximity potential [4] is good enough for the description of interaction

tion of the potential pocket minimum Rm. This corresponds to a considerable overlap

[3] gives a too large value of the distance between the barrier position Rb and the posi

they have a limited range of applicability. For instance, the energy density formalism

action cross section in heavy ion reactions can be found in the literature However,

Different versions of the potential UN(R) describing the elastic scattering and re

UN(R) is most difficult in

is a sum of nuclear, Coulomb and centrifugal potentials. Usually, the calculation of

(I)U(R) = Ulv(R) + Umz(R) + UMAR)

the energy of their interaction. The nucleus·nucleus potential

the potential energy as a sum of the binding energies of both nuclei (B1 and B2) and

angular momentum J. A small overlap of the nuclei of DNS allows us to‘write down

(mass) asymmetry, distance R between the centers of nuclei, nuclei deformations and

we need the calculation of the DNS potential energy at different values of its charge

processes depends on the initial DNS configuration. To describe the DNS dynamics,

mainly by the DNS evolution. The relationship between the fusion and quasi-fission

known The charge and mass distributions of reaction products are predicted

The dinuclear system (DNS) formation in deep inelastic heavy ion collisions is well

OCR Output1. Introduction



of experimental data within the theory of finite Fermi systems The interaction (3) OCR Output

dimensionless parameters f, f ', g and g' are known from the description of a large set

Here aq and 1-; are spin and isospin matrices, respectively. The value of Cq and the

Finn = (fame + finedirz) + gsm; + 9l».,¤x‘*'1‘¤‘2)¤‘i¤2- (3)

rm — ai = 00 a..+ F,,1- om - ai,(€@ (Poo Poo
is obtained naturally when one uses density-dependent nucleon-nucleon forces [8]:

U~(R) = / m(ri)m(R — rz)F(ri — rz)dridr2

The repulsive core in the double folding potential

2.1 NUCLEAR INTERACTION

2. Nucleus-nucleus potential

applied to the calculation of the potential energy of real DNS.

tential UN(R) and proximity potential will be find out. The results obtained will be

and deformed nuclei will be considered. The relationship between the proposed po

lation of the double folding nucleus-nucleus potential The interaction of spherical

In this paper we shall obtain the expressions which are convenient for the calcu

excitation energy.

nucleus. In this case the nucleus can transform into the DNS configuration at a low

some symmetric DNS seems to be close to the energy of the corresponding compound

[6] can be an indication of the existence of trinuclear systems. Moreover, the energy of

excitation energies. Light nuclei emission from the contact region of two heavy nuclei

where the states with exotic shapes (cluster type states) can appear at relatively low

characteristics is an important problem. It is interesting also to find nuclear systems

tions with radioactive beams the calculation of the DNS potential energy for its various

In view of the planned investigations of the exotic nuclear shapes and nuclear reac

nucleus potential should be available both for symmetric and for asymmetric systems.

various DNS configurations. Nevertheless, the method of calculation of the nucleus

investigation of the DNS evolution necessitates the potential energy calculation for

second one should be used, especially in the case of interaction of massive nuclei. An

repulsive core. However, to simplify the calculation of the DNS potential energy, the

results can be obtained by using both the deep potential and the potential with the

repulsive core appears because of the antisymmetrization effect. The same physical



(9) OCR OutputRi = R4r(1 + B%¤(6S.<PE)),

simplicity only the quadrupole deformed, axial symmetric nuclei

Without restricting the general nature of further calculations let us consider for

functional.

value of ·y can be obtained by minimizing the nuclear binding energy in the density

where 7 characterizes the width of the nucleon distribution in the nucleus [11-13]. The

(8)Mr) = Ae(v2/r)3"<=><p(—v’r2),

more realistic functional dependence of p;(r) on r is the following

diffuseness of ith nucleus, respectively, pw = 0.17 fm'3. For light spherical nuclei the

integrals in ln the expressions (6) and (7) R; and aq; denote the radius and

of A simpler Fourier transform of function (7) facilitates the calculation of the

contact region of two nuclei is the one giving a main contribution to the integrals

Near the nuclear surface the dependences (6) and (7) are close to each other. The

_ cosh(R;(0f,<p§)/(10;)+ cosh(r/ao;)
Mr) : { (7)

p¤¤Si¤h(R¢(0£,<p£)/Gor)

or in its symmetric form

6 ‘ l; 1* = "( l 1 + expo — aw:.·p:>>/ati)
Poo

can be taken either in the Saxon—Woods dependence

considers the interaction of nuclei with mass numbers A; > 16, the nuclear density

where N;, Z; and A; are neutron, proton and mass numbers, respectively. When one

Pima: : fin,ex + f:n,E;(N1 ` Z1)/A1 ` (N2 — Z2)/A2»

+ / m(r)p%(r - R)dr+ Fam(r)¤¤(r — R)dr l, (5)) /

n¥(r)pz(r — R)dr PooTI. EI U~(R) = 6”¤[ —~—— (fR1 F

the spin dependence in (3), then (2) can be rewritten as

where p;(r) = 1, 2) are the nucleon densities of interacting nuclei. If one neglects

(4)p¤(r) = m(r) + Mr),

can be written in the sudden approximation

retaining their individuality during the interaction [10] the nucleon density of DNS

is similar to the density—dependent Skyrme one At a small overlap of nuclei and
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R01

d

In = ·47FPoo¢o1$lHl’1 %E‘E§ ! P1(P)P2(P)j0(PR)P2dP» (14a)
we get

am dR0i sinh
13 ( ). Rue d Mr) * Z - i h —-—— PJ') Pcnao Sm

Inserting the Fourier transformations and using the expression

k:1

(12)I1 = /pi(r)p2(r — R)dr = E IM.

Let us consider the first integral in (5)

to neglect the dependence of coefficients in (10) and (11) on GQ

surface point nearest to the other nucleus (Fig.1). A small overlap of nuclei allows one

dependences of p;(r) and p?(r) at Bf = ai. The angle cr; corresponds to the nuclear

and 66;, respectively. The values of fi, {Q, bo; and bf); are fixed by fitting the radial

where ;$.(r) and ,5?(r) differ from p;(r) and p§(r) by the replacement of am by bq;

, pm = p?<»~> + :2 [R0i;l-R-§?¤m0<v:> + §%¤?u%<v.>]. rmd Y R2- dz Y ’i

I P¢(¤‘) 2 ml?) + ie R¤¢6el@o(9£) + j`h·6flGi>(9r)» (10)
d~{ RI dz Ali(% l$l

for calculations

converges well at small B;. For Bi > 0.2 the following modified expansions suit better

It is known that the expansion of (6) and (7) in the deformation parameter Bi

nuclei

two axially symmetric deformed

gz\ Fig.1. Schematic configuration of
QM _ ( ‘ /L qi

P2

The axis 2 of the space-fixed system coincides with R (Fig.1).

its axes is described by the Euler angles Qi with respect to the space-fixed system.

where R0; = rg/1:and angles (9f,<,cQ) are in the body-fixed system. The rotation of/3



integrands by their values at 6*; : cr,. The expression for In coincides with the one OCR Output

The main approximation in (l4d—l4j) is the replacement of spherical functions in the

_ (NJ)— 119 2 @£1€2[3i}liY2iil“1)Y2i1(¤2) ]112 R2 , . _. , d"

. (H1).. , Irs 2 %l€|£2U{p'2Y}%(0'l)y20(O2) Il1¤
R2 H4; , da —

(Hg)117 E ’?,‘€1€2¤1B;l20(“1)Y2i1(¤2) I11·R0 R2 I [ r dis _ J2
I

(W)Im Z —§E]B$Y2§(¤1)?FR§·Ili»R2 , ,. cl" ~ l)

e (14)z or O1 ———— , is 1o2l2122o12o2dR0ldR0211 I R¤R€'E/3UY( )Y() T
dz

(Nd)In 2 —§C2B;i)$i>(¤2)Eh5;Iii»R2. dz ~ £)

the simplified calculations of integrals:

given in Appendix. The assumption of small overlap of the interacting nuclei leads to

is the Fourier transformation of (7). The results of calculations of Gu and Gl; are

pifp) : (ps1nl1(1ra0ip) Roi R0i))v2 J`? 1 ¢ . Tl s111(pH0;)C0Lll(7\'¢1osP) ’·€0$(P
where

(l4c)

. x(pc0s(pRm) — coth +cos(pR0,) -— coth ——pRm s1n(pRm),
.' R¥)oi bm R Q @ %)bm bm >]

U — (1 ‘ 12. -0 -+L-P th H +- dRm J PPJ2(P )Pz(P)b6lp2 ia Smhhrbélp) W D100 (W MP) P
nu3 [ {((1 °°

= (4’V)2EiB1R01bi¤Y2o(U1)

2 I { ,· 2 · 2 · I13=(4"’) Ci/}1R¤1l20(Q1) /dPP J2(PR)P2(P)d"` J2(PP)/H A id/$i(")

(14b)
_ mop; Smhhrbmp)

1: cos co 1r sm -cos (Pb (Ro)¤h(b)+R`(R¤)+’ (1%)) 02 P 2 02P P 02 P 2 P 2——-——><lG 12
3nbc?

1 . 2

_ _ . = ·(4”)€2P<io¤01R02»}2 smh $Y2o(Q2)m J dPPJ2(PR)/’1(P)
RO d 1

4 . ER§ !dPPJ2(PR)P1(P)dT"J2(PT)
. d` )!2·%cl 1 W . X l



sin(vrna0j/a0;)°
Til) - ..2% ° _

and

(171 OCR Output+§((12+12m—12m>‘+<R—Rm+Rm>*)

312+.11202 (N +11201 — RON) — (312* +11201 — Rm?) (Hm — RON

7\’2(G?,1 + fig;) (R2 + 2R0lRO2 + (R01 — R02)2

20
"'4(“iii + agzl + §"`4“ci1“ci2 + 7’2(R<i1 ‘ R1i2)(‘1g2 “ agi)

01 02

T<°> = I212 ((1211 + 120213 — :11121,1 + R0z)R¤iR¤z + aglmr + ¤?,,Rm

Here the following notations are used:

(16)+1 <-——• 2 — Tm)

+c_·¤¤Rm R + + RmT+ R + + 2R02T+ 2T1)n 3)n(R— + [(% );(E? ) ill}
+e"°J""£°“” M mf 120, +12 - + 12021*}** + 12 + - 2121,2TY) + 2T}3)[(% ) (? ) ]

>< ( in im J) Rm —R + E1+ R0;Tl1)+ —R + 9+ 2R02Tin + 2Ti3)[(? ) (% ) l
1 :2 h ——.._- U W/)°° R sm am dR0] sinh gg +- ..- am Q n

2 co n _ Rm d 1 1 (-1) 3 EE?

At R < R01 + R0; we obtain

T1

(15)12.,2 ((12+ @)r;1>+2T;*>COs11@.°£+1++12)}]. (Ig!
Q1°°(—l)"-&_ Ron a _R0 X [TC $.,11. (R§2T(1l + (g + R) Tw + mr) sinh

I :_8 “ ""°° 12 Sm am 11120+ sinh
2 12 21 1 3a01q02 ·

R01 + Rozi

as the ratio of two integers, then calculating the residues at poles we get for R >

To obtain lu, we should calculate the simple integral. If am/am is not representable

of iu, and are similar to the calculation of Iu.

contains ig instead of p? and contains ,62 instead of pz. Therefore, the calculations

for In where pi and pg are replaced by pi and ,52, respectively. ln contrast to In,



(21) OCR OutputI2 = ( P¤(¤‘)Pi(¤‘ - R)d¤‘

can be obtained. The integral

By using the expressions (14d—14j) the contribution of terms I1), (k = 4, ...,9) to Il

The integrals in (14b) and (14c) can be calculated in the same manner as in (14a).

are proportioanal to exp (-n,(R + Rm + Rm)/am), were neglected.

sinh(R¤;n/ao;) is replaced by 0.5 exp(Rmn/am). In (16) and (20) the terms, which

The sums in (15) and (19) coincide with the corresponding sums in [14] if

a 1ra+6(R+Ro1+Ro2+g) (Ro1R02—‘?
22

3 2 R 2 +i(R’—(R0i+R¤2)’+%+'}2 ;l;)
D(R. Rm. Rm) = R3 — (Rm + Rm)2 (3R + 2(Rm + Rcz))

where

*” "` *+€·G 1><12, R0., —Rm)+e·*·“L·°°“·· Dm, —R0.,Rm)—T<°>, (20)*& '“ " ’ }]
“, D(—R,]?0],Rgg)

_··<5_m+»_g;;—a_1r 3 a2 _ R01 d 1 °° 1 I]l—§p00·E S1I1l'l Ig g C
and (16) transforms into

(19)+ 2RO2(1ra+ R3,) smh cosh22 %
a aa zz

>< sinh [sinh —+- 2Rm(rr2a2 + RS,) cosh i sinhgRRG?LE @

3 2R 2 2 2 2 R2 R2 322{|5R+..E <R+l+...%> _3a<R.+.2) n n n n 3 a

— 7 6I :--——————-·-———— 11 3 PDO R smh a dR01 sinh E} Tg
41r a2 _ Rm d 1 °° 1 nk 3

At am : ao; = cz the expression (15) transforms into

(14a) is needed.

immediate neighbourhood of R = Rm + RD;. In this case the numerical integration in

where i,j = 1, 2 and i gé The sums in (15) and (16) converge quickly except for the

2 sin3(1rna0,/ao,)
(18)

(3) Hag) 1 + cos°(1rnaqj/am)
sin(rrn.a0,/au,)

T: cos(1rna ·/a I 20] Oi lw



be easiely obtained. OCR Output

By evident replacements in (24) and (25) the expressions for I22, IM, I3; and I3., can

Here ILM/;(z) is the modified Bessel function, Cgjgo is the Clebsh-Gordan coefficient.

·22*(#+R*) 2 2 2 X 6 IL+]/g(4')’ T'R) 'I` di`.
dz/$W 7* {

I =5A Ec 62 Z (—<C’~° YY <¤> 14 1 2 2 Q Tr + 1 2020 20 2f 3 /iLL=O‘2A

[12 Z 4WAl£2,B2R02 im2m2> e·’“"°+"’> L12)2<422TR>i!-iT’dr. (24)i 37l;vr n 872rR dR02
to the first order integrals

For B2 gé 0 the integral In is calculated as in (23). The integrals in (12) can be reduced

(23)+ p00F,, sinh(2·y2R·r) I rdf.

A1 72 2 2 2 I R ’. X rn. — F2.) p2<r>sa¤h<2#Rr> + T (—) an I+>sI¤I·<42Rr> rr(
3/2

2 2 I 2 :200/41 E_'Y2R _€—'721‘ p2(T)°° /W R H Poo
W

At H; = 0 we get

IM should be calculated.

has a spherical shape (B1 : 0). Therefore, to obtain UN(R), the integrals IH, I1; and

In the further consideration of asymmetric DNS we shall suppose that a light nucleus

As it was noted before, for light nuclei the nucleon density is taken in the form

2.2 TNTERACTION or LIGHT AND HEAVY NUGLEI AND Two LIGIIT NUCLEI

calculate UN(R) if the nucleon density is chosen in the form (6) or

pi and by pl, pl and fl, respectively. Thus, the presented expressions allow us to

reduces to the calculation of integrals which differ from (12) by the replacement of pg,

(22)I3 = /p1(r)p2(r — R)dr

the integral

in (5) results from (12) by replacing index 1 by 2 and vice versa. The calculation of



i»’~(R}'~U¤(/G,.S-/*1..-l2 — mu— m+ /·il¤‘);u(¤‘— Rldr- (29)7 `) {<g g) OCR Output
Using (I3) we can approximately rewrite (5) for the spherical nuclei as

3. Relationship of double folding potential with proximity potential

considered in this paper.

of each nucleus. The values of ji are known for axial and <lnadrnpole deformed nuclei

where J is the total angular momentum of the system, j, are the nionients ol` inertia

j,. ~lJi +./2 + HH') (28). 1i*.1(.1 + 1) I' ,.;r, i(/f):+—-—·—

ll the sticking condition is valid. the DNS rot.ationa.l energy can be written as

nf li6l·

possibility to take into account only terms ol the first order in di in the expansion ol

U.;Oil1(R) is cumbersome lor H < Hui + Hu;. we do not write it here. Note also the

Roi + [{02 the same expression can be obtained as in Since the expression for

pf and [1;. ln this case the Fourier transforms pf(p) have a simple form. For R >

can be calculated analytically by neglecting the dillnseness ol` the charge distributions

(·-7"l PIn — Y2, ,, =i·»=i—_ 26*22. I 1_ _ _ b.—s..z(R) = ¤*Z6i!zf ·lF1¢!¤‘z = PR7/¤i(PlP§(·PldP— (2*)
The Coulomb potential for two deformed nuclei

2.3 COULOMB AND ("EN'l"RlFU(i.·\L PO'l`l·]N'l`lALS

suggested lor WO (ll].

l( " —— 1 — 272-;- exp(—~2r2) l/1(lt 4 vt . dtwil
l/i

— rrl - . ·· 2 mtr) = T (i) (1+ 2vfr2)<¢·><i>(—·rfr )Al72 Ji/2

are useful when instead of (S) we take the dependence

Similar expressions are obtained for I2 and I3. Note that the results of this subsection

. ..ll : rrxlf,12 €Xp (_$N W l—')'i `l” 72) ·-`ri + 72
T . y _ _ R2)_ (26/I

_) 2 2 ~A2 1; _2 is/2 , .

l`01` I]

Interaction of two light nuclei is described by the simple analytical expression
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kind of behavior. The comparison of the universal functions of the double folding and

at large negative 6. The universal function of the proximity potential has the same

and are nor given here. The function <I>0(6) is an approximately linear function of 6

the universal functions can be obtained for 6 < 0. Their expressions are cumbersome

6. This leads to formation of the repulsive core in U;v(R). By using (20) and (29)

imity potential For 6 < 6,,,,,, = 0.15 the function <D0(6) increases with decreasing

@(6). In Fig.2 the function <1>0(6) is compared with the universal function of the prox

potential but with another universal function. The sign in (30) depends on the sign of

Thus, the double folding potential can be expressed in the form of the proximity

has been obtained which differs from our result by the factor after the exponential.

n:l n
°° _,, 1 + 6 Owl = X C ‘—%.

[17] the following expression for the universal function To

same for any pair of interacting nuclei if we suppose 12,,;,, = f,,,_,,. For example, in

the single folding potential has been calculated. The functions <I>0, <I>l and <I>2 are the

En = Fu = 1 these sums coincide with the corresponding sums obtained in [17] where

where (D0, @1 and (D2 are the first, second and third sums in (30), respectively. At

2

Hg a R3 a 6:<I>6+——-———<l>6+—(—)<I>6, 31 (l ¤() QROIRDZRU i() GROIROZ R0 z() (l
and R0 = R0] + Rm. Let us denote the expression in braces by

In (30) the terms of order exp(—nR0,/:1) have been neglected, 6 = (R - Rm — R0;)/u

(30)2 F771 _ Fel (6 + 6n6 + 3n262 + n363 - 2¤’rP6 )]
X (6 + 6rz6 + 3n.262 + n363 — 2rr2rz36 — 2rr2rz2)

714()+ GRO, Rug RD gg CR6 U'2OO ..·n5 2Fi11"Fex

n

2 FLT] — Fax $(1+ TL6 -f- 17.262)
———·" ——°“” 2 +2 6 26* 2R01R02R0,gC W3 ( n -+-n )

R3 a °° 6 2H,, — F *

` in _ lea: UN(R) z21rp§0C0ri2fE)}—·Z e”"6 + n6) -— 2(F,,, — F,,)6R ix) 2FRE(71:1
we get the approximate expression:

Let us consider the case um : aq; = u. Then, from (19) and (29), for R > Rm + RO;



this effect should be taken into account. OCR Output

pocket becomes deeper [21]. Therefore, to evaluate the stability of the massive DNS,

However, due to the nucleon exchange between the interacting nuclei the potential

U (R) either has a small depth or is absent because of the strong Coulomb repulsion.

in Fig.3 at different values of J. In the case of massive systems the potential pocket in

(0.50 + 0.55) fm in The dependences U (R) on R for few reactions are presented

can be obtained by a small variation of the parameters 1-0 = (1.10 + 1.15) fm and ag =

description of the position (Ry,) and height (Ei,) of the entrance potential barrier [19,20]

L,. = 0.09, fw : -2.59, fn = 0.42 and f;I : 0.54 has been uséd A good

has been assumed in these calculations. The set of parameters C0 = 300 MeV fm3,

channels of few reactions have been calculated (Fig.3). A spherical nuclear shape

By using the expressions obtained above the nucleus-nucleus potentials for the entrance

4. Results of calculations

0.0 1.0 2.0 3.0 4.0
-2.0

us (solid line)..q_5[. I'

double folding potential proposed by

•8• 1 roximity potential dashed line and P6 `1·0 '

Fig.2. Universal functions <I>0(6) for

—0.5E l

_ ,
0.0

the surfaces of nuclei [18].

It is assumed that the universal functions depend on the minimum distance 6 between

Roi —* Rosfl + Ha}@0(0¢e))·

factors in (30) by using the following substitution

The case of small deformations of nuclei makes it necessary to change geometrical

difference of these potentials is not essential when R > Rb.

proximity potentials (Fig,2) demonstrates a smaller depth of the first. However, the
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the reaction 54CEt+H4Sl]l we have obtained \/A2 z 0.46 frn and tf. : 4.8 MeV. ln our

the value of the change \/L of the entrance barrier due to the soft dipole mode. For

to the core A2. Assuming that the total nucleon density is constant, one can obtain

the expectation value of the square of the neutron excess displacement with respect

where Nc is the neutron number ofthe core. Knowing bww, it is possible to estimate

nop,. ~ . , S0/Al/3 Mev.
1 2 /

be estimated in the following way

neutrons with respect to the nucleus core. The excitation energy of the soft inode can

soft dipole mode [22,23]. This inode corresponds to a dipole oscillation of the excess

barrier can decrease with increasing neutron excess in the colliding nuclei due to the

seen that the value of Ei, is smaller for the reaction with “l8C`a. The entrance potential

lations for the reactions "°(.la.+2"l8(`i1i and 48Ca+2'lS(]xn have been done (Fig.4). It is

To demonstrate the influence of neutron excess on the potential U(R), the calcu

R, fm

‘6°·°

180.0

J 1 J = O

5200.0 3 tions "°Ca+2"S(.71n and "8Ca+2“‘8Cm at

potentials on R for the reac—

0 2 220.0 Fig.4. Dependeiice of micleus·nucleus

240.0

C¤+Cm
- . - - .. C¤+ Cm Il “2°°

40 24a

260.0

same behavior is observed for other forms of the potentials.

the increase in the potential pocket depth with increasing asymmetry ofthe DNS. The

The comparison of (l( R) for the systems "°Ar+197Au and "He+233Am (Fig.3) shows

the strong dependence of the potential pocket depth on y.

have been obtained by fitting empirical values of Eb and Rb [19,20]. One should note

particle energy in the density functional [12]. The values of 7 for other light nuclei

·y : 0.67] fn?] for the 0·pa1·ticIe. lt couesponds to the minimization of the total 0

the two light nuclei, the fornnilae of subsection 2.2 have been used. \Ve have chosen

OCR OutputT0 calculate the iut&1·acLi0n both between the light and heavy nuclei and between
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nose to nose configuration is energy preferable.

the system mU+m11, B, = /32 = 0.26. As one can see, for the touching nuclei the

The dependence of U ( R) on various orientations of nuclei is presented in Fig.6 for
R, fm

2°·°

\.“/\ Y, "-—""i`;_=

‘ \ ' " — `D +0.0

60.0 > respectively

are presented by dashed and solid lines,

for spherical and deformed heavy nucleus

10.0 at J = 0 and J = 60. Calculated results

potential on R for the system °He+233Am
\ J

Fig.5. Dependence of nucleus~nucleus20.0

/_ "
' - a \ ’‘\ l , ` /

-30.0 /‘\

4-0.0 - - .. 0 ..... gil-45

‘He+”°Am

50.0

width and depth of the potential pocket are not changed essentially.

should be noted that the influence of deformation on the potential form is small. The

observed {24,25] in comparison with the fusion barrier of nuclei 4He and 233Am. lt

same decrease of the emission barrier of the o»particle in the reaction 4°A1·+l°7A11 is

heavy nucleus (B = 0.45) the decrease of Eb is about 15% at (21 = D; = 0. The

U(R) for the system 4He+233An1 is presented in Fig,5. Due to the deforrnation of zi

to the change of def0r1natio11 of the nuclei during their inte1·a.cti0n. The calculated

It is known that the exit pote11tial ba1*1*ie1· diflers froin the entrance one [24,25] due

great enhancement of sub-l>z11·1·1e1· fusion is expected at this value 0f Vg.

calculation the u11cl1a11g02nl>le (Yy(I{) has been usedl 17111111 the above z11·g111ncnts t.l1<·
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for the systems 5“Ni+“Ni and T°As+7°As

Fig.7. Dependence of the DNS potential energy on charge Z of one nucleus and J

0 10 20 30 40 50 O_O 0 20 40 80-30.0

1 0.0
0 20-·I0.0

> 20.0

E 10.0 g $0.0

40

40.0
30.0

mc’°m+°'Na "A¤+"A$
50.0

have been taken from [26,27].

rotating compound nucleus (Bu + E,,,,(J The binding energies Bl, B2 and B12

minimization of (32). For convenience, we have normalized (32) to the energy of a

of the potential pocket minimum. The mass numbers of nuclei have been chosen by

6Ba and 76As+76As—-»l52Dy. The value of R for each Z corresponds to the position

on the charge of one nucleus and J are presented in Fig.7 for the systems 58Ni+58Ni—+

V(R, Z, J) = U(R, Z,J) + B; + B; —— (B12 + E,,,t(J)) (32)

T he dependences of the DNS potential energy

R, fm
10 12 i4 16 18 20 22

550 respectively

short dashed line and long dashed line,Q; J
\`\

550 {2; = 1r/2 are presented by solid line,

1r/4 and {Z2 = 3vr/4, O1 = vr/2 and

62750 sults for (Z1 = 0 and {Z2 = vr, (ll :

Bq = 0.26, at J = O. Calculated re

>85O f x K clei for the system 238U+238U, H1 =

potential 0n R and orientations of nu
950 F x Fig.6. Dependence of nucIeus—nuc1eus2°”U+”°U
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in the contact region of two massive nuclei the light nucleus formation is possible.

trinuclear systems are smaller than the energy of the corresponding DNS. Therefore,

the excited nucleus 235U are presented in Fig.8. It is seen that the energies of somc

of a trinuclear system. The potential energies of the trinuclear systems formed of

systems. For example, the "C emission from the neck can be interpreted as the decay

of two heavy nuclei [6] can be considered as an indication of the existence of trinuclear

The experimental observation of the emission of light nuclei from the contact region

5: `°°Mo+mSn
4: Kr+ C+ Sn
I5: “Rb+12B+m Sn
;2: 9351*+ “Be-hm Sn sented as well
1: ;$°Zr__*;He+3:Sn of the corresponding DNS is pre> 10 f· -— l

cited nucleus 235U. Potential energy

% 15 trinuclear systems formed of the ex

Fig.8. Potential energies of some
20

25

DNS configurations and exotic nuclear shapes is a separate interesting problem.

at relatively low excitation energies. The investigation of the relationship between thr

energies. Due to the balance in binding energies these cluster·type states can appear

because, being lighter, they have such an N /Z—ratio that corresponds to large binding

two strongly bound interacting fragments. Constituent fragments are strongly bound

binding energies, then some of their excited states can be imagined as formed by

lf we consider neutron deficient nuclei far from stability which have relatively small

superdeformed mononucleus with increasing neck between the DNS nuclei.

metrical DNS can be assumed. The symmetrical DNS transforms probably into a

the nuclei. Therefore, the relationship between the superdeformed nuclei and sym

is approximately equal to 2 2 l. This ratio characterizes the superdeformed states of

to the energy of a compound nucleus. The semiaxes ratio of the equivalent ellipsoirl

At high values of J the energy of the symmetric configuration seems to be close
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Upon calculating the residues at poles, the integrals

Appendix

of the DNS potential energy can be used at any of its mass (charge) asymmetries.

can be imagined as dinuclear or trinuclear systems. The proposed calculation method

demonstrated. Due to the balance in binding energies the excited states of some nuclei

crease of the interaction barrier with increasing neutron excess in one nucleus has been

orientation of the nuclei on the interaction potential has been investigated. The de

tential with proximity potential has been found. The influence of deformation and

nucleus·nucleus potential in the double folding form. The relationship of this po—

The analytical expressions have been obtained to calculate the nuclear part of the

5. Summary
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