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1 Introduction 

This 'Nork has two airns. The first one is to display the main points of the methodp 

which we develop considering the problem of 1\' neutral particles with the complex total 

energy close to zero. The second aim is to attract attention to the problem of loug ·range 

interactions always emerging in the standard hyperharmonics approach (HHA). 
To begin >vith, we recall some well-known facts. 

In the HHA [1] the wave-function ~ of the considered N-body state is represented 

as the scalar product 

[Lm••J 
<li(r,il,p) = r 2

- 3N/ 2(Yu) = r 2
-

3
N/2 L Y[Lj(il)u[Lj(r,p) 

[LHLm,.l 

(I) 

of the row Y of the suitable hyperharmonics and the column u of the sea.rchcd hyperradiaJ 

components. 

The problem for u reads as the following matrix equation 

[(o; + p')I + Dr- 2 
-- V(c)]u(c,p) = 0 (2a) 

supplemented '.Vith the regular boundary condition at the origin, 

(2b) 

and an appropriate boundary condition at infinity 

u(r,p)-> U(r,p), r-> oo. (2c) 

Here pis the total hypermomentum, p2 = E is the total ene;gy, I arid D are the diagonal 

matrices defined by 

I= diag(!), D = diag(.X(.X + !)), .X= L + 3(N- 'f)/2, 

1 



and the potential matrix V has the elements 

\iL][L'J ~< l[LJI L Vi;lliuJ >, 
i<j 

(3) 

and iinally, U is assumed to be the known column-function a.nd ls chosen so tha.t the 

wavr)--function (1) describes the physical process of int~rest. 

As is well--known, the HHA has an essential peculiarity. The point is that, in general, 

. oll the potential matrix elements decrease at infinity too slowly [1], 

(4) 

cvcn -.,vhen the two-body potentials denoted in eqs.(3) by V;j arc the short-range ones. 

ThiR long--range behaviour of the potential matrix elements causes serious difficulties 

for tlw direct numerical solution of the problem (2) in the low-energy region. The matter 

is i.hat when the total energy goes to zero, the contribut-ion to calnilated observables 

generated by the long-ra.nge potential tails becomes dominant. The dcta.i led explanation 

a.nd series of the numerical illustrations of this statement can be found in .works [2] and 

(3]. So, working wit bin the HHA in the low-·cnergy region one indispensably ha...o:; to solve 

the ~ssential problem: how to take correctly into <:tccount the long-ra.ngc asympi.otics (4) 

of the potential matrix clements when the total energy is complex and close to zero?-

Thcrc are two cascR (theN-body bound·-statc problem and the problem of the so· called 

democratic N-body resommccs) when we have found a way to answer ;.bis question. 

2 Method 

In essence, only two main ideas form the basis of our method. The first ide<i. is to 

rcducc the origin.c~,l problem (2) to a simpler differentia] problem convenient both for the 

num~rlcol solution and for analytical investigation. The second idea is to solve the ne\V 

problem numerically in the inner rc.gion 0 ::; r :::.; d < co w.ith a high a.ccuracy and Lhen to 

construct the solution of this problem in the outer region r > d analytically. In this way 

we treat the problem exactly, where the potential matrix has a complicated r-dependencc, 
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and use simple inverse· power functions to a.ppro;<imate the potential matrix elements. at 

large enough r, where eqs.(4) arc valid. 

In the following we assume that the a.symptotics U of (2c) is known and a.\l the two­

body potentials are uniformly converging series 

00 

Vij(Xij) = L \tijnXij as X;j---+ 0 (5a) 
n=-1 

and a.re functions modulo-integrable on the semi~axis 0 ~ X;j ::::; oo, 

(5b) 

Note that in view of the standard potential scattering theory [4] these conditions are 

general enough. 

To reformulate the original problem (2), we perform a series of simple construction<> 

which arc well-known in the general theory of ordinary differential equations [.5]. 

We start with introduction of th_e fundamental matrix ll>=)ll>[L),[L'JI of the regular solu­

tions and de:flne each its column <f>[L') ([L'] = [LminJ, ... , [Lma.x]) as the solution of eq.(2a), 

i.e. the equation 

[(a;+ p2 )I + Dr-2
- V(r)]<!>liii(r,p) = 0, (6a) 

with the special asymptotic behaviour 

'L'] \'+'( ( 2-m)( 1) <I>[LJ (r,p) = <i>[Lj[L'] ·~ r· • ,b]L],[L'] + 0 T ' J- D[L)[L'. , r· ---+ 0, (6b) 

established by Palumbo in Ref.[6] for arbitrary N-body systems with two-body interac­

tions satisfying the relations (5a). As he has shown, the number min eqs.(M) stands for 

the pov;er of the leading tCrm (0(1·-m)) of the potential matrix asyrnptotics as r ~ 0. 

Since the column-functions q>!L'l have different asymptotics at the origin and obey the 

same eq.(6a), they are linearly-independent and their complete set forms the fundamental 

system [5,6] of regular solutions of the initial eq.(2a) under the condition (2b). 
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Hence, once this system is build, we can represent the particular (physical) solution u 

as a linear combination 

u(r, p) = (<l>(r,p)A(p)) (7) 

of all the fundamental solutions with numerical coefficients A[L'] which we can choose so 

as a way to satisfy the boundary condition (2c) describing the asymptotics of u at infinity. 

Thus, we have the following asymptotic relation 

(<l>(r,p)A(p)) ~ U(r, p), r ~ oo, (8) 

defining the column A of the numerical coefficients. As we explain in the following, it is 

very convenient to apply to the problem (6) the variable-constant method [5] known in 

cruantum mechanics as a linear version of the variable-phase approach [7]. Using these 

methods we look for the matrix <I> as a bilinear form 

<l>(r,p) = (1/2)((hl+l(x)jl+l(r,p)) + (hl-l(x)JH(r,p))) (9) 

in which x:::: pr, Jt(±l ~diag(h\±)) are diagonal matrices containing the Rikkati-Hankel 

functions [8] and J(±)=lft}~;[L'll arc the so-called amplitude matrix -functions obeying (by 

defiTJition) the matrix Lagrange identity [5] 

(10) 

\Vith the USlJal t.ridt Lased on the substitution of$ in the form (9) into the problem (6) 

<:.nd using identity (10) and the Wronskian rclaticm for the Rikkaty-Hankel functions we 

arrive at the problem defining the amplitude functions. -It reads as 

(II a) 

f(±) ---+ I, 0 < r < ro ---+ 0. (I! b) 
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Thus, we have reformulated the initial problem (2) in terms of the amplitude functions. 

They obey linear, homogeneous and first-order ordinary differential problem. Evidently, 

the problem like this is very sirriple for numerical solution and for analytical investigations. 

Hence, the-flrst idea of the mcth?d is totally accomplished. 

Now we have deal with the amplitude functions and our next problem IS how to 

construct them. 

To this end we, realize the second idea of the method as follows. Introducing a division 

parameter d \VC divide the semi-axis R+ of the hyperradius r into the internal (r :::; d) 

and external (r > d) regions. Y./e assume that the division parameter dis large enough 

so that the inequality I p I d » 1 holds and moreover, in the external region the potential 

matrix is·the uniformly converging series 

00 

lf(r) ~ L lfnr-n (12) 
n2:3 

containing the numerical matrices vn 
In the internal region \Ve calculate the amplitude functions numerically. Note that 

here .the potential matrix is usually a. very complicated function of r and therefore in 

tl1is region it is impossible to fiuJ Lite a.rnplitudc functions explicitly. Hm.vevcr, according 

to the theory of ord:nary diffCrcnt.ial equations [5], under conditions (5) the problem for 

tlwsc function~ has a unique and finite solnl ion on any finite interval, [(_or example, \Vhen 

0 < r :S d. Therefore, there arc no specinl difficulties for high --iJCcmacy mnnCriral solution 

of this problem in.the internal region. for these reasons we suggest to find the <tmplitude 

functions in this region numerkally. Vv'}wn they are calculated, we shift t.he boundary 

conditions for eqs.(lla) to the left boundary of the external region, i.e. to the point d, 

o.nd Lhcn we treat the obtaiucd diffcrc;ntial problem in !.he external region analylicaliy Jt 

seems to be rea~onable lwra11sc in this region (i.e., \Vhcn I x 1>1 pI d >> 1) the potential 

matrix hn,s the simpic a~ymptolic representation (12), the llikbti-IIankcl fttllCtivns can 

be expanded in simple .series [8], 
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( 13a) 
00 

si±l(x) """(±) 2:)-' + 1/2,m)('f2ix)l-m), (13b) 
m=O 

( 13c) 

and, moreover, as we show in the following, the amplitude functions: in general, infinitely 

increase or rapidly oscillate at infinity. Therefore, they cannot be evaluated numerically 

at a large hyperradius. 

By using the expansions (12) and (13) we have found the asymptotic representations 

for the amplitude functions in the external region. Unfortunately, in this letter we arc 

compelled to omit all the details. Therefore, we present only our final result. It means 

that in the external region the amplitude functions are sums 

(14a) 

containing the smooth and finite matrix-functions representable as <:tsymplotical series 

zi(±)(p, x) = xk(.'-1) L cJ:;l(p)x-n, i = 1, 2, (14b) 
n==O 

in which the numerical matrices cr;) are we.ll-defincd by the linear and recursive (over 

index n} matrix-equations and k stands for the power of leading term (O(r-k)) in the 

expansion ( 12). 

By the proof of formulae (14) we have realized the second idea of our method and go 

to discussion of most interesting results we have obtained within this method. 

3 Results 

'I'he first result can be formulated as follows. Due to the long-range a.symptotics 

(12) of the potential matrix, the amplitude functions have essential singularities at r = oo. 

Indeed, owing to eqs.(14), j(+land j<-l diverge exponentially if Jmp > 0 and Jmp < 0, 
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respectively. On the other hand, by iterating eqs.(lla) written in the integral form one 

can show that J(±) have finite limits as r ---too, if all the elements of 1/ decrease at infinity 

more rapidly than any exp( -Jtr) with an arbitrary Jl > 0; for example, if the potential 

matrix is cut-off at some point b, i.e. if it is put that V :::::: 0 for all r 2: b. ln this case, 

owing to eqs.(lla), we have f(±l(r,p):::::: JC±l(b,p) for any r 2': b. Hence, when we employ 

the cut-off procedure (and thus neglect the long-range tail of V), we actually replace the 

correct asymptotics (14a) of J(±) by quite different asymptotics, namely by the constants 

Ji±)(b,p). 

\iVhat are the corollaries of this replacement? 

The second result is actually the answer to this question. In the following, to 

simplify the explanation, we restrict ourselves to the minimal approximation of HHA. 

In this approximation [L] = [L'] = [L,mn], .\ = .\min, by definition·, and therefore, all the 

matrices are one-dimensional and all the formulae are essentially simplified. For example, 

there are only two amplitude functions and a single hyperradial component which, by 

virtue of eqs.(7-9), reads as 

{15) 

Let the potential matrix be cut at a certa.in point b >d. Then, using eqs.(11},(13) and 

(15) we can write the asymptotics of u as 

u ~ A(exp(ix)<T\-)JI+l(b,p) +exp{-ix)<T(+l Jl-l(b,p))/2, r ~ oo. {16) 

Now let us assume that the hypermomentum pis such that 

jl-l(b,p) = 0. (17) 

Then the asymptotics (16) becomes simpler,· 

u ~ Aexp(ix)"\-) Jl+l(b,p)/2, r ~ oo, {18) 
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and there is a trivial correspon-dence between the position of p on the complex p-plane 

a,nd the kind of behaviour of u a.t a large hyperradius. Indeed, owing· to {18), u has the 

bound-state asymptotics (exp(- I pI r)) if p=iJmp and Jmp > 0, u ha..'l the virtuaL-state 

asymptotks (cxp(+ I p I r)), if p=iJmp and Jmp < 0, and finally, the asymptotics of 

u reads Eke resonance--state asymptotics (exp(iRepr+ I Jmp I r)) 'when Rep > 0 and 

Jmp < 0. 

It is interesting to remark that) due to the representations (15) and (16) and the 

·above-mentioned correspOitdence, the function f(-l(b,p) is an analog of the two---body 

J(1st function l4]< 

\Ve would like to emphas"1ze an essential fact. We have spccia.lly used the variable 

phase approach to get the key-equations, i.e. eqs.(ll), giving us a brilliant possibility to 

analyze the contribution from the tail of the potential matrix to all the functions we have 

dealt with and, moreover, to introduce some very useful functions having an a.pparent 

physical meaning and making this analysis to be extremely dearest. 

For example, we mention about two very useful complex functions P(b) and E(b). 
They have an apparent physical meaning and are defined in the spirit of the variable 

phase approach as follows. Clearly, the solution p of eq.(17) depends on the value of b. 

'Nc denote by P(b) the function describing this dependence and then we !d E(b):::.:: P2 (b). 

The function P(b) shows how the solution p of eq.(17) moves on the complex p--planc vvhcn 

the cut-off parameter b changes. The function E( b) describes the tr.ajedory of the squared 

solution of this equation on the complex-cnei:-gy plane. By this deflnition, the values P(oo) 

and E( oo) correspond to tlw non-cut-off potential matrix and, "for in~tancc, the difference 

E(oo)- E(b) is the absolute contribution from the potential tail to t.he total energy. 

Now we would like to discuss the behaviuor of the functions P(b) and E(b) for a three­

neutron system in the p-- doublet sta.te. Applying our method we have investigated these 

functions in the case when the neutron--neutron singlet potential is the square-well and 

is of the depth -13.4Af ev and width 2.65/m. 

As we have established, 1) when the potential matrix is non-cut-off, the 3n-systcrn has 

no bound or dcmocra.tic-rcsomtnces stales, which conrirrns the conclusion that is common 
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for all earlier treatments [9] of this system, 2) however, when the potential matrix is cut-off 

at an arbitrary point b < oo, there is an infinite Series of democratic 3n-resonances. 

How have we found those resonaJices? 

First, we have calculated the trajectories P(b) and E(b) of one resonance for some 

finite values of band then using the asymptotics (14) we have interpolated P(b) and E(b) 

to the point b = oo. To rep-resent these trajectories, it- seems to be sufficient to present 

only four ~heir points. They correspond to the following values of the cut-off param­

eter b(fm) = 100,400,6000,oo and they are such that 100P(b)(fm-1 ) = (4- i3),(1-

i1 ), (0.05, -i0.05), (0, iO) and E(b)(K ev) = (10, -i6), ( -0.2, -i5), ( -0.01, -i0.03), (0., iO), 

respectively. 

We specially recall these points to show how one makes the physically incorrect con­

clusion when one neglects a very weak but a long-range potential tail. So let us ar­

tificially cut-off the effective interaction at a finite point, say, at b = 6000fm. Then 

we readily conclude that a 3n-system has a resonance state with a non-zero energy 

E = £(6000) = -(10, i30)Ev. Clearly, this conclusion is incorrect because taking ac­

count of the residual long-range tail of this interaction (in the considered example from 

6000 (frn) up to oo(fm)) we get a quite different result E = E(oo) = (O,iO) meaning that 

there is no physical resonance. 

The abovt..~mentioneJ example is also very illuminative in the following aspects. It 

demonstrates that the contribution from the long--range tail of interaction to the calcu­

lated -energy of the resonance- state is dominanL Moreover, this example shows tha.t the 

low-energy three-neutron resonance-states exist only when the interaction is artificially 

cut-off. Therefore, such resonances which are in essence unphysical and are gcncr<Ltcd by 

the cut-off·procedure will be called as artificial resonances. 

Before to go further, we point out an interesting fact. As it is known [10], in the 

two-body systems with a short--range interaction there arc the so-called false rcson;uJccs 

which immediately disappear when the interaction is cut-off. Dy our definition, artificial 

rcson<tnces are of quite a different nature: they exist. when the effective interaction is 

cut-off and disappear when this interaction is totally switched on. 
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As a next sta,ge of our treatment of the three-neutron P-state, we havc·sct b = lOOOfm 

and found 17 resonances numerically. Their positions on the complex p-plane is described 

with good accuracy as follows. The first resonance ha.'l p = (0.001, i0.005)fm~ 1 . All the 

resonances locate on the straight line ·given by the equation Jmp = -O.O.S( Rep+ 0.1) and 

the distance between any neighboring resonances is about 0.0015/m-1 being measured 

along this line. 

And finally, we have analyticaJly proved.that all these resonances belong to the infinite 

series of artificial resonances whose trajectories are aproximately defined by two coupled 

equations 

(bJmP) 3(3(ReP/.!mP) 2 -1)"' exp(-2bJmP)sin(2bReP), (!9a) 

3JmP/ ReP~ tan(2bReP), ( !9b) 

we have derived from eq.{l7) using formulae (14b) and (16b). Due to the periodical 

property of the tangent f~nction, eqs.(19) have an infinite series of solut.ions. When 

b --+ oo, the distances between the neighboring soltitions go to zero, all the solutions 

condense into straight line coinciding with the real semi-axis of the p-plane. In other 

words, with growing the cut-off parameter ball resonances move to t.he rea! positive axis 

of the complex p-plane, in the limit b = oo all of them reach this axis and transform into 

the non-resonance scattering t;tates. 

As we hope, we have apparently demonstrated that working within the H.HA one has 

always to analyze,the cut-off procedure and correctly take into account the long--range 

tail of the potential matrix. 

The third result is the explanation how the latter can be done within our method. 

By using the representations (13-16) we write the asymptotics of u in the following form 

u ~ (A/2)(F(+I(x)cxp(ix) + Fl-l(x)exp(-ix)), r ~ oo, (20a) 

where 
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(20b) 

are smooth and finite functions in contrast with the amplitude functions. 

Now let us assume that p is such that 

p(-l(pr) ~ 0 as 1· --too. (21) 

Then formula (20a) is reduced to 

u ~ (A/2)F{+)(x) exp(ix) (22) 

and we can again establish the .correspondence between the kind of asymptotics behaviuor 

of tt and the position of p on the complex p--plane. Evidently, this -correspondence is the 

::;ame as mentioned above. 

NoW we cui-off the potential matrix at a certain point b >d. Thcn 1 owing to eqs.{lla) 

and (20b) the hmctions j<±l and p(±) do-not change at r 2: b, in particular·, the equal­

ity p(-l(pr) = F<-l(pb) is valid for alrr 2:: b, and therefore, the limit relation (21) is 

transformed into the following equation F(-)(pb) = 0. Since p(-) is a smooth and finite 

function, each solution of this equation approximates the corresponding solution of the 

initial relation (21) with a high accuracy if b is large enough but finite. This guarantees 

Us against unphysical condus;(.ms. 

The fourth result is very importH.nt for the standard potential scattering theory. In 

this theory, the Jost function of the two-body problem is defined as a limit of f(-l(r1 p) 

when r-+ co. As it is emphasised iH all textbooks (see, for instance, Ref. ['!}), t.his limit 

does not. exist for long··range potentials. The expression (14a) displays the difficulty: j(-l 

diverges exponentially if Jmp < 0. To overcome this problem, we snggcst 1) lo dcllnc _F(-) 

of (20b) as the Jost solution of the t>vo-·body_ problem, 2) to introduce the c~rrcsponding 

Jost function a.s J?(-) taken at the point r· = oo,. and 3) to usc both these functions in 

practice. 
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4 Conclusion 

As we have shown, in the low-energy region the long-range tail of the potential 

matrix plays an essential role and for this reason one ha.'l to take this tail iuto account, 

which can be made by our method expounded in this work. 
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