


1. Introduction

The dinuclear system (DNS} formation in deep inelastic heavy ion collisions is well
known [1]. The charge and mass distributions of reaction products are predicted
mainly by the DNS evolution. The relationship between the fusion and quasi-fission
processes depends on the mitial DNS configuration. To describe the DNS dynamics,
we need the calculation of the DNS potential energy at different values of its charge
(mass) asymmetry, distance R between the centers of nuclei, nuclei deformations and
angular momentum J. A small overlap of the nuclei of DNS allows us to write down
the potential energy as a sum of the binding energies of both nuclei (B; and B;) and

the energy of their interaction. The nucleus-nucleus potential
U(R) = UN(R) + Ucowt(R) + U, e R) (1)

is a sum of nuclear, Coulomb and centrifugal potentials. Usually, the calculation of
Un(R) 1s most difficult in (1).

Different versions of the potential Ux(R) describing the elastic scattering and re-
action cross section in heavy ion reactions can Ee found in the literature [2]. However,
they have a limited range of applicability. For instance, the energy density formalism
[3] gives a too large value of the distance between the barrier position R, and the posi-
tion of the potential pocket minimum R&,,. This corresponds to a considerable overlap
of nuclei. The proximity potential [4] is good enough for the description of interaction
of medium and heavy nuclei. However, for strongly asymmetric DNS its application is
not valid. In this case the proximity potential leads to a very deep potential pocket and
contradictory results since the absolute value of the potential minimum is essentially
larger than the ¢} —reaction value.

A detailed analysis [5] of various theoretical schemes testifies great efficiency of the
folding procedure of nucleon-nucleon interaction with the nucleon densities of colliding
nuclei to construct Un(R). The question is which nucleon-nucleon forces are most
preferable for the calculations. By using the density independent nucleon-nucleon
interaction, a very deep nucleus-nucleus potential can be obtained. These potentials
are used, for example, to describe a-decay. It is assumed that an a-particle is located
on the first nonoccupied level since the transition to lower levels are forbidden by the
Pauli principle. However, the Pauli principle can effectively be taken into account
by the repulsive core in the potential. In this case the potential has a small depth

and few bound states in it. In the framework of the microscopical approach the



repulsive core appears because of the antisymmetrization effect. The same physical
results can be obtained by using both the deep potential and the potential with the
repulsive core. However, to simplify the calculation of the DNS potential energy, the
second one should be used, especially in the case of interaction of massive nuclei. An
investigation of the DNS evolution necessitates the potential energy calculation for
various DNS configurations. Nevertheless, the method of calculation of the nucleus-
nucleus potential should be available both for symmetric and for asymmetric systems.

In view of the planned investigations of the exotic nuclear shapes and nuclear reac-
tions with radioactive beams the calculation of the DNS potential energy for its various
characteristics is an 1mportant problem. It is interesting also to find nuclear systems
where the states with exotic shapes (cluster type states) can appear at relatively low
excitation energies. Light nuclei emission from the contact region of two heavy nuclei
{6] can be an indication of the existence of trinuclear systems. Moreover, the energy of
some symmetric DNS seems to be close to the energy of the corresponding compound
nucleus. In this case the nucleus can transform into the DNS configuration at a low
excitation energy.

In this paper we shall obtain the expressions which are convenient for the calcu-
lation of the double folding nucleus-nucleus potential [7]. The interaction of spherical
and deformed nuclei will be considered. The relationship between the proposed po-
tential Un(R) and proximity potential will be find out. The results obtained will be
applied to the calculation of the potential energy of real DNS.

2. Nucleus-nucleus potential

2.1 NUCLEAR INTERACTION
The repulsive core in the double folding potential

Un(R) = ]p1(r1)pg(R ~ rz)F(r; — rz)drydr; (2)

is obtained naturally when one uses density—dependent nucleon-nucleon forces [8):

.7'-(1'1 - 1‘2) = Co (F,‘npopfrl) + Fe:: (1 - E“'O(—rll)) 6(1‘1 - l‘g),

00 Poo

Fin,czr = (fin.c:c + f:n,ea:flfz) + Giner + gin,exnrz)awz- (3)

Here o; and 7; are spin and isospin matrices, respectively. The value of Cy and the
dimensionless parameters f, f', g and ¢’ are known from the description of a large set

of experimental data within the theory of finite Fermi systems [8]. The interaction (3)



is similar to the density-dependent Skyrme one [9]. At a small overlap of nuclei and
retaining their individuality during the interaction [10] the nucleon density of DNS

can be written in the sudden approximation

po(r) = p1(r) + pa(r), (4)

where p;(r) (z = 1,2) are the nucleon densities of interacting nuclei. If one neglects
the spin dependence in (3), then (2) can be rewritten as
F‘t'n — F, er

Poo

Un(R) = 00{ (f pi(x)pa(r — R)dr

+ fPl(r)Pg(r - R)dl‘) + ch/Pl(r)PZ(r - R)dl’}, (5)
«Fin,e:c = fin,e:r: + f:n,EI(Nl - Zl)/Al ) (N2 - ZZ)/AQ’

where N;, Z; and A; are neutron, proton and mass numbers, respectively. When one
considers the interaction of nuclei with mass numbers A; > 16, the nuclear density
can be taken either in the Saxon-Woods dependence

() = Poo
P = T = Bl 7)) fao) (©)

or in its symmetric form

() = — P SIB(RG:, )/ ao)

cosh(Ri(8%, ¢!)/ac:) + cosh(r/ag:)’

Near the nuclear surface the dependences (6) and (7) are close to each other. The

(7)

contact region of two nuclei is the one giving a main contribution to the integrals
of (5). A simpler Fourier transform of function (7) facilitates the calculation of the
integrals in {5). In the expressions (6) and (7) R; and ao; denote the radius and
diffuseness of :th nucleus, respectively, pgo = 0.17 fm™3. For light spherical nuclei the

more realistic functional dependence of p;(r) on r is the following
pilr) = Ai(y*[m ) exp(—y"r?), ()

where 7y characterizes the width of the nucleon distribution in the nucleus {11-13]. The
value of 4 can be obtained by minimizing the nuclear binding energy in the density
functional.

Without restricting the general nature of further calculations let us consider for

simplicity only the quadrupole deformed, axial symmetric nuclei

Ri = Rp;(1 + B:Yao(8:, 47)), (9)



where Ro; = roAys and angles (8!, ¢!) are in the body-fixed system. The rotation of
its axes is described by the Euler angles {); with respect to the space-fixed system.

The axis z of the space-fixed system coincides with R (Fig.1).

fi2

‘ Qq Fig.1. Schematic configuration of
J \ two axially symmetric deformed
' R e nuclei

It is known that the expansion of (6) and (7) in the deformation parameter 3;

converges well at small 8;. For 8; > 0.2 the following modified expansions suit better

for calculations

2 25 (p

te) = pir)+6 R gty + B ) o
d 2 d2p¥(r

A0 = o)+ 6 R B ey + B gz

where 5;(r) and p%(r) differ from pi(r) and p?(r) by the replacement of ag; by bo;
and b);, respectively. The values of &, &, by; and by; are fixed by fitting the radial
dependences of p;(r) and p?(r) at ¢! = «;. The angle a; corresponds to the nuclear
surface point nearest to the other nucleus {Fig.1). A small overlap of nuclei allows one
to neglect the dependence of coefficients in (10) and (11) on 6]

Let us consider the first integral in (5)

9
L= ]pf(r)pz(r ~R)dr =Y L (12)
k=1

Inserting the Fourier transformations and using the expression

Ry d .01( )

2(1) = — pooto; i 13
pi(r) Poolo; SINh ”~ dRo: Sioh Bm ( )
we get :
.. Ro d 1 . .
Iy = —4 h [ dp, 14
1 ™ poodon sinh == oo % | p1(p)p2(p)io(pR)p dp (14a)

.. R
Iz = —(47)*¢2pooaos Roz Bz sinh a—zl-yzo(ﬂz)
1
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where

pilp) =

is the Fourier transformation of (7).

b,
/ dppj» PR)P?.(P)[ el >
017
Sm(}ij coth R’ )+cos(pRo1) ( — —R,L coth R,
bixy 01 bo; bty

V21 agi Roi poo (ﬂ'am .
psinh(maog;p) \ Ro;

f dppy2(pR)p1(p)
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sin(pRo; ) coth{mragp) — COS(PRO:'))

(pboz cos(pRoa) coth(mboap) + pRoz sin{pRoz) +2 COS(pRog))] )
(14b)

3
R, SR I t ! -
sinh(wbalp){ (” or coth{mbonp) ¥ p)

) pRo sin(pRm))},

(14c)

The results of calculations of G, and Gy3 are

given in Appendix. The assumption of small overlap of the interacting nuclei leads to

the simplified calculations of integrals:

RZ. d?
Iy = __Qo_g_&ﬂ? u(az)ng Ilf),

22
1152'RmRozf;fzﬂlﬁaYz'o(m)Yzo(ﬂz)dRO iR i1,
14 Ry
R'Z
e ~ 01£ 2}, o 1)’
16 = 171 ( l)dRm 11
R? d°
hh7 B 025162[51.63}20(“1) 20(02)dRde0 Iy,
2
& .
T 013026 Y 20(a1)}20(02)m1u,
1
R? 4
I = 58 6 Y 00 Vo) L
1&g

(14d)

(14e)

(14f)

(l4g)

(14)

(14))

The main approximation in (14d-14j) is the replacement of spherical functions in the

integrands by their values at 8 = a,.

The expression for 1,; coincides with the onc



for I;; where p? and p, are replaced by 5% and p, respectively. In contrast to [y, fﬂ)
contains g? instead of p? and Il(f) contains g instead of p,. Therefore, the calculations
of iy, I{, and I_{l are similar to the calculation of Iy;.

To obtain I, we should calculate the simple integral. If ag;/ao; is not representable

as the ratio of two integers, then calculating the residues at poles we get for R >

Roy + Roz:

— a.3 %otz . Ra d 1
Iy = —8mpy, R sinh oo dRos sinh En.L
1 & (=1)" _ar
X [— (=1 e ﬂoji sinh {(Roz (1) ( + R) Tl(z) + 2T1(3)) sinh Fogn
o2, N Gg1 n 4a01
dRm((RJr ﬂ) “’+2T"’) cosh Fe2" }+1 Hz} (15)
n am
At R < Ry + Ry we obtain
2 o0 n
3 Opdo2 . Roy d 1
= — > sinh
fa=2mpo, R " agy dRo) smh&‘l {ag 2 n
_ nl fﬂ] +ﬂ2-ﬂ,\
x {e [Rm (— + 5’3 + Roz) T ( + 24 2R02) ¥ 4+ ZTI“"]
n( R -
+e e [Roz (—R — @ + Roz) ™ + ( + a—m- — 2Hg ) T + le(s)]
_n(H—&]‘fﬂz!
+e agy [ROZ ( + B + Rog) T( ) + (R + “% + 2R02) Tl(z) + ZTI(B)]}
+1 —2— T(O)} (16)

Here the following notations are used:

) _ [23 ((Ror + Rea)? — 3(Bor + Foz) Ron Rea + %y Ros + 02 Ron)

6ao1a02

7 1

~ 57 agy + agy) + 6""4‘*31%2 + 72(Rgy — Rio)(ade — agy)
— 573 (ay + aka) (B + 2Ror Rz + (Ron — Roa)’)
—3Ro1Ror (R + (Rov — B)?) — (3R* + (Rov — Ren)*) (Ron ~ Ban)?
+%((R+Rm — Rez)* + (R — R01+R02)4)] (17)

and
(1 _ T ao,
L= sin(rnag;/aei)’



2.2

7 = s
' SiHQ(ﬂ'naoJ‘/am) COS(‘.'rnaOJ/aOI),

T(3) — ‘,'TB(ISj 1 + COSg(Fna(]j/{].O") (18)
l 2 sin’®(wnag;/agi)

where 7,7 = 1,2 and 7 # j. The sums in (15) and (16) converge quickly except for the
immediate neighbourhood of R = Ry + Rgz. In this case the numerical integration in

(14a) is needed.

At aq; = ag2 = « the expression (15} transforms into

4r o a’ Ry d 1 X1 _nr
sinh a

3 Poo R a dRp; sinh Eﬂl 112:1 -n_e

2 2 2
X{[R3+_E(R2+2Ra+2&2)_3a (R—{—E) (211‘ +R01+R02)]
n n n n 3 a?
R, .
27O sinh n o + 2Ro1 (m2a* + R%)) cosh nfor sinh rHon

a a a a

+ 2Rpo(m2a® + R%,) sinh floy cosh nHos }, (19)

a a

111:—

X sinh

and (16) transforms into

I]l—“

a? Boy d 1 = 1{ _ntBy+Re~R)
I 3 e _
SPGO R siu a dRp sinh & R [ ' n {e D(=R, o1, o)

+e—n = a — D(Ry ROI, _R02)+E_MD(R, “ROI’ ROZ)}—T(O)]’ (20)

where

D(R, Ro1, Roz) = R* — (Ror + Ro2)* (3R + 2(Roy + Roz)
+§n3( (Ro1+R02)2+2—a}—2- )
2

a?
+6(R+R01+Roz+%) (RmRoz 3 )

The sums in (15) and (19) coincide with the corresponding sums in [14] if
sinh (Roin/aqi) is replaced by 0.5exp (Rain/ag). In (16) and (20) the terms, which
are proportioanal to exp (—n(R + Roy + Roz2)/a0:), were neglected.

The integrals in (14b) and (14c) can be calculated in the same manner as in (14a).
By using the expressions (14d-14j) the contribution of terms Ij; (k = 4,...,9) to I;

can be obtained. The integral

L= [ p(r)ei(r - R)dr (21)



in (5) results from (12) by replacing index 1 by 2 and vice versa. The calculation of

the integral

I = /pl(r)pg(r ~ R)dr (22)

reduces to the calculation of integrals which differ from (12) by the replacement of p3,

p3 and £ by p1, p1 and &, respectively. Thus, the presented expressions allow us to
calculate Uy (R) if the nucleon density is chosen in the form (6) or (7).

2.2 INTERACTION OF LIGHT AND HEAVY NUCLEI AND TWO LIGHT NUCLEI
As it was noted before, for light nuclet the nucleon density is taken in the form (8).
In the further consideration of asymmetric DNS we shall suppose that a light nucleus
has a spherical shape (8; = 0). Therefore, to obtain Unx(R), the integrals I11, [12 and
1,4 should be calculated.

At B, = 0 we get

Un(R) =2CoA, ("?)

22p2 ’I")

O&_____.g

2

. A 3/2 202 2
[(Fm — Fer) (Pz( ) sinh(2+* Rr) + —41- (%) e~V IR )sinh(4'yer))
+ pooFez sinh(2ﬂ/2 Rr)] rdr. (23)

For 8, # 0 the integral I, is calculated as in (23). The integrals in {(12) can be reduced

to the first order integrals

o0

N
2(n2 ™
Iy = 47 A1€252 Roo T 3’20(92)/6_2" (r24+R%) o152
T J 8v4rR

P2 2gr, (24)
2

Ro, 7’ i
114 - E’Al—f?ﬂz - (CQQQQ }/20 Q2)
T ] L=024

&
>< e~ 27 +R) 1/8 Lty R) dR”? r2dr. (25)

Here I1,1/2{z) is the modified Bessel function, Cj, is the Clebsh-Gordan coefficient.

By evident replacements in (24) and (25) the expressions for I3, I, I3z and I3, can

be easiely obtained.



Interaction of two light nuclel is described by the simple analytical expression

for ]]
2 3 A2 3/2 9a22
12 5 12 VT <N’ 96
]1 = Tr/‘llx“lg (“—) (—) mexp (-—-{)21—221?2) ) (26)
s r (297 +3) T e

Similar expressions are obtained for /; and f5. Note that the results of this subsection

are useful when instead of (8) we take the dependence

1 a2 3/2
SR R e——

suggested for '°0 {11].

2.3 COULOMB AND CENTRIFUGAL POTENTIALS
The Coulomb potential for two deformed nuclei
S VT 92
Vol R) = 22,2, [ IR0 g g - 2EAT [ om L p)oi(—pldp. (2
Ir1 — 12| (27) p
can be calculated analytically by neglecting the diffuseness of the charge distributions
p; and p5. In this case the Fourter transforms p’(p) have a simple form. For R >
Roy + Ryy the same expression can be obtained as in [15]. Since the expression for
Usout{ 1) 1s cumbersome for B < MKy + Hoe. we do not write 1t here. Note also the
possibility 1o take into account only terms of the first order in J; in the expansion of
p; [16].
If the sticking condition is valid, the DNS rotational energy can be written as
eSS+ 1)

(.. 1) = - : -,
ol 1E) 20+ 2+ R

where J is the total angular momentum of the system, j; arve the moments of inertia
of each nucleus. The values of j; are known for axial and quadrupole deformed nuclei

considered in this paper.

3. Relationship of double folding potential with proximity potential

Using (13) we can approximately rewrite (5) for the spherical nucler as

7 d
Un(Ry=C, 1‘-‘,',1 T fv'r‘.r 2 — — — Qy;
N( yv 0{( ) ( oy C)I‘B(n 2 (')RUI

) + ["m}./ mirips(r — R)dre. (2



Let us consider the case g = ag; = a. Then, from (19) and (29), for R > Ro; + Ry»

we get the approximate expression:

Roy Rop | & OF, — Fuy
Un(R) =27 p2,Coa’ "}z o {Z e ™ [_}F—“ +n8) — A Fyp — F.p)é

n=1

+

2 o 28 .
RO a e-n5 I:I—‘ng_ff‘i(2+2n5+n262)

2Ro1 Ro; Ro /=
Fi - e .
- u(l + né + n252)]

n?

R(?'J a\* & —né 2Fin - Fez
" 6 Ror Ry (&) L [

4
n=1 T

x {6 + 6né + 3n%8% 4+ n%6° — 2r2n%6 — 210 ?)
_Z(Rn - Fer)

3

(6 + 6nd + In?6% 4+ n’6° — 2#27136)} } (30)

In (30) the terms of order exp{—nfy;/a) have been neglected, § =‘(R — Ro1 — Raz)/«
and Ry = Ry + Roz. Let us denote the expression in braces by

2 a 2 a
B(6) = Bo(8) + o L 0,(5) 4 (L) g,(5), (31)
2Ro1 Rz Ry 6 Roi Boz \ Ho

where ®q, ®; and @, are the first, second and third sums in (30), respectively. At
Fin = F.r = 1 these sums coincide with the corresponding sums obtained in {17] where
the single folding potential has been calculated. The functions &g, &, and ®, are the
same for any pair of interacting nuclei if we suppose Fi, .. = finer- For example, in
[17] the following expression for the universal function @,

do(6) = Z e-ﬂ5.1_+_n6’

2
n=1 n

has been obtained which differs from our result by the factor after the exponential.
Thus, the double folding potential can be expressed in the form of the proximty
potential but with another universal function. The sign in (30} depends on the sign of
®(6). In Fig.2 the function ®¢(4) is compared with the universal function of the prox-
imity potential [4]. For § < 8,u:n = 0.15 the function ®¢(8) increases with decreasing
§. This leads to formation of the repulsive core in Uyx(R). By using (20) and (29)
the universal functions can be obtained for § < 0. Their expressions are cumbersome
and are nor given here. The function ®5(8) is an approximately linear function of &
at large negative §. The universal function of the proximity potential has the same

kind of behavior. The comparison of the universal functions of the double folding and

10



proximity potentials (Fig.2) demonstrates a smaller depth of the first. However, the
difference of these potentials is not essential when R > R,.
The case of small deformations of nuclei makes it necessary to change geometrical

factors in (30) by using the following substitution
Ry; — Roi(1 + 8:Yae(a)).

It 1s assumed that the universal functions depend on the minimum distance § between

the surfaces of nuclei [18].

0.0 g
-0.5
o Fig.2. Universal functions ®q(6) for
o’ 5 o
e 1 OF 31 proximity potential {dashed line) and
H 1 double folding potential proposed by
E :
-1.5% )/ 4 us (solid line)
3 §
_2 s a hgaan i hansdald [ Adaasadassr asiai]

4. Results of calculations

By using the expressions obtained above the nucleus-nucleus potentials for the entrance
channels of few reactions have been calculated (Fig.3). A spherical nuclear shape
has been assumed in these calculations. The set of parameters Cy = 300 MeV fm?,
fin = 0.09, fo, = =259, f;, = 042 and f/, = 0.54 has been uséd [8]. A good
description of the position (R;) and height (E;) of the entrance potential barrier [19,20]
can be obtained by a small variation of the parameters ro = (1.10 +-1.15) fm and a¢ =
(0.50 <+ 0.55) fm in (6). The dependences U(R) on R for few reactions are presented
in Fig.3 at different values of J. In the case of massive systems the potential pocket in
U(R) either has a small depth or is absent because of the strong Coulomb repulsion.
However, due to the nucleon exchange between the interacting nuclei the potential
pocket becomes deeper [21]. Therefore, to evaluate the stability of the massive DNS,

this effect should be taken into account.
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To calculate the interaction both between the light and heavy nuclei and between
the two light nuclei, the formulae of subsection 2.2 have been used. We have chosen
4 = 0.671 fm~! for the a-particle. It corresponds to the minimization of the total a-
particle energy in the density functional [12]. The values of ¥ for other light nuclei
have been obtained by fitting empirical values of £, and R; [19,20]. One should note
the strong dependence of the potential pocket depth on 4.

The comparison of {/( R) for the systems *Ar+1°"Au and *He+***Am (Fig.3) shows
the increase in the potential pocket depth with increasing asymmetry of the DNS. The

same behavior is observed for other forms of the potentials.
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To demonstrate the influence of neutron excess on the potential U/{ R), the calcu-
lations for the reactions **Ca+*"*Cm and *Ca+*"*Cm have been done (Fig.4). It is
seen that the value of )} is smaller for the reaction with ®Ca. The entrance potential
barrier can decrease with increasing neutron excess in the colliding nuclei due to the
soft dipole mode [22,23]. This mode corresponds to a dipole oscillation of the excess
neutrons with respect to the nucleus core. The excitation energy of the soft mode can

be estimated in the following way {23]

Z(N — N.)

1/2
R e 2 1/3 7
Ry, [N(Z = Nc)] 80/A MeV,

where N, is the neutron number of the core. Knowing hw,,, it 1s possible to estimate
the expectation value of the square of the neutron excess displacement with respect
to the core A2, Assuming that the total nucleon density is constant, one can obtain
the value of the change V, of the entrance barrier due to the soft dipole mode. For

the reaction **Ca+11*Sm we have obtained VA? 2= 0.46 fm and V. = 4.8 MeV. In our

13



calculation the unchangeable {"v( ) has been used. From the above arguments the
great enhancement of sub-barrier fusion is expected at this value of V..

It is known that the exit potential barrier differs from the entrance one {24,23] duc
to the change of deformation of the nuclei during their interaction. The calculated
U(R) for the system *He+%**Am is presented in Fig.5. Due to the deformation of a
heavy nucleus {5 = 0.45) the decrease of K, is about 15% at @ = Q; = 0. The
same decrease of the emission barrier of the a-particle in the reaction *°Ar+!°"Au is
observed [24,25] in comparison with the fusion barrier of nuclei *He and ***Am. It
should be noted that the influence of deforination on the potential form is small. The

width and depth of the potential pocket are not changed essentially.
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o
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The dependence of I/{R) on various orientations of nuclei is presented in Fig.6 for
the system 28U+28U, 8, = 4 = 0.26. As one can see, for the touching nuclei the

nose to nose configuration is energy preferable.
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The dependences of the DNS potential energy

V(R,Z,J)=U(R,Z,J) + By + By ~ (B2 + Erat(J)) (32)

on the charge of one nucleus and J are presented in Fig.7 for the systems ¥Ni+*3Ni—

1168, and "®As+As—1%2Dy. The value of R for each Z corresponds to the position

of the potential pocket minimum. The mass numbers of nuclei have been chosen by

minimization of (32). For convenience, we have normalized (32) to the energy of a

rotating compound nucleus (By; + E,o:(J)).
have been taken from [26,27].

The binding energies By, B; and By

Fig.7. Dependence of the DNS potential energy on charge Z of one nucleus and J

for the systems %8Ni4+%8Ni and "®As+76As
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At high values of J the energy of the symmetric configuration seems to be close
to the energy of a compound nucleus. The semiaxes ratio of the equivalent ellipsoii
1s approximately equal to 2 : 1. This ratio characterizes the superdeformed states of
the nuclei. Therefore, the relationship between the superdeformed nuclei and sym-
metrical DNS can be assumed. The symmetrical DNS transforms probably into a
superdeformed mononucleus with increasing neck between the DNS nuclei.

If we consider neutron deficient nuclei far from stability which have relatively small
binding energies, then some of their excited states can be imagined as formed by
two strongly bound interacting fragments. Constituent fragments are strongly bound
because, being lighter, they have such an N/Z-ratio that corresponds to large binding
energies. Due to the balance in binding energies these cluster-type states can appear
at relatively low excitation energies. The investigation of the relationship between the

DNS configurations and exotic nuclear shapes is a separate interesting problem.

25 | —3 —5
E —2
20 | —4
E Fig.8. Potential energies of some
215 - trinuclear systems formed of the ex-
= cited nucleus #**U. Potential energy
-
“1w0F —1 of the corresponding DNS is pre-
: 10 1 ®Zr4*He+ 'S P 8 P
E 2: z;Sr+11° e-hg'sn sented as well
5 F 3 oo+, B+ Sn
F 4: “Kr+ °C+ 7 'Sn
a 5: ""Mo+"*'sn

The experimental observation of the emission of light nuclei from the contact region
of two heavy nuclei [6] can be considered as an indication of the existence of trinuclear
systems. For example, the 2C emission from the neck can be interpreted as the decay
of a trinuclear system. The potential energies of the trinuclear systems formed of
the excited nucleus **U are presented in Fig.8. It is seen that the energies of some
trinuclear systems are smaller than the energy of the corresponding DNS. Therefore,

in the contact region of two massive nuclei the light nucleus formation is possible.
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5. Summary

The analytical expressions have been obtained to calculate the nuclear part of the
nucleus-nucleus potential in the double folding form. The relationship of this po-
tential with proximity potential has been found. The influence of deformation and
orientation of the nuclei on the interaction potential has been investigated. The de-
crease of the interaction barrier with increasing neutron excess in one nucleus has been
demonstrated. Due to the balance in binding energies the excited states of some nuclei
can be imagined as dinuclear or trinuclear svstems. The proposed calculation method

of the DNS potential energy can be used at any of its mass {charge) asymmetries.
Appendix

Upon calculating the residues at poles, the integrals

, Dosin(pr) dpa(r)
710 = d *
(12 f r ngg "

e,

o = ] sin{ pr) dr
3 r (1 4 exp((r — Ro1)/bjn)?

can be represented by the following sums:

G en exp(—Roa/bo2) B }: exp(—mpboa(2n + 1))
12 =00\ b T ¥ expl Roofbur) P 2% 2 R, + (mbon)?(2n § 1)2
2Ry
9
X { T, + (mbog) (20 1 1 (Roz cos(pRo2) + mbo2(2n + 1) sin(pRo2))

+ (wboap(2n + 1) + 1) cos(pRoz) — pRoz Sin(PRoz)] }

1 1 2 exp{—mply,(2n + 1))
Gra= — =sg 2b
* ”{(1+exp(-Rm/bw 33en(P) + 20 2 e e )
by B3, 2 N b;ﬁwzp(znﬂ)?
— — 2
x[( B, 4 (wthy)2(on 1 Lo T PR ) e e e 4 1Y

, 20 T Ros(2n + 1) . .
x cos(pRoy) — (601PR01 + R + (nb)2(2n + 1)2 + by, m{(2n + 1) | sin(pRo1)| ;-
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