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1 Introduction

This work has two aims. The first one is to display the main points of the metheds
which we develop considering the problem of N neutral particles with the complex total
energy close to zezo. The sccond aim is to attract atiention to the problem of long-range
interactions always emerging in the standard hyperharmonics approach (HHA).

To begin with, we recall some well-known facts.
In the HHA [1] the wave—function ¥ of the considered N-body state is represented

as the scalar produect

{Lmax]
U(r,Q,p) = (Y u) = 2NNy (Qugry(r, p) ()
H=({Lmin] :

of the row ¥ of the suitable hyperharmonics and the column u of the searched hyperradial
components.

The problem for u reads as the following matrix equation

(02 + )] + Dr=* — Vir)lu(r,p) =0 {2a)

supplemented with the regular boundary condition at the origin,

u("a P) - 01 r— 03 . Rib}
and an appropriate boundary cendition at infinity

_u(r,p} = U(r,p), r— oo {2¢)

Here p is the total hypermomentum, p? = F is the total eneligy, T and D are the diagonal

maftrices defined by

I= diag(i), D= diaglAd(A+1)), As=L+3N —_2)/2,



and the potential matrix V has the elements
Vizg =< Yl ) Visl¥ien >, - # @
i<i
emdrliﬂ_a]ly, U is assunied 1o be the known column—function and is chosen so thal the
‘wave-function (1} describes the physical pro.cess of interest.
Asis ‘wéll-—known, the HHA has an essential peculiarity. The point is that, in gencral,

.all the potential matrix elements decrease at infinity too slowly [1],

Vigpa(ry = r™™, r—o00, m23, (4)-

even when the two-body potentials denoted in eqs.(3) by Vj; are the short-range ones.
This long-range behaviour of the potential matrix elements causes serious difficultics
for the direct numerical solution of the problem (2} in the Jow-energy region. The matter
is that when the total energy goes to zero, the contribulion to calculated observables
generated by the long—range potential tails becomes dominant. The detailed explanation
and series of the numerical illustrations of this statement can be found in works [2] and
[31. So, working within thc HHA in the low~cnergy region one indispensably has o solve
the essential problem: how to take correctly into account the long-range asympiotics (4)
of the potential matrix clements when the total energy is complex and close o zero?
There are two cases (the N-body bound-stale problem and the problem of the so-called

demécratic N-body resonances) when we have fousid a way to answer this question.

2 | Method

In essence, only two main ideas form the basis of our method. ‘i‘he first idea is to
reduce the original problem (2) to a simpler differential problemn convenienl both for the
numerical solution and for analytical investigation. The second idea is to solve the new
problem numerically in the inner 1‘égion 0 <r <d< oo with a high accuracy and then to
construct the solution of this problem in the outer region » > d analytically. In this way

we treat the problem exactly, where the potential matrix has a complicated r-dependenee,



and use simple inverse-power functions Lo approximate the potential matrix elements at
large enough r, where eqs.(4) are valid.
In the following we assume that the asymptotics U of {2¢} is known and all the two-

body potentials are uni.formly converging series

Viglazg) = Z Vil as i —0 _ (5a)
n=-—1 .

and are functions modulo-integrable on the semi-axis (¢ < zy; < oo,

WVii(zi)l 1€ Lo (5h)

,

Note that in view of the standard potential scattering theory 4] thf;SC conditions are
gencral enough. | _

To reformulate the original problem (2), we perform a series of sifnpie constructions
which are well-known in the general theory of ordinary differential equations [5):

We start with introduction of the fundamental matrix ®=[®(z (19| of the regular solu-
tions and defire ea;:h its column Bl ([E] = [Lmin)s - - - » | Lmax]) a5 the solution of eq.(2a),

i.e. the eguation '

(@ 4P+ DT = V(e p) = 0, {6a)

with the special a;symptotic behaviour

LF

{i]](?‘a p) = Qe = ™ HE gy 4+ O S Sy, v =0, (%))

estahlished by Palumbo in Ref.{6] for arbitrary N-body systems with two-body interac-
tions saiisfying the relations (5a). As he has shown, the number m in eqgs.(6%) stands for
the power of the leading term {G(r~™)) of the 'potentia.l matrix asymptotics as r — 0.
Since the colurnn-functions $£7 have different asymptotics at the origin and obey the
same eq.{6a), they are finearly-independent and their complete set forms the fundamental

system {5,6] of regular solutions of the initial eq.(2a) under the condition {26).



Hence, once this system is build, we can represent the particular (physical) solution

as a linear combination

u(r, p} = (¥(r, )A(P)) - (M
af all the fundamental solutions with numerical coefficients Az which we can choose so

a8 a way to satisfy the boundary condition (2¢) describing the asymptotics of u at infinity.

Thus, we have the following asymptotic relation

{(@(r,p)A{p)) = U(r,p), T — 00, : (8)
defining the column A of the numerical coefficients. As we explain in the follo\v;‘ing, it is -
very convenjent to apply to the problem (6) the variable—constant method [5] known in

quantum mechanics as a linear version of the variable-phase approach [7]. Using these ‘

methods we look for the matrix © as a bilinear form

+

B(r,p) = (1/2)((AD (@) F D (r, p)) + (B (2) ) r, ) (9)

in which z = pr, A& Ediag(h(f)) are diagonal matrices containing the Rikkati~Hankel
functions [8] and f{i)=|f,r(§)[,r,q| are the so-called amplitude matrix-functions obeying (by

definition) the matrix Lagrange identity [5]

{3, R 5 (8,5 =0 (10}

With the usual‘t.ric':l% based on the substitution of ® in the forin (9} inte the problem ()
and using identity (10} and the Wronskian rclation for the Rikkaty-Hankel functions we

arrive al t.he.problem defining the amplitude functions. Tt reads as

O &) = (i f2p) TV ((R0F ) 4 (A 1)) (La)

SEY ST 0<r<rg— 0 (11b)



Thus, we have reformulated the initial problem (2) in terms of the amplitude functions.
They obey lincar, homogeﬁeous and first—order ordinary differential problem. Evidently,
the problem like this is very simple for numerical solution and for analytical in%restigat;ions.
Hence, the first idea of the mct.hpd is totally accomplished.

Now we have deal with the amplitude functions and our next problem is how to
construct them.

To this end we.realize the second idea of the method as follows. Introducing a division
parameter d we divide the se:flifaxis R* of the hyperradius r into the internal (r < d)
and external {r > d) regions. We assume that the division parameter d is large enough
s0 that the inequality | p | d 3 1 holds and moreover, in the external region the potential

matrix is'the uniformly converging series

Vir) = Vor™™ | (12)

containing the numerical matrices V, .

In the internal region we calculate the amplitude functions numerically. Note that
here the potential matrix is usually a very complicated function of r and iherefore in
this vegion it is impossible to fiud the araplitude functions explicitly. However, according
to the theory of ordinary differential equations [5], under conditions (5) the problem for
these functions has a tmique and finite solulion on any finite interval, for example, when
il <7 < d Therefore, there are no special difficultics for high-accuracy munerical solution
of this problem in the internal region. Tor these reasons we suggest Lo find the amplitude
functions in this region numerically. When they are calculated, we shift the boundary
con&itious_for eqs.(11a) to the lefl houndary of the external region, ie. to the point d,
and then we treat the obiained differential problem in the external region anajytically. It
secrs to be reasonable because in this region (i.e., when| 2 [>] p | ¢ 3 1) the potential
matrix has the ‘simpie asymptotic representation (12), the Rikkati-Hankel functions can

be expanded in simple serics [§],



hf\i)(x) = exp(:i:ix)Sl[\i)(z), | {13a)

SH(z) = 0¥ i(x +1/2, m)(F2iz)™, (130)
crgi) = exp(Fiw(A + 1}/2) {13}

and, moreover, as we show in the following, the amplitude functions, in gencral, infinitely
increase or rapidly oscillate at infinity. Therefore, they cannot be evaluated numerically
at a large hyperradius.

By using the expansions (12) and (13) we have found the asymptotic representations
for the amplitude functions in the external region. Unfortunately, in this letter we are
compelled to omit all the details. Therefore, we present only our final result. Tt means

that in the external region the amplitude functions are sums

@) = Z,(i)(p,w) + exp(:F?i:c)Zgi)(p, z) . (14a}

containing the smooth and finite matrix—functions representable as asymptotical series

2B(p,z) = ‘)E‘c‘* e, =12, (148)
n=0

« - : . i
in which the numerical matrices C,-(n)

are well-defined by the linear and recussive {over
index n) matrix—equations and & stands for the power of leading term (O(»~*}) in the
expansion (12).

By the proof of formulae (14) we have realized the second idea of our method and go

to discussion of most interesting results we have obtained within this method.

3 Results

The first result can be formulated as follows. Due to the Jongrange asymptotics
(12) of the potential matrix, the amplitude functions have essential singularities at 7 = oco.

Indeed, owing to egs.(14), fHand f-) diverge exponentially if Jmp > 0 and Jmp < 0,



respectively. On the other hand, by iterating eqs.(Ila) written in the integral form one
can show that f*) have finite limits as r — oo, if all the elements of V' decrease at inﬁnity
more rapidly than any exp({—jr) with an arbitrary g > 0; for example, if the potential
matrix. is cut-off at some point &, -i.e. if it is put that V = 0 for all » > 5. In this case,
owing to eqs.(tia), we have f®)(r,p) = f&)(b,p) for any r > b. Hence, when we employ
the cut-off pracedure (and thus neglect the long-—range tail of V), we actually replace the
correct asymptotics (14a) of f¥) by quite different asymptotics, namely by the constants
9 (b,p). ‘ |

What are the corollaries of this replacement?

The second result is actually the answer Lo this question. In the following, to
simplify the explanaticn, we restrict ourselves to the minimal approximation of HHA.
In this a,pproxixﬁ.ation L= = [Lmjn],k.z Amin, by definition, and therefore, all the
matrices are one-dimensional and all the formulae are essentially simplified. For example,
there are only two amplitude functions and a single hyperradial component which, by -
virlue of eqs.{7-9), reads as
A® = (A/2)(RFO 4 1T (15)

U= UL,

min] =
Let the potential matrix be cut at a certain point b > d. Then, using eqs.(11},(13) and

{15) we can write the asymptotics of u as

w —» Alexp{iz)al”) FH (B, p) + exp(—iz)al f(B,p))/2, T — o (16)

Now let us assume that the hypermomentum p is such that

fbpy=0. (17)

Then the asymptotics (16} becones simpler,

u— Aezp(iz)ag_)f(“(b,p)/Z, r — 00, {18}



‘and there is a trivial correspondence between the position of p on the complex p-plane
and the kind of behaviour of u at a large hyperradius. Indeed, owing to {18), u has the
~ound- sta.te.asymptotics (exp(— | p | r)) if p=ifmp and Jmp > 0, u has the .virtim!.*state
asymptotics (exp(+ | p | r)), if p=iJmp and Jmp < 0, and finally, the asymptotics of
u reads like resonance-state asymptotics (exp(iftepr+ | Jmp | r}) when flep > 0 and
Jmp < (. - i

It is interesting to remark that, due to the representations ({5) and (16) and the
above-mentioned corresporidence, the function f1(b,p) is an analog of the two-body
Jost function [4].

We would like to emphasize an essential fact. We have specially used the variable
phase approach to get the key—equations, i.e. eqs.(11), giving us a brilliant possibility to
analyze the contribution from the tail of the pétent'iai matrix to all the hunctions we have
dealt with and, moreover, to introduce some very useful functions having an apparent
physical meaning and making this analysis to be extremely clearest.

For example, we mention about two very useful complex functions P{b) and E(8).
They have at: apparent physical meaning and are defined in the spirit of the variable
phase approach as lollows. C]éa‘rly, the solution p of eq.(17) deperds on the value of b
We denote by £(b) the function describing this dependence and then we lel E(b) = PR3,
“The function P(b) shows how the solution p of eq.{17) moves on the complex pplane when
the cut-off parameter b changes. The function F(b) describes the trajeclory of the squarcd
solution of this equation cn the complex-cnergy plane. By this definition, the values P{o0)
and E{oo} correspond to the non-cul-off posential matrix and, Tor instance, the difference
E(co) — E(b} is the absolute contribution from the potential tail to the Lotal energy.

Now we would like to discuss the behaviuor of the functions P(b) and £(5) for a three—
neutron system in the P7- doublet state. Applying our method we have irvestigated these
functions in the case when the neutron-neutron singlet poteniial is the square-well and
is of the d(rpth -13.4Mev and width 2.653fm.

As we have established, 1) when the potential matrix s non-cut-off, the In-system has

no hound or democratic-resonances states, which confirms the conclusion that is common



for all earlier ireatments [9] of this systemn, 2) however, when the potential matrix is cut-off
at an arbitrary point b < oo, there is an infinite series of democratic 3n-resonances.

How have we found those resonances? )

First, we have calculated thé trajectories P(b) and E(b) of one resonance for some
finite values of & and then using the asymptotics (14} we have interpolated P(4) and E(b)
to the point b = co. To represent these trajectories, it seems to be sufficient to present
only four Eheir points. They cérrespond to the following values of the cut-off param-
eter B(fm) = 100,400, 6000, co and they are such that 100P(b)(fm™") = (4 — i3),(1 —
11}, (0.05, —50.05),\(0,1'0) and E(b)(Kev) = (10, —16),{—0.2, 5}, (—0.01, —i0.03}, {0.,:0),
respectively. - ‘

We specially recall these points to show how one makes the physica]ly incorrect con-
clusion when one neglects a very weak but a long-range potential tail. So let us ar-
tificially cut-off the effective interaction at a finite point, say, at & = 6000 fm. Then
we readily conclude that a 3n-system has a resonance state with a non-zero energy
E = E(6000y = —(10,i30)Ev. Clearly, this conclusion is incorrect because Léking ac-
count of the residual long-range tail of this inferaction (in the considered example from
6000 (fm) up 1o oo{ frr)) we get a quite different result & = E{ce) = (0, i0) meaning that
there is no physical resonance.

The above—mentioned example is also very i}luminat.ive in the following aspects. It
demonstrates thal the contribution {rom the Jong-range tail of interaction to the calcu-
lated 'en(zrgy of the resonance-state is dominant. Morcover, this example shows that the
fow-cnergy three-nentron resonance-stafes cxist only when the interaction is artificially
cut-off. Thercfore, such resenances which are in esscnce unphysical and are generated by
the cut-ofl procedure will be called as artificial resonances.

Before to go further, we point cut an intercsting fact. As it is known [10], in the
two-body systems with a short-range interaction there are the so-called false resonances
which immediately disappear when the intcraction is cut-off. By our definition, artificial
resonances are of quite a different nature: they exist when the effective interaction is

cut-off and disappear when this interaction is lotally switched on.



As a next stage of our treatment of the three—neutron P-state, we haveset b = 1000 fm
and found 17 resonances numerically. Their positions on the complex p-plane is described
with good accuracy as follows. The first resonance has p = {0.001,:0.005)fm™1. All the
resonances locate on the straight line given by the equation Jmp = —0.05( tep + 0.1) and
the distance between any neighboring resonances is about 9.0015 ™1 being measured
along this line. l

And finally, we have analytically proved that all these resonances belong to the infinite
series of artificial resonances whose trajectories are aproximately defined by twe coupled

equations

(bJmPYP(3(ReP/ImP)? = 1) = exp(—2bJmP)sin(2bRe P), {19a)

3JmP{ReP = tan(2bReF), (195}

we have derived from eq.{17) using formulae (143) and (165}. Due to the pericdical
property of the tangent function, eqs.(19) have an infinite series of solutions. When
b — o0, the distances between the neighboring solutions ge to zero, all the solutions
condense into straight line coinciding with the real semi-axis of the p-plane. In other
words, with gro;aving the cut-off parameter b all resonances move to the real positive axis
of the complex p-plane, in the limil b = oo all of them reach this axis and transform into
the non-resonance scattering states,

As we hope, we have apparently demonstrated that working within the HH A one has
always to analyze the cut-off procedure and correctly take into account the long-range
tail of the potential matrix.

The third result is the éxplanaiion how the laiter can be done within our methed.

By using the representations (13-16) we write the asymptotics of w in the following form

u — (A/20FP2) expliz) + FHz) exp(—iz)), r — oo, {20a)

where

i0



FE) = g3 7 g6 () - (208)

are smooth and finite functions in contrast with the amplitude functions.

Now let us assume that p is such that

Fo)pr)—0 as 7= oo, (21)

Then formula (20a) is reduced to

u = (AJ)FHHz) expliz) {22)

and we can again establish the correspondence between the kind of asyr-nptotias behaviuor
of « and the position of p on the complex p-plane. Evidently, this correspondence is the
same as mentioned above, ) _
Now we cut-off the potential matrix al & certain point b > d. The1-1, owing to egs.{11a})
and (20b) the functions f&) and F(*) do not change at r > b, in particular, the equal-
ity FO)pr) = FU)(pb) is valid for all' v = b, and therefore, the limit relation {21) is
transformed into the following equation F{-){(ph) = 0. ‘Since F() i5 a smooth and finite
function, each soiution of this equation approximates the corresponding solution of the
initial relation {21} with a h'xgh-a‘ccuracy if & is large enough but finite. This guaraniees
us against unphysical conclusions. 7 _
The fourth result is very important‘for the standard potential scattering theory. In
this theory, t;he Jost function of the two-hody problem is defined as a imit of f07)(7, p}
when r — co. As it is emphasised in all textbooks (see, for instance, Ref. [4]), this limit
does notr éxisi for long-range potentials. The expression (14¢) displays the difficully: £
diverges exponentially if Jmp < 0. To overcome this problem, we suggest 1) io define #1-)
of (208) as the Jost solution of the two-body problem, 2) to inlroduce the corcesponding
Jost function as F(-) taken at the point r = oo, and 3) to use both these functions in

ptactice,



4

Conclusion

As we have shown, in the low-energy region the long-range tail of the potential

matrix plays an esseatial role and for this reason one has to take this tail into account,

which can be made by our method expounded in this work.
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