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1. Low-Lying Vibrational States in Doubly Even Well-Deformed Nuclei 

1.1. Description of the Vibrational States in the Quasipartick-Phonon Nuclear Model 
The vibrational states and gamma-ray transition rates in well-deformed double 

even nuclei have been calculated within the Quasi particle-Phonon Nuclear Model 

(QPNM)1'6. The QPNM is used for a microscopic description of the low-spin, 

small-amplitude vibrational states in spherical nuclei not far from closed shells and 

well-deformed nuclei. The QPNM calculations were performed in nuclei with small 

ground state correlations. The ground state correlations increase with the collectivity 

of the first one-phonon states. A particle-particle interaction reduces the ground state 

correlation. Therefore, the energies and wave functions of many well-deformed nuclei 

have been calculated in the QPNM. 

The QPNM Hamiltonian contains the average field of a neutron and a proton 

systems in a form of the axial-symmetric Woods-Saxon potential, monopole pairing, 

isoscalar and isovector particle-hole (ph) and particle-particle (pp) multipole interac

tion between quasiparticles. The procedure of calculation is the following. A canonical 

Bogolubov transformation is used in order to replace the particle operators by the 

quasiparticle ones. Then, the phonon operators Q\„i0 are introduced and the RPA 

equations are solved. The phonon space is used as a QPNM basis. The RPA phonons 

for the K" = 0" and 1" states have been calculated in 5 with ph and pp isoscalar 

and isovector octupole and ph isovector dipole interactions. The RPA equation for 

the K" = 0 + states is given in 3 and for К" ф 0 + , 0" and 1" states in ref. 2 Л . 
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The QPNM wave functions consist of one- and two- phonon terms, namely, 

*2**2'2W2 

where jio = KQ. The secular equation for energies Eu has the form 
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Here ц>л,,; is the RPA energy, the function JCA<,(Ai/ix*i> А2,/*2*г) ' s responsi

ble for the effect of the Pauli principle in two-phonon terms in (1), the function 

V\°™i°,\,nh describes the coupling of one- and two-phonon terms in (1); Дш(А1/^1г'1, 

Аг/'г'г) is the shift of the two-phonon pole due to the Pauli principle, A(Ai/*]t], Аг/гг^г) 

represents the effect of three-phonon terms added to the wave function (1) and ap

proximately equals — 0.2A(A]/<iii, Аг/^'г)-

The double even deformed nuclei calculated with the parameters of the Woods-

Saxon potential fixed earlier. The quantum numbers of a single particle state are 

denoted by qo, a = ± 1 , q equals K" and asymptotic quantum numbers Nn^A f at 

К = Л -f j and Nn2A J at К = A — j . T h e isoscalar constants к'^ of ph interactions 

are fixed so as to reproduce experimental energies of the first A'* = 1 nonrotational 

states described by (1). The calculations were performed with the isovector constant 

K\" = — I.ZKQ1* for ph interactions and the constant G A A I = к0* for pp interactions. 

The monopole pairing constants were fixed by pairing energies at G20 = «Q°. The 

radial dependence of the multipole interactions has the form dV(r)/dr, where V(r) 

is Lhe central part of the Woods-Saxon potential. The phonon basis consists of ten 

(г'о = 1,2 10) phonons of each multipolarity: quadrupole A/J = 20,21,22, octupole 

Л/г = 30,31,32,33, hexadecapole \/i = 43,44 and Л/i = 54,55. 
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1.2. General Properties of the Vibrational States in Double Even Well-Deformed Nu

clei 

The energy and wave function of low-lying nonrotational states in doubly even 

well-deformed nuclei are mainly determined by the single-particle energies and wave 

functions of the Woods-Saxon potential, monopole pairing and isoscalar ph multipole 

interactions. A role of the isovector ph multipole interaction is small. The inclusion of 

the pp multipole interactions improves the description of collective vibrational states, 

especially 0 + states. The energies of several first l) + pole of the RPA secular equation 

change with G20. At G 2 0 = KJ° the B(E2) values for excitation of the I'K„ = 2+0i 

state and the energies of the Oj and O3 states decrease and the wave functions of 

the 0+, Ô  and Oj states change in comparison with G20 = 0. The influence of 

a quadrupole pairing is insignificant. A role of the isovector dipole ph interaction 

in description of the K" = 0" and 1" states is very important. With inclusion of 

the isovector ph spin-multipole magnetic interactions the energies, B(EX) values and 

the largest two-quasiparticle components of the wave function of one-phonon states 

change slightly 6 . 

General properties of the nonrotational states in well-deformed nuclei are the 

following: 

1) The anharmonicity of vibrational states with energy below 2 MeV is small. The 

contribution of a one-phonon component to normalization of the wave function ex

ceeds 90%. Small anharmonicity of the low-lying vibrational states is due to two 

factors: first, numerical values of the U\™°i°,\,U3i, range from 0.01 to 0.30 MeV, i.e., 

one or two orders of magnitude smaller than in spherical open-shell nuclei, and sec

ond, the shift Au(Ai/Jit'i, Х2Ц2Ч) results in that energies of twe-ohonon poles in eq.(2) 

become larger than 2.3 MeV. 

2) The contribution of the two-phonon configuration to the wave function of states 

with excitation energy below 2 MeV equals (1-30)%. In our previous calculations 2 , 

the shift Aw(Ai/i,!,, A2/i2i2) at Ai = A2,/o = /*2 and i'i = i2 for the 1С = 2 + and 4 + 

states was twice larger by mistake. The wave functions of the K* = 4 + states change 
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Tabic 1: Energies and Structure of the Я т Л** = tf «tatcs and 3(E1: l + 1i — l*l\) values. 

Nuclei l<l = 4f state b '(£2; t+ !, -» 2 + 2 i ) , e 2 , f m ' 

exp. calc. Structure e.<p. [ref.] c?.lc. 

£„, i^, 

MeV MeV 
168Er 2.055 2.0 411 60% { 221, 221}30% 280 ± 140 [£] 

5 0 ± 6 0 [9] 175 

315 [10] 
i62Dy 1.536 1.5 -1-11 97% {221,221} 2.3% IT [Hj 23 
l5SGd 1.331 1.4 4-11 96% {221,221} 2% - 50 
lseGd 1.5111.5 441 96% {221,221} 2% - 6-1 

strongly. The contribution of the hexadecapole 111 orie-phcncn and doubie-gamma 

vibrational {221,221} components to the normalization of the wave function of the 

i f state and B ( £ 2 ; 4 + 4 i —» 2 + 2 i ) values are given in Table 1. 

The largest {221,221} components in the if state should be in l6tDy and 
I 6 8 £ T . According to our definition, a state is the two-phonon one if a contribution of 

a two-phonon component to the normalization of the v/ave function exceeds 50%. The 

available experimental data do not contradict the conclusion on the absence of collec

tive two-phonon states in well-deformed nuclei. The existence of two-phonon states 

is possibly expected in transitional nuclei and in nuclei lying close to the boundary 

of the region of deformed nuclei. 

3) The structure of the 0 + states is very complex. The RPA wave function is a super

position of a great number of two-quasiparticle configurations. The first Of states in 

several rare-earth nuclei cannot be interpreted as beta-vibrational states due a small 

R(E2) value of transition to the ground state band. The dominance of the E2 reduced 

transition probability from Of states to the / ( * = 2J" state over that to the ground 
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Table 2: Comparison between experimental and theoretical B(EX) and B(M A) values for gamma-ray 
transitions between excited states. 

Nuclei Initial state EX Final state B(EX), e2fm2 

I'K„ Ev or l*Kv E„ or 

MeV MA MeV B(M\), р%{т™-2 

exp. [ref.] calc. 

4" 4, 1.094 M2 2+2, 0.821 0.42 [12] 0.6 

3-3, 1.542 El 2+2, 0.S21 4-10"5 [12] 6-10"5 

3-3, 1.542 Ml 4-4, 1.094 3-Ю"2 [12] •Ю-3 

З-З3 1.999 Ml 3-3i 1.542 6-10—' [12] 8-10"5 

З-З3 1.999 Ml 2" 2, 1.569 210—' [12] 2-10-2 

4+4j 2.055 El 4"4i 1.094 610" 4 [13] 8-10-4 

2-2! 1.148 El 2+2, 0.888 МО" 4 [14] 3-Ю"3 

2+О2 1.517 E2 0+0,.,. 0 18.7 [15] 10 

2+О2 1.517 El l - l i 0.977 5-10-" [15] 2-10"5 

2+О2 1.517 El 1-0, 1.263 3-10—• [15] 5-10"5 

2+0з 1.771 El l - l i 1.242 5-10-5 [16] 4-Ю"5 

2+0з 1.771 El 1-0, 1.366 1.610—' [16] •Ю-1 

2" 2, 1.780 El 2+2, 1.154 18-10-4 [16] 16-10-* 

2"2! 1.780 Ml 2~1, 1.320 8-10"3 [16] 20-Ю-3 

state band in leDy and ie8Er was described within QPNM. 

4) The gamma-ray transition rates between different bands gives the new and very 

important information on the nuclear structure in addition to that from the inelastic 

scattering, Coulomb excitation, one- and two-nucleon transfer reactions and /9-decays. 

The results of the calculation of the gamma-ray transition rates between excited states 

are demonstrated in Table 2. 

5) Collective vibrational states are not limited by quadiupole and octupole ones. 

8 E r 

162Dy 
lssGd 

6Gd 

I 5 



Table 3: Total sum of the В(Е1;0 + 0 4 , — 1'К) values (in f2fm2 КГ 3) of transition to 1" states in 
"'sEr with energies up to 4 MeV. 

к0
А' = 0 4r< = 0.01G7 frr^MeV"1 

K'A' = 0 K \ K = 0 K \ K -= -1.5/^' к\к = -2»cf; 

^B(£l;0 +O s. a-»Г00 43 5090 288 1CT 
1 

]ГЯ(£1;0 +0 Э.*- + П , ) 12 1180 92 53 
1 

]T ^2B(El;0+Qa.,-*\~Ki) 55 6270 380 220 
Л"=0,1 i 

There are hexadecapole collective states. In some cases ' ' , the inullipolc; interactions 

with A = 5 — 9 lead to the mixing of the two-quasiprolon and two-qupsincutron con

figurations in the states with large K. 

G) The fragmentation of one-phonon states increases with excitation energy. In the 

energy range from 2 to 4 MeV the fragmentation of one-phonon states is not strong. 

Therefore, the states with large El , Ml , E2, M2, E3 and M3 strength can be observed 

experimentally 4 ~ 7 . 

1.3. The Origin and Distribution of the El Strength over Low-Lying States in Well-

Deformed Nuclei 

The origin of the El strength in the bw-energy region has been investigated 

in 5 . The isoscalar and isovec'or ph and pp octupole ?.nd is?vector ph d\^o\e interac

tions between quasiparticles were taken into account. It is known that there гг.. no 

one-phonon 1" states below the particle threshold in spherical nuclei. The quadrupole 

deformation is responsible for splitting the subshells of the spherical basis into twice-

degenerate single-particle states. Due to this splitting, a part of the El strength is 

shifted to low-lying states. The total sum of the B(E1) values for transition to the 

1" states in imEr with energies below 4MeV is demonstrated in Table 3. The El 

strength rapidly increases at energies above 5MeV. 
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The octupole isoscalar interaction between quasiparticles led to formation of 

the collective octupole states. Due to an octupole interaction, the sum of the B(E1) 

values for the transitions to the K* = 0" and 1" states in the (0-4) MeV energy region 

increases from 5 5 - 1 0 _ 3 e 2 / m s to 6 2 7 0 - 1 0 _ 3 e 2 / m 2 . The isovector dipole ph interaction 

shifts the largest part of the El strength from the low-lying states to the region of 

the isovector GDR. According to the calculation in 5 , the El strength in the energy 

region (0-4) MeV decreases from 6270 • 1 0 ~ 3 e 2 / m 2 at к\к = 0 to 380 • 1 0 ~ V / W 

at к]к = -\.Ък%к and to 220 • 1 0 " 3 e 2 / m 2 at к\к = — 2«gA '. The calculation with 

K\K = —1.5«о^ correctly describes the GDR. 

It is possible to state that the origin of the El strength in deformed nuclei 

is connected with the quadrupole equilibrium deformation and octupole isoscalar 

interaction between quasiparticles. The isovector dipole interaction is responsible 

for the shift of the most part of the El strength from the low-energy region to the 

GDR region. The quasiparticle-phonon interactions do not lead to the shift of the 

El strength from the GDR to the 1" states below 4 MeV. Our interpretation of the 

origin of the El strength in low-lying states in the well-deformed doubly even nuclei 

is different from ones discussed in l 8 in terms of the admixture of the GDR to the low-

lying 1~ octupole states. Our interpretation is also different from the interpretation 

due to reflection asymmetric shapes like octupole deformation or cluster configuration 

discussed in ref 1 9 . 

The B(E1) values for the excitation of the first A'; = 0J in " « G d , , e 2 ' 1 < M Dy, 
1 6 8 E r and mYb, calculated with the constant к } 0 = — 1.5KQ° and effective charge 

cc,Ap) — N/A and е 'Л(п) = —Z/A, are 3-5 times as large as experimental ones | 9 , г о . 

The total El strength for the excitation of the A'* = 0" states is 3-4 times as large as 

that for excitation of K" = 1" states in the low-energy region. The strong correlation 

takes place between the B(E1) and B(E3) values for transitions to the same band. 

No correlation was observed between the B(E1) and B(M2) values. 

One-phonon states with energies below 2.5.MeV are slightly fragmented due 

to quasiparticle-phonon interaction. The fragmentation of the otie-phonon states is 
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not so strong in the energy range 2.5-4.0 MeV. The B(El) values for the excitation of 

several \~К states are relatively large and they can be observed experimentally. In 

ref 5 , the concentration of the El strength in the K* = 0~ states at energies 2.6-3.5 

MeV in 1 6 8 £ r and 3.6-3.9 MeV in 16iDy has been predicted. 

2. Order, Chaos and Individual Nature of Nuclei 

2.1. Order and Chaos in Terms of Nuclear Wave Functions 

A nuclear excited state is characterized by angular momentum I, parity к, 
other quantum numbers, energy and a wave function. Much attention has been 

paid to an interplay between order and chaos in nuclei 2 1 . Studies concerning the 

nearest-neighbour level spacing distribution in nuclei have usually identified chaos 

via agreement with Gaussian Orthogonal Ensemble (GOE) statistics 2 1 . The nuclear 

wave function of an excited state with energy more than 2-4 MeV has many compo

nents with a different number of quasiparticles, with different К quantum numbers, 

with isospin quantum numbers T 0 and To + 1 and so on. Such wave functions are su

perpositions of several interacting GOE spectra. Therefore, the GOE of level-spacing 

distribution cannot prove that the nuclear structure is chaotic. In ref 2 г, this has been 

demonstrated using a simple soluble model in which the appearance of a GOE-type 

distribution function for the nearest-neighbour level spacing does not directly corre

spond to a dissolut'on of the quantum numbers associated with the model. Therefore, 

it is necessary to investigate an order and a chaos in nuclei and the order-to-chaos 

transition in terms of properties of the nuclear wave functions 2 3 . 

The purpose of this part of the paper is to discuss the regularity in atomic 

nuclei and the order-to-chaos transitions is terms of nuclear wave functions. 

The nuclear mean field is responsible for the order. The residual interaction 

plays a two-fold role: 1) The superconducting pairing interaction stabilizes the reg

ularity of the nuclear mean field. Th? coherent interaction between quasiparticles 

leads to the formation of low-lying vibrational states and giant resonances gener-
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ating regularity in the nuclei. 2) The quasiparticle-phonon interaction leads to the 

fragmentation of quasiparticle and phonon states. It generates the chaos in the nuclei. 

To simplify the problem as much as possible, we confine ourselves to the low-

spin bound and quasibound stationary nonrotational states of rigid nuclei. We treat 

all nonrotational states as small-amplitude collective or weakly collective vibrational 

or quasiparticle states. The ground, low-lying and high-lying nuclear states are very 

complex. We find a representation in which several states are described in the simplest 

way, though the wave functions of other states are very complex. If the density matrix 

is diagonal in the Hartree-Fock-Bogolubov approximation, then the average nuclear 

field and superconducting pairing interactions can be separated 2 4 . A representation 

is usually used in which the density matrix is diagonal for the ground states of the 

doubly-closed shell or well-deformed nuclei. This is the mean field representation. In 

the mean field representation, the wave function of an excited state can be written 

as an expansion of a number of many-quasiparticle and many-phonon operators. In 

this representation, there is a hierarchy of the components of the wave function with 

different numbers of quasiparticles. According to 2 5 , 2 6 , the wave function of an excited 

state with a fixed angular momentum and the parity of a doubly even-mass nucleus 

has the following form: 

12 a 1234 12a 

£ 6 "° '№<+ £ 4 W » № J « № ? + -"}»o (3) 
an' 123456 

Here I i n I s defines the contribution of the corresponding quasiparticle or phonon or 

quasiparticle-phonon component to the normalization of the wave function (3). A 

highly excited state can be occupied through one component of the wave function 

(3) and decays through another component of the wave function. In this case, the 

excitation of a state is independent of its decay. In this consideration, there is no 

sense in investigating how a complex state is formed from a simple one. 

The wave function (3) consists of the phoncn operators. Several high-spin 

isomers cannot be treated as pure many-quasiparticle states. The decays of an iso-
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meric state with a mean life of 4.5/is and spin 65 /2" in 2,3Fr 2 7 and of on isomeric 

state with 34/JS and a spin 3 4 + in n2Fr 2 S demonstrate a very large E3 transition 

strength, namely B(E3) = 20 — 60 s.p.u. Therefore, several excited states in 213Fr 

and 2 1 2 F r should be treated as many-quasiparticle- octupole phonon states. The 

two-quasiparticle and two-phonon octupole excitation 12 + at 3.981 MeV in H 8 G d has 

been observed in 2 9 . Due to the Pauli principle the phonon operators are destroyed by 

many-quasiparticle operators in the wave functions. These experimental data have 

shown that phonons survived among many-quasiparticle configurations. Therefore, 

the wave function (3) should consist of the phonon operators. This wave function can 

be used for a treatment of the excited states whose life time is much longer than the 

internal equilibration time. 

In ref 2 3 , it is stated that there is order in the large and chaos in the small 

quasiparticle or phonon or quasiparticle-phonon components of the nuclear wave func

tions. The available experimental data on the large components of the wave function 

of low-lying, isobaric analog states as well as high-spin many-quasiparlicle isomers 

have demonstrated a regularity in nuclei. 

Practically, there are no experimental data on the small components of the 

wave functions of the low-lying states. The experimental values of the reduced neutron 

and partial radiative widths were used in 2 5 , 2 6 to estimate the average values of the one-

and two-quasiparticle components of the wave functions of the neutron resonances. 

For nuclei in the region 50 < A < 250 they were found to be | b | 2 = 10" 5 - 10" 8 . The 

small components of the wave function manifest themselves in the distribution func

tion of partial widths for the transition from a neutron resonance to few-quasiparticle 

components of the wave function of the low-lying state. The distribution of the partial 

radiative widths of the neutron resonances is in good agreement with the GOE statis

tics. This shows that the one- or two-quasiparticle components of the wave functions 

of a neutron resonance have a chaotic character. This distribution, however, does not 

contain any information concerning the entire wave function. 

We consider the transition from order to chaos as a transition from large 
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to small components of the nuclear wave function. It is important to analyze how 

the nuclear wave function changes with increasing excitation energy. Therefore, it 

is needed to investigate the fragmentation (strength distribution) of the few- and 

many-quasiparticle and quasiparticle-phonon configurations. In our consideration, if 

all quasiparticle and phonon components of a wave function are small, it means chaos. 

Fluctuation properties, generic to all systems that show chaos, are independent of the 

specific properties of the system. In this case, one does not need to stud}' such excited 

states. It is highly desirable to establish the excitation energy limit for the order-to-

chaos transition as a function of the nuclear mass. Our treatment is different from 

ones which used a statement that if the classical system is nonintegrable, its quantum 

correspondent shows chaos. It is possible to state that none of physical problems can 

be solved mathematically rigorously. Only simple models are integrable. From this 

point of view, all physical problems are chaotk. 

2.2. Fragmentation oj Few and Many-Quasiparticles and Quaxiparticle-Phonon States 

There is experimental information that the wave functions of the low-lying 

states have one dominating one-quasiparticle or one-phonon component. They demon

strate the regularity in nuclei. A reasonably good description for the low-lying states 

has been obtained by means of the dominant component alone. The low-lying states 

show individuality. 

With increasing excitation energy, the structure of the states becomes more 

complex and the wave function (3) has several relatively large components; the domi

nation of the single component decreases. The fragmentation of the one-quasiparticle 

component increases with the excitation energy. Experimental investigations on the 

fragmentation of the one-quasiparticle states in spherical nuclei have shown & that 

pronounced maxima of the strength distribution take place up to an excitation energy 

of 10 MeV. This means that one-quasiparticle states with a large angular momen

tum lying in a region rather far from the Fermi surface are not fully fragmented. The 

fragmentation of one-quasiparticle states in spherical nuclei has bfcen described within 

the QPNM with the wave function containing quasiparticle, quasiparticle-phonon and 
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quasiparticle-two-phonon components г > 3 0 - 3 2 . Tlie role of the quasiparticle-phonon 

interaction increases with the excitation energy. The structure of the nuclear states 

becomes more complex and the contribution of few-quasiparticle components to the 

wave function strongly decreases with the excitation energy. The wave function of 

the states with energies greater than 3-4 MeV are superpositions of many terms with 

different numbers of quasiparticles and phonons. 

In 3 3 , it is stated that the broad peaks in the one-nucleon transfer reactions 

on the targets 2 0 7 ' 2 0 8 Р 6 , 2 0 9 В г , 8 9 У and M#lZr at excitation energies of the giant 

quadrupole resonances are due to the excitation of one-quasiparticle states. It is 

highly desirable to establish the excitation energy limit for complete damping of one-

quasiparticle states as a function of the target mass. Usually 3 4 , such a damping of 

one-quasiparticle states is considered as a transition to chaos. It is not true. The 

many-quasiparticle configurations can give a large contribution to its wave function. 

^he study of the fragmentation of the three-fi ve-quasiparticle states and quasi

particle-phonon and two-phonon states is the next step in investigating an order-to-

chaos transition. The fragmentation of three-quasiparticle states in 17SYb,17bA77 Lu, 
i73Hf and 179'18lTa can be investigated in (d,p), (d,t) and (t,a) reactions on the 

doubly-odd targets 176Lu and lS0Ta. The fragmentation of the five-quasiparticle 

states in l77Lu and l77-179Hf can be studied in a one-nucleon transfer reaction on 

the long-lived isomer 3 5 17Sm%Hf with 1С = 16 + . The energy centroids of the three-

and five-quasiparticle states in these nuclei have been calculated in 3 6 . Experimental 

data on the three-quasiparticle states and the energy centroids of the three and five-

quasiparticle states excited in X76Lu (d,p) and 1 7 8™'/-// (t,a) reactions are given in 

Fig 1. Using these reactions, it is possible to study the fragmentation in x77Lu of 

the three-quasiparticle states in the energy range 2-4 MeV and the five-quasiparticle 

states in the energy range 4-6 MeV. 

Information on the fragmentation of the few-quasiparticles-phonon configura

tions can be obtained from gamma-decays of high-spin isomers. For example, the 

gamma-ray de-excitations of 65/2" isomer in 2 I 3 F r 2 7 and 34~ isomer in 2UPr2S are 
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demonstrated as fragmentation of several quosiparticle- octupolc-phonon states. Sev

eral states arising from three- and five-quasiparlicle configurations have been inden-

tifled in U3Nd via , 3 0 T e ( w O , 5n) reaction 3 7 . Partly fragmented two-quasiparticle-

two-phonon states in 14*<ЗУ have been observed in s e . 

2.3. On the K-Dependence in the Gamma-Decay of Neutron Resonances 

It is interesting to study how far in the excitation energy К can be considered as 

a good quantum number. For this aim, it has been proposed in ref J S to analyse both 

K-allowed and K-forbidden gamma-ray transition rates from the neutron resonance 

region to the low-lying states in well-deformed nuclei. In that paper, the К mixing 

has been studied by considering the decay of the Iх = 13/2" and 11/2" neutron 

resonances in compound nuclei l77Lu. The decay properties of the neutron resonances 

in 1 6 8 £V and 1 7 8 Я / have been investigated in 3 S . It was shown that the intensities 

of gamma ray transitions from neutron-resonance states depend on the К values of 

the final states. In paper 3 9 , it has been claimed that the results in 3 7 are in conflict 

with the statistical model. The detailed analysis, provided in ref 4 0 , confirms the 

conclusion of ref 3 8 . 

In 2 3 , it has been stated that the investigation of gamma transitions from a 

neutron resonance states to low-lying states gives information concerning K-mixing of 

the two- and four-quasiparticle components of the wave function of the neutron reso

nances but do not give information on the whole wave function. Using the thermal-

neutron capture data it is possible to get information on the K-mixing for the tails of 

the two- and four-quasiparticle components of the neutron resonance wave function 

at the energy outside the levels. 

For investigation of the K-mixing it is necessary to take into account the quasi-

particle selection rules for matrix elements of the EA and MA K-allowed transitions. 

We demonstrate how important is the quasiparticle selection rule for the analysis of 

the K-mixing of the transition rates for gamma-decay of the neutron capture states 

in 16sEr. The ground state of the target nucleus 167Er has K' = 7/2 + 633 | . Hence, 

a large number of resonances with /" = 3 + and 4 + is populated in iesEr due to 
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Tabic 4: The centroids of the distribution of г-value for A'-forbiddcn transitions < x >p and for 
A'-allowed < z >л and A'-and quasiparticle selection rules allowed transitions < z >лц> from 
thermal capture and ARC-2 keV neutron capture states in i 6 s E r . 

<X>F <х>л <x >*(,) 

Thermal capture 0.76 1.10 1.63 

ARC-2 keV 0.97 1.03 1.13 

the dominance of s-wave neutron capture. From the relatively large So = 1.8 ± 0.2 

value, it follows that the wave functions of the neutron resonances in 168Er have the 

two-quasineutron component nn 633 | ±651 [. We consider El- and Ml- transitions 

from the component nn 633 T ±651 i of the thermal and ARC 2 keV neutron capture 

states to the two-quasineutron components of the wave function of the final low-lying 

states. Only the two-quasineutron components contributing, according to 7 , more 

than 20% to the normalization of the wave function of the final state are taken into 

account. 

We have used averaged energy-corrected transition intensities in 1 6 8 £ r , pre

sented in Table 1 in 4 0 , for investigation of the K-values mixing. Following 4 0 , the 

energy-corrected intensity of each individual transition is represented by the ratio 

where the sum is taken oyer all transitions /,•(/") in the ensemble. The distribution 

of x-values has been obtained in 4 0 for K-forbidden < x >F and K-allowed < x >д 

transitions. We select from Table 1 in 4 0 only such K-allowed transitions which 

satisfy the quasiparticle selection rule. We obtained the distribution of x-values for 

the quasiparticle selection rule allowed < x >A ) transitions. The < x >p and 

< x >A values from < 0 and the < x >^ . values from our consideration are presented 

in Table 4. 

For transitions from the thermal and 2 keV ARC neutron capture states to 

both parity low-lying bands we obtain < x >/4,„= 1.63 and < x > д и | = 1.13, re-
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apetlively. The difference between these transitions is mostly due to that the Ml 

transitions from 2 keV ARC neutron capture states !o the Kl = 2+ band are not 

observed. As it is shown in Table <, these values are much larger than < x > r = 0.7С 

and < x > p = 0.97 for K-forbidden transitions from the thermal and 2 keV ARC neu

tron capture states. The K-allo'.ved transitions satisfying quasiparticle selection rule 

are much faster than K-forbidden transitions. It means that the incomplete mixing 

of the tv.o-quasiparticle componebis of the vave function with different К quantum 

number takes place in the neutron resonance regioi. 

The quasiparticle selection rule allowed gamin?, transition from the neutron 

resonance states occupies the same component of the wave function of the low-lying 

state which is excited in the (d,p) reaction. Therefore, for investigation of the К 

quantum number in a neutron resonance region it is needed to measure the intensities 

of the gamma-ray transition from the neutron capture and the cross section (d,p) 

reaction. The (n,*y) and (d,p) reactions in i7LLu for example should be studied. 

The nuclear resonance fluorescence measurements of well-deformed nuclei ' : ' 

show that the experimental branching ratio B(J = 1 -» 2+0.,.,.)/B(J = 1 -* 0 + 0 s . s . ) 

is in good agreement with the Alaga rules for most of the excited J = l levels. It means 

that К is a rather good quantum number for many slates with energy below 4 MeV 

in well-deformed nuc'si. 

It is well knowr. that the GDR in deformed nuclei has the lower and higher 

parts. In agreement with the calculations, a summed strength of the lower part is 

twice smaller than the higher part. According to the calculations, the lower part has 

K=0 and higher part K = l . The gamma-decay modes of the GPR in lb0Nd have 

been investigated in 4 J via inelastic phonon scattering. It was shown that da/dil 

practically equals zero for K-forbidden transitions from the lower part of the GDR 

and do/dQ R* (5 — 10) /ib/str for K-allowed transitions from the higher part of 

the GDR to the Л" = 2 + final state. The da/dil for K-allowed transitions to the 

KT = 0 + excited state from the higher part of the GDR is twice larger than from the 

lower part of the GDR. It means that the К mixing is incomplete in the particle-hole 

configuration in the GDR region. 
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2.4. Neutron Resonances as a Key for Studying Order-to-Chaos Transitions 

The order-to-chaos transition in terms of nuclear wave functions was formu

lated in г м з in 1972 as "are there relatively large many-quasiparticle components in 

the wave function of neutron resonances?" The one-quasiparticle configuration with 

a relatively large angular momentum of spherical nuclei at an excitation energy of 

6-8 MeV is not fully fragmented. The one- and three- or two- and four-quasiparticle 

configurations at excitation energies close to the neutron binding energy are strongly 

fragmented. At these energies, the five- and seven- or six- and eight-quasiparticle con

figurations start to fragment. We can expect that the wave function of the neutron 

resonance states contains large components of many-quasiparticle configurations. 

Practically, no experimental data exist concerning the many-quasiparticle com

ponents of the wave function of the highly excited low-spin states. What experiments 

should be performed to answer the question concerning the existence of the large 

many-quasiparticle components of the wave function of the highly excited states? 

In 4 3 , it has been suggested that the most favourable way to observe the many-

quasiparticle components of the wave function is to study the gamma-transition from 

the neutron resonance states to the states lying 1-4-2 MeV below them. 

Some information concerning the values of the many-quasiparticle components 

can be obtained by studying the El and Ml transition probabilities from the neutron 

resonance states to the levels with energies lower than the neutron resonance energy 

by 1 4- 2 MeV. A large contribution of the many-quasipaiticle configuration to the 

normalization of the neutron resonance wave function would enhance in El and Ml 

transitions. If the contribution of the many-quasiparticle component to the normal

ization of the neutron resonance wave function is equal to 20%, the corresponding 

reduced gamma-transition probabilities are 3 -r 4 orders of magnitude larger than 

the reduced gamma-transition probabilities from the neutron resonance states to the 

low-lying states. The enhancement of E2 and E3 transition rates between excited 

states means that there are large few-quasiparticle-quaclrupole or octupole terms in 

the wave function of the initial state. 
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Coincidence measurements of gamma ray emitted after thermal neutron cap

ture in lisGd have been performed in 4 4 . A pronounced local maximum of intensity of 

the primary gamma ray at 2.5 MeV has been observed. This maximum can be treated 

as an enhanced gamma ray transition between the many-quasiparticle components of 

a capture state and excited states with energy 5.5-6.5 MeV in 1 5 6Grf. In this case, 

the neutron resonance state is very close to the neutron binding energy. Therefore, 

it is possible to use the (пц ,7 ) reaction for detecting the large many-quasiparticle 

components c-f the wave function of states with energy 5.5-8.5 MeV. 

The s- and p- wave neutron strength functions demonstrate the individual

ity of nuclei in the energy region of the neutron resonance states. These average 

values cf the one- or two-quasiparticle components of the wave function of neutron 

resonances reflect a regularity of the nucleat' mean field. The thermal and average 

resonance neutron capture cross sections manifest individuality of nuclei. But these 

experimental data involve only the 10~ 6 part of the neutron-resonance wave functions. 

It is possible to say that the state, whose largest component is described by a sin

gle many-quasiparticle configuration being more than 10-20%, has its own individual 

characteristic feature. 

2.5. Conclusions 

The above consideration allowed us to derive the following conclusions: 

1. The order is governed by the large components of the wave function of the 

excited states. 

2. Chaos takes place in the small components of the wave function of the nuclear 

excited states. The excited state is chaotic if its wave function is composed of 

only small components of few and many-quasiparticle or few and many-phonon 

configurations. 

3. It is possible to consider the order-to-chaos transition as a transition from the 

large to the small components of the nuclear wave function. 
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4. The experimental investigation of a fragmentation of the many-quasiparticle and 

quasiparticle-phonon states play a decisive role in studying the order-to-chaos 
4 transitions. 

5. It is important to continue an experimental study of the K-dependence in the 

gamma-decay of neutron resonance states. The quasiparticle selection rule 

should be taken into account. 

6. An experimental investigation of the many-quasiparticle components of the 

wave function of the neutron resonance states may be carried out using the new 

generation of gamma-ray detectors which could observe the enhanced gamma-

transition from neutron resonances to the levels lying (1-^2) MeV below them. 
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