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1. Introduction 

The discovery of superdeformed bands in atomic nuclei that extend to very high 

angular momenta 1 , 2 opens a possibility for further study of coexistence and com­

petition between various forces acting inside a nucleus. The leading factors that 

determine the nuclear behaviour in such extreme conditions are: 1° - the average, 

strongly deformed single-particle nuclear field, 2° - the Coriolis and centrifugal 

forces induced by the fast rotation, 3° - the pairing forces that generate superfluid-

type correlations, 4° - other residual forces often imitated by the separable potential 

with different multipolarity, 5° - thermal degrees of freedom. It has been shown 

by several au thors 3 , 4 that , even if the static pairing correlations disappear, at high 

spin region there are observable effects which can be connected with the pairing 

fluctuations. The microscopic model for the description of quasiparticle and col­

lective excitations of rotational nuclei has been proposed by Marshalek 5 , 6 and by 

Janssen and Mikhailov 7. This model, based on cranking plus RPA, was developed 

and firstly applied independently in two papers (lief. 8,9) and then in many others. 

The results of this investigations were described in the reviev-articles (Refs. 10, 

11, 12). In the paper Shimizu et a l 1 2 pairing fluctuations in the rotating nuclei 

are discussed in detail. In this article a lot of theoretical and experimental da ta 

were presented up to 1989. In the paper Bes et a l 1 3 static and dynamic pairing 

correlations in strongly rotating nuclei are investigated. The comparison between 

the RPA and the number of particle projection method is given in Ref. 14. 

To describe the growing number of more and more detailed experimental data, 

there are also developed different approaches which aim is to take into account 

higher order terms of the perturbation theory or /and the anharmonic corrections 

(the nonlinear terms in equations of motion) as a consequence of the mode-mode 

coupling (see for example Ref. 15). Such procedure actually complicates the the­

ory already expanded and requires a great deal of computer work. If we limit our 
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consideration to the quasiparticle plus RPA phonon model, we can see, that his­

torically rather step by step method of approximation has been developed. Firstly, 

the free quasiparticle spectrum and wave functions have been calculated. Secondly 

the residual interaction has been added and on the Ьязе of this itatic solution the 

collective excitations problem has been solved in RPA. With this connection, in the 

realistic calculations, to reproduce the experimental data concerning the vibrational 

excitations, many authors must change "by hands" the single-particle spectrum 

given by the phenomenological potential (Nillsson or Saxon-Woods). Therefore, 

we would like to pay attention to one more possibility how to improve the harmonic 

approximation in the more consistent way. Namely, keeping the algebraic scheme 

unchanged, we will use more general trial wave function which contains the phonon 

degrees of freedom too. This idea comes from Hara and from Rowe 1 6 who took 

into account the ground state correlations. More recently this problem has been 

discussed by Klein1 7. In present paper we shall see that the mutual dependence of 

the quasiparticle and phonon amplitudes will appear as the simple generalization 

of this idea. 

We consider the model of nucleus treated as a system of nucleons moving in 

a deformed single-particle potential which rotates with a constant frequency fl 

around an axis fixed in space. The residual interaction is assumed to be due to 

the monopole pairing. Our approach differs from the standard BCS+RPA in three 

points: we assume the ground state of the system to be the RPA phonon vacuum, 

secondly, we take into account the Pauli principle a little more accurately than 

standard RPA, and thirdly, we obtain the system of equations for the quasiparticle 

and phonon amplitudes from one variational principle. It will be shown, that in 

this way in the harmonic approximation some coupling between the quasiparticle 

and vibrational degrees of freedom can be found. In the next section the problem 

will be formulated in details and the quasiparticle and vibrational variables will be 

defined. 
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In the section 3 we obtain the basic equations of the problem. There will be 

considered the limit cases and possible approximations. The comparison of our 

results with the results of the previous papers will be also given. Conclusions are 

collected in the section 4. 

2. The model Hamiltonian and approximations 

The model Hamiltonian is 

H" = H° + HP (1) 

where 

HS = £ sa0atap -XN- fij*, (2) 
aff 

HV = -GP+P, P + = E a K - (3) 

0>O 

j x - the x-component of the angular momentum, 

G - pairing force constant, 

Л - chemical potential, 

|/? > - single—particle state time-reversed to |/3 >, 

eap - one-particle energy matrix in some shell-model basis. 

In the spherical basis 

|^ > = T|/3 > = T\jm >= (-lY+m\j, -m > . 

In the cranking model where a nuclear average field rotates around the x-axis we 

have to use the base vectors corresponding to the two eigenvalues г of the rotation 

operator Rx 

RT = exp(— rtrj1) 
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and r = ±t, (signature quantum number). Instead of pairs of states |/9 >, |/? > we 

will employ the positive |i/ > (r = +i) and negative \v > (r = —*) signature states. 

Performing the Goodman transformation (see for example the book Ref. 18). 

UH(-.:)K) 
we can rewrite the Hamiltonian (1) in the new basis: 

£ е 0 / з а ; % = ££ ( 1„(а+а,, + а£аг), (5) 

N = Y. <a° = В вЯ+ at a>)> («) 
a v 

P+ = £ « t a = | £(«M - «М)> (7) 

>' = £ * > Я - а*а*) (8) 
Now, we define, as usual, the quasiparticles а*, а,- by the Bogolubov transforma­

tion: 

i 

0) 
4 = B4<*f + ВЫ 

i 

The summation over i means also the summation over the states with positive and 

negative signatures. Asking a;, af to be fermionic operators we obtain the unitary 

conditions: 

£(4X+вд) = «„, £(44 + 44) = **». 
i t 

(10) 
£(^Aj + BiB*) = ̂ , £ ( 4 4 + 44)=«"-
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The hamiltonian (1) can be expressed by the quasiparticles in the following man-

До = £(£,, - *Wl(44 - ВД)№ + ( 4 4 - В\В\)p--k+ 
ttvik 

where 

+\б*{В\в\ + BiBi - AlAl - 4 4 + 2«д,)1-

-« £ з*ЛК< + ЧЫР* - ( 4 4 + Кв1)Ри+ 

+(4# + 4**)(U + 6*) 

+\ЫВ\В\ -В\В\- А\Л[ + 4 4 + 2V] 

At = a,to£, Ьл = a*a„ 

-GP + P = -G fos.jtf + ^ + *Vo " ЪРЪ) + Д") * 

X I 53(Sm(ibms + imnbms + 'PnmPmn - VnmPmfi) + Д,( I • 

(И) 

(12) 

where 
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•% = £ 4 4 £* = ЕВД, 
(12а) 

and 

д„ = Е д г = Е ^ = - Е Д . = - Е ^ (i2b) 
i t t t 

is the static part of the gap (without the pairing vibrations). Now, exploiting the 

idea of Hara we will leave on the right hand side the commutators 

[Ьтп,Ь±] 

more than the first c-number term. Namely, we assume: 

[Ьтп, b j ] = 6mi6ui - SmiPijj ~ S^Pim ~ 

(13) 

^ Smii^(l - P i - p-k) 

where pi,p\. are the ground state averages of the рц,рц operators. The factors 

(1 — pi — p-k) take into account the blocking effect due to the Pauli principle. This 

is the first point where our calculations differ from the standard RPA; pi,pk are 

the quasiparticle-occupation numbers in the ground state of the system. In case 

under consideration we solve the problem for the positive signature phonons which 

satisfies the following conditions5: 

D [ "mn | д - 1 _ i ("mi J 
1 \bmnj * \bmn) 

The generalization for the negative signature phonons is straightforward. To di-

agonalize the quadratic form in b+,b part of the Hamiltonian we define the "pure 

bosons" QN,Q%'-
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it 
(14) 

о* = Е№л-*д"й) 
with commutation relations 

[QN, QN>\ = [QN, QM = 0; [QN, QM = * w w . . (15) 

As result we have the orthogonality conditions 

Bi - f t -« )№d-*M) = «™. 
(i6) 

E 0 - л - PI)(*2*J[, - * , 1 0 = *»*ы, 

and the transformation (14) can be reversed 

tj = (i - A- - Pi) E(*3«t + *."<?")> 
(17) 

id = ( 1 - f t - « ) E ( * d < ? " + *&&)• 

After the last transformation we obtain the Hamiltonian Ня as a sum of the 

following terms: c-number, linear in pik, p;j and linear in QN, QN terms, the terms 

of the QNPik,QtiPik,QNP\hQNP\k *УРе' *Ье quadratic form in QN,QN and the 

bilinear form in pik,p\k- The second basic assumption of this paper is that we 

approximate the ground state of the system by the vacuum of the QN bosons 1 6 ' 1 9. 

With this assumption, by using the relation between the quasiparticle vacuum |0 > 

and the QN bosons vacuum |0 ><j: 

|0 > Q = U\0 >, (18) 
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where 

U=Afexp(-S), (19) 

jV is the normalization constant and 

л iki'k' 

we can calculate the ground state averages. This averages depend on the forward 

and backward amplitudes Ф^,Ф^ in the following manner: 

P.: = В1-«-р*Х(*2)' + (*2)')-Е1 

1 
« = 2 

(20) 

D 1 - n - л)((«й)4 + («2)*) - E i -

Finally, our third basic idea is to treat the ground state average of Hn as a func­

tional depending on two sets of parameters: A, В and Ф, Ф. The equations for these 

parameters will be obtained in the next section as the necessary conditions 

о < 0|Я"|0 >g 

to be minimum while taking into account the auxiliary conditions (10) and (16). 

Because we are limited to the positive signature excitations S will be depend only 

on the positive signature bosons, and the matrix 5,£, й possesses the following 

symmetries: 

$A /A — — Si,• I A — — S,r. л / — «Si ik.ml ki,mt (21) 
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3. Variational principle and equations for the 

amplitudes 
The requirement that 

SQ < 0\НЯ\0 ><з= О 

under the auxiliary conditions (10) and (16) can be fulfilled by the Lagrange mul­

tipliers method. We define the functional 

с =„< о|я> >Q +\ЕЕ< И ) 2 + <Bi)2 -1] + 

(22) 

й N \ ik ) 

and require С to be minimum. Necessary conditions for this are the equations 

s c „ 6 C n 
й ? = 0 ' Щ = 0' 

- ^ = 0 , 
6AI 6BVa 

6C 6 C n 
*рч 

(23) 

We keep in £ only the terms quadratic in the phonon amplitudes. Also the terms 

bilinear in Pip; were not taken into account. 

The equations for the quasiparticlc amplitudes are the following: 

5 > i " " A6<" ~ n &)( l - *РРЖ - КЩ + П(£ Л|Ф£) = ВД. (24а) 
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-KPA\ - £ ( e „ - М„ + ty*„)(l - 2Pp)Bl + П ( £ Д*ф£) = £ P B?, (24b) 

£(e„„ - A*«* + fll&Xl - 2/»MS + А Р В ; + П ( £ j4j*£) = EpAi, (25a) 
(i Mr 

Дя4 - £(«1» - 4,- - JVjLrXi - 2PP) BJ + Щ£ в»Ю = ̂  ( 2 5 b) 

where 

Ai = G[A1,(l-2pi) + Ad] 

д ^ Г Д л - Е д № 
*: к 

Д,- = £,-(/>,• -С Р-), ( 2 6 ) 

n = 2GE $ N -

fie 

Equations (24a), (24b) and (2ba), (25b) would look the same if we replace 5 j by 

A%, Ag by Bg and Ep by — Ep. The presence of the last term on the left hand side 

of this equations spoils this symmetry. Let us remark that this problem was also 

considered in the paper 2 0 based on the Green's functions method. The last term 

connects the static pairing field with the amplitudes of pairing vibrations. The av­

eraging over phonon vacuum state leads to more general equations for the cranking 

model. The quasiparticle energies £;, E\ depend not only on the single-particle 

levels with a cranking term iljx and standard gap Д, but also on the phonon 

amplitudes. At the same time the definition of the gap is generalized due to the 

dynamical part of pairing (eqs. 26). The gap depends on the quantities pi,p\, e.g. 
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on the ground state correlaticas. Unfortunately, we lose the signature symmetry 

which has place in the ordinary cranking model. Now we must solve the equations 

for the negative and positive signature energies together with the equations for the 

phonon amplitudes (see below). The structure of the equations (25) (26) shows 

the mutual dependence of the quasiparticle and phonon amplitudes. Using the 

formulae (20) we find 

гч 

Therefore, the next group of equations reac^: 

[(Sp + £j) - u(j; - Ц) - 2СД„(Д Р - Д,-)] Ф$-

[(£„ + £,-) - Sl{j; - J?) - 2СД, ((Др - Д,-)] Ф; 

-2<ЗФМ5Р,- = -ымФ% 

where 

(27) 

(28а) 

(28Ь) 
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Ь = D 4 4 - в«в*)(£„ - лад, 

Ц = Ц{44+в1в1)ци. 
Formally we can write the solutions as follows 

(29) 

М _ 2 С Ф ^ % 

* % = D ^ ' < 3 0 b > 
„ м 2СФА'5М-

where 

Л и - = £„ + £,- - П(Л - Jf) - 2СД„(Д Р - Д,-) (31) 

are the "new" energies of quasiparticles. 

To obtain the secular equation defining the phonon spectrum we multiply eq. (30a) 

by L pj and eq. (30b) by Sp,- and next perform a summation over p,q. The result is 

as follow 

Ф« = 2G<6M{Sl + St) (32) 

hence 

2^ = S, + 5 2 (33) 

where 

5 l = у ( X r f + 5 Р У Д И ' Г 3 4 а ч 
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S. = T { t ^ ~ a ^ " (34b) 

The solution of eq. (33) define the pairing vibration phonons spectrum of the ro­

tating nuclei. From eqs. (24), (25), (30)-(31) we can see that the phonon solutions 

and the quasiparticle ones depend each on other in the self-consistent manner, and 

the final result may be obtained by the iteration procedure. Namely, starting from 

standard cranking + RPA calculations then we have to solve with some values 

of pi, (г{ the (24)-(25), (30), (33) equations. The procedure have to be iteratively 

repeated with the new p„p\ values up to the required degree of accuracy. 

4. Summary 

The high-spin states of the nuclei has been described successively in the cranking 

model frame using the free quasiparticle approximation. Description of the exci­

tations built on the rotational states, such as giant resonances, has been done in 

the RPA. The EUROBALL and GAMMASPHERE programmes promise the new 

experimental data in the nearest future. Therefore, detailed analysis and further 

improvement of the existing theoretical methods seems to be important. With 

this connection we have found some generalization of the quasiparticles plus RPA 

phonons method treating consistently quasiparticle and phonon branches of excita­

tions. To realize the programme we propose to treat the quasiparticle and phonon 

amplitudes as unknown parameter of variational problem for the energy functional, 

assuming the trial wave function to be a vacuum of a phonon state. It is obvious, 

if we have to minimalize some functional depending on the many different parame­

ters, the best solution is to solve simultaneously the system of equations which are 

the necessary conditions of extremum. In this way the ground state correlations 

has been taken into account for the cranking model. In the natural and consis­

tent manner we obtain the dynamical part of the gap which in the self-consistent 
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way depends on the quasiparticle and phonon amplitudes. This result encloses the 

result obtained in paper Ref. 13. It is necessary to underline that due to our ap­

proach the calculation scheme for cranking model needs iteration procedure where 

the standard cranking model plus RPA can be used as the start point. Moreover, 

one must solve the nonlinear system of equations for the positive and the negative 

signature quasiparticle states (eigenvalues and eigenfunctions) simultaneously with 

the RPA phonon energies and amplitudes. The simple case of the spherical nuclei 

(when the basis is much more restricted without cranking term) has been solved21 

recently. It was shown that such kind of correlations are important to understand 

the behaviour of charge transition density in 6 4 Zn. 
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