


1. Introduction

Perturbation theory {1,2] is one of the powerful mathematical methods of investigating
quantum mechanical problems. Many versions {1-4] of this theory are realised by the
uniform, from the mathematical viewpoint, scheme based on the iteration method known
in the theory of differential equations [5]. In that scheme, one can, rather conditionally,
distinguish five basic stages.

Stage 1. The initial problem for a set F of unknown functions is formulated in terms
of rew unknown functions forming some set . This formulation should satisfy two basic
requirements: first, the representation

f=f¥.. (1)

of each sought function f, connected with the initial preblem (f € F), should be rather
smooth and simple; second, the problem for new unknown functions should have a form
maosl convenient for its investigation by the standard iteration method.

Stage 2. By this method, each function y of the set  is put into correspondence with
the iteration sequence {y™}__,. Usually, as its first element y(~*) one uses a known and
casily calculable function having a simple physical meaning and the rest of the elements are
constructed in the following recursive way. Index m successively (m = 0,1,...) increases.

At cach step, the element (™ is determined by the equality
yO™ = y( PNy ' (2)

i.e., is assumed to be equal to the right-hand side of the relation

y=y(J,-..} (3)

determining the corresponding function y, in which all the functions of the set ) are
replaced by (m-1) elements, found earlier, of the corresponding iteration sequences. This
clange generates a set Y(™} from the set ). _

Stage 3. First, the conditions are determined under which for any function y of the
set ) in a predetermined sense ( for instance, in the C%metric [6]) the following limiting
relations hold:

Y™y, Ply=y M o0 L mo (4)
due to which approximation y = y™) of the function y of the elements y1™ of its iteration
sequence is valid al large enough m. Then, the accuracy ™y of that approximation is
estimated.

Stage 4. Each sought function f of the set F is put into correspondence to the se-
quence { fI™}=_.. Fach its element is determined as right-hand side of the corresponding
representation (1) in which each function y is replaced by the function y™ ) approxi-
mating it:

fR =y m=0,. (5)

Then, it is proved that the limiting relations
fMof Mfsfof L mse (6)

1



hold in the same sense and under the same conditions as the relations (4).

Stage 5). It is analysed how suflicient conditions of perturbation theory and the
relations (6) depend on parameters and functions containing in them. The main aim of
that analysis are: to establish all the cases in which sufficient conditions hold; to indicate
the additional conditions under which perturbation theory becomes more effective and to
explain the meaning of the last conditions from intuitive-physical point of view.

Physical and mathematical intuition is the guarantee of successful realisation of the
first and second stages of the above-described sheme. This intuition helps one to re-
formulate the initial problem and choose the zere approximation i a most appropriate
way. '

As a rule, the third and fourth stages of the above scheme are most difficult. lowever,
they provide a mathematical correctness of perturbation theory developed, i.e. ensure
that, first, the constructed function f™) is really an approximation of the [unction f
studied, and second, is an approximation being improved with increasing rn. 1t is obvious
that the use of f0™ instead of f without such an assurance is semscless. A rich and
brilliant collection of instructive examples confirming this statement is available in the
book [7] by Peierls.

The last stage is an urgent and interesting invesiigation which establishes the region of
applicability of perturbation theory and, moreover, discoveres new possibilities {or using
of this theory.

The present paper is aimed at constructing, according to the above-described scheme,
a peculiar perturbation theory for the one-dimensional Schrédinger scattering problem:

(82— 1t+ )27 = V(z) ~ V(z) + ¢ Juf (e, ) =0, reRY ., {Ta}
uf = O( /a2y ARy (7h)
uf(x,q) — sin( p—nin2p — (2A+1FNrfa+6ulg)+d(q) ), 70 {Te}

with really fixed parameters land ¢ (€ Rt =1:0< 1 <00, 0< g < oo}, Coulomb
potential V, = signlt/s and the potential V obeying the only rather a general condition

Iz(b,I)E(QW/(21+1))]/2frt|V(t){d£<oo, 0<b<z<oo . (8
b

Here we have used the system of units, in which & = 24 = 1, instead of the distance »
and momentum k we have introduced the dimensionless independent variable z = r/{R|
and dimensionless parameter ¢ = k| 1|, the Bohr radius [1] £ = #%/2uZ; Zoc? s deter
mined so that signf = signV,, and the symbols p = kr = gz, y = 1/2k 2 = signR/2¢, u],
u; and § denote, respectively, the standard Coulomb variable, the Zommerfeld parame-
ter, the sought regular and irregular wave functions and the scattering phase generated
by the inlerference of the Coulomb potential and the potential ¥ in addition to the pure
Coulomb phase §.

Further, where possible, the index ! is omitted; if not specified, it is assumed that
t € R*, p = ¢z, and the symbol b denotes a certain fixed value of the variable 2.



2. Perturbation Theory

Stage 1. The Coulomb functions [8] Fi{p,n) and Gi(p, ) are thoroughly studied
and coincide with the solutions u*{z,q) and u~(z, ¢} of the problem (7} in the trivial
case (V = 0). Therefore, it is reasonable to use F and G as known and , to a certain
extent, standard functions. Moreover, to use them so as to reduce the initial problem to
a simpler one. Just for this purpose, the method of varying constant coefficients 5] ( in
fact, equivalent to the linear version of the variable phase approach [9,10]) is applied as
follows.

Instead of each sought function u* and u~ the couple new unknown functions ¢*,
st and , respectively, ¢~, 5~ are introduced. By definition ¢* and s* are "constant”
coefficients [5] or amplitude functions [10] satisfying the following Lagrange identities [11]:

F(p,n) 8.c5(z,9) + Glp, 1) Bes™(2,0) =0 . (9)

The solution u* and then u~ is sought for in the form -

wt(z,q) = NE(q) U¥(z,q) +{ &(q) u(l(x,q) } : (10a)
where
Ut(z,q) = c*(z,q) F(p,n) + 5¥(z,q9) Glp.n) , (108)

and N*(q) and a(g} are determined as factors ensuring the normalisation (7c).
By the known method (5,10}, based on the substitution of the functions u* in the form
of (10a) into eq. (7a) and subsequent use of the Wronskian relation [8]

Gle,n) BF(psn) — Flpin) 3:Glpm) = ¢

and the identity {9), one can get two systems ( the first for ¢t and s*, and the second for
¢ and s~} of ordinary linear and homogeneous differential equations of the first order:

Seear SURCLE Rl ) S

For the wave functions u* in the form of (10) to have the required asymptotics (7b),
the systems of eqs. (1la) for ct, st and ¢, s~ are to be added by the corresponding
boundary conditions:

(228)- (o [roma{ e oo

(@1q) = ¢ (20r9) 4~ j V) Gemdt

and

s7(z,q) — —g¢* /0: V(t) Flp,n) Glp,n) dt . (11e)

Here z — 0, p = tg; if the product V(z) G*(p,n) is integrable in the vicinity of zero,
then zp = 0 and ¢ {z,q) = 0 otherwise z; is an arbitrary but fixed parameter satisfying
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the inequalities z < zp and zeq € 1 ; and the functions ¢~ and s~ are derived by the
method described below. It is based on the displacement of boundary conditions from
the point # = 0 to the point £ = #; and on the identity

W(.‘L‘,q) = C+("""! q} '5_('1': Q) - C-($3Q) S+($79) =1, ) {123)

for the Wronskian relation [5] of the problem (11). The method consists in the following
construction.

So let the function V() G%(p,7) be integrable in the vieinity of zero. Then, according
to {11b) and (11c) the function ¢~, unlike the functions c¢t, s7 and s7, has asymplotics
diverging as @ — 0. The values of c*(2e,9), s7(z0,g) and s™(2q,¢) are.found by solving
the problem (11) for the functions ¢* and s* in the interval [0, o], and correspondingly,
by formula (11c) for the asymptotics of s~. These values are substituted into the identity
(12a) written down at T = zo. The equation derived is solved with respect to ¢ (g, q).
Now, with the values of ¢™{x;, ¢) and s~ (z¢,q) being known, the sought functions ¢~ and
s~ ate given at = € zo explicitly by their asymptotics (11c) and at z > xq they are
determined as a solution of eqs. (11a) with the houndary conditions at the point @ = zo.

Using the construction described and the known theorems [5] one can easily prove,
first, that under the condition (8) both the preblems (11) are uniguely solvable in the
class of functions having first derivatives on R¥, and second, that the solutions of these
problems satisfy the identity (12a) and the following inequalities:

ez, )+ s (z,) 1 >0 5 |eflzg)] ,  [sfmg)l<oo (12b)

le™ (z,g) I <00 x>0 . {12¢)
~ For instance, the identity (12a) is valid because from eqgs. {11a) and the asymptotics
(11h) and (11c) it follows that ;W (z,q) = 0 for any = > 0 and W(0,q) = 1.
Since both the problems {11} are uniguely solvable and their solutions have the prap-
erties {11b), (11c) and (12), each of the functions A(x,q) = 6(x,¢), N¥(z,¢), a(z, ¢) given
by the corresponding formulae

8z, q) E,arcta.n( stz,q)fct{z,q) ) . {13a)
F1/2
N0 = (o) + () ) (136)
elz,q) = —c¥ (2,0} ¢z, q) — s7{x,q) 5 (z,9) (13c)
is everywhere unique and limited, and therefore, has the finite limit
Alg) = lim Alz,q) - {14)

Using these properties of the functions (13), the identity (12a) and the known asymp-
tolics of the Coulomb functions as = -— oo, one can easily be convinced in that the
wave functions (10a) will have the required asymptotics (7¢) if the scattering phasc é(g)
and normalisation factors N* and a(g) are determined as the limits (14} of the relevant
functions (13).

It is to be noted that each of the funclions A = ¢t 5% and A = §, N, o determined
by the relations {11) and (13} has a remarkable property

Alw gy = A{bg) z>b {15)
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if V(z) = 0 at = > b, and therefore, has a clear physical meaning. Indeed, the values of
the functions ¢*(z,¢) and s%(z,q) at some point = = b are the amplitudes with which
the Coulomb functions F' and G are contained at = = b in the wave functions (10b})
nonmormalised to unit density of the flux as z — oo, whereas the functions &(z,q) ,
N*(z,q) and a(z,q) at the point 2 = b, as it follows from formulae {13)-(15), are the
phase 8(g) and the normalisation factors N* (g}, ( ) in the case when the potential Vis
cut off at that point.

So for the construction of solutions u* of the initial prohlem {7) by formulae (10) one
should solve the problems (11) and then find the limit (14} for each function (13).

However, this is not the final stage of the reformulation of the problem (7) A {urthel
refornutlation is prompted by the [ollowing obvious facts:

1. the structure of the problems {11) is so simple that their numerical solution in some
finite interval [0,8] = {z,0: 0 € 2 € b < oo} does not cause any difficulties; .

2. usually, in the inner region, i.e. in that interval, the potential ¥ is a function more
complicated for analytical study of the problem {11} than in the outer region, i.e.
in the infinite half-interval [bo0) = {2, 6:0 < b < 2 < o };

3. fromn the condition {8), determining the class of potentials used, it follows that
V{b) = 0 as b — co.

From the above-mentioned facts it seems quite reasonable to calculate the functions
ct and s% in the interval [0, 5] numerically, to supplement egs. (11a) by the limiting values
¢t (b,q) and s*(b, g) found, and than to construct the solutions of thus obtained problems
in the half-interval [, oo) analytically, namely as limits ) and s%(5°} of some sequences
{cEmiYee_and {20} uniformly converging in the C%-metric if z € [b,00] , m — o0
and b is large enough.

Fo construct those sequences 1t is proposcd to iutroduce instead of the fun(tlons c
and s* new unknown functions y, and yI satislying the uncoupled integral Volterra
problems [12] that can casily be investigated by the iteration method. The derivation of
these equations is simple enough and can be 1'enlised-as Tollows.

It is assumed that the functions ct and st me known at some point x = & and
cannected with new unknown functions yE and yF by the following formulae:

{ Zig,zg }:CXP({_ Jr1 }BJ by ‘I)){ yg(z 3% } : , &16&')

Here B, is one of the three integrals used below and determined by

+

Bl,u{b:waq)lz q_l/ V(t}(pi (p17)) n,1 f 2([},??)(‘)"2-{-[g([) 7:')6'1{{)571])6?:3)‘{[ . (iﬁb)
]

where n = 1,2,3; p = tg and &, is the Kronecker symbol [8]. Owing Lo the condilion. -
(8) the integrals Biq and I3 are always limited, and the integral By can diverge at the
lower limit only iu the case b =0, > 0.

Equations (11a} with the boundary conditions shifted to the point o =  are lulmmi
by the substitution (16}, o diferential equations for new vnknown functions yf and yF
given at that poinl by ' -



Cyibg)=ctbg) . wmbg=sTbe . (1T)
- The problems thus obtained are written in an equivalent integral form
¥ (@9 =y (@) + (2 [BGa)luF (t)) (18a)

Hereafter the indices ¢ and j = j(i) take the values 1,2 and 1 4 §;;; by definition it is
assurned that

e =yEbg . z2b . (s
and the operators P map any function z(x,q) into the integrals
(2P0l 0) = [ Rt st & (180)
wit_’.h the kernals
Bib,z,q) = 8, By(b,v,4) exp( (~1)" 2Ba(b,2,q) ) (18d)

containing the functious (16b).
As early as the first iteration egs. (18a) are dla.gona.hsed and ta.l\e the form

oo =y g+ Gyt . (19a)
where for brevity the following notation is used:
¥ (z.0) = 577 (2, 0) + (2 1B(0, )| 57 Tk 0)) (195)

and the operator products 'f‘, = 13, FA‘J are determined in a standard way: for any function
z it is assumed that 7;z = F;( P, z) and

Gitwolt, = [ resoa [Bcotar . (s

According to (17), (18b) and (19b), eqs. (1%9a) determining the functions y and yf
or y7 and y; are connected with each other only by the constants, known by assumption.
These constants are the values of the functions ¢t and s* or ¢~ and s~ at the point = = &.
Such a simple connection a.chieved due to a properly chosen substitution, allows one to
analyse the solutions y7 and yJ or y7 and y; of the problems (18) independently from -
cach other and to realise rather elegantly the remaining stages.

To a great extent, this is favoured by the simplicity and smoothness of the represen-
tation (1) of each sought function of the starting problem (7) and each auxiliary func-
tion (13). These representations are easily found by substituting (16) into formulae (10)
and (13).

Stage 2. To investigate new problems (3), i.e. the problems (18) in the ha.lfllnterval
[6, 00}, we introduce iteration sequences {Ji(m)}m__1 with the elements determined by
formulae (2) in the following recurrent way: y° 1) are the constants (18b), yf(o) are
the functions (19b), and then as the order of the index m increases (m = 1,2,...) it is
assurned that yf;(m) is the right-hand side of the relevant eq. (18a} in which yi" is replaced
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by yf(m_l). By virtue of this definition and the relations {18b) and (19¢), two equivalent
representations hold:

¥ "Nz, 9) = Vb, 0) + (21200, F G e)) (20a)

iz, q) = vV (6,9) Y (175, 9)10(2))

p=0

+yF (6, g) D (2 1P Bib, 910(1)) (208)

p=0

where m = 0,1,..., 0 is the theta function [8] and the integer degrees of the operators T
are determined in a standard way: Tz = z , and 7Pz = 7, (TP z) for any function z
and any p=1,2,.

The simplicity and equivalence of these representations essentially simplify the proof
of the key statement of the proposed theory. This statement establishes the relation (4)
and is formulated below as the theorem.

Stage 3.

Theorem
Let x € [b,00), b > 0 and the function (8) be limited so that

Iibz)<(1/2)In3 , z € lboo) . (21)

Then, the sequences {y] £(m)yoo  uniformly converge in the C%-metric to the solutions

yi’, of the problem (18) and the differences (”‘)y‘-’, = y‘, -9, ,( ) satisfy the following
inequalities:

| ™y(x,q) | < DE (b, x,9) coshuy(b,z) vP™+2(b, z)/f‘(?m +3) (22a)
inwhich{=1,2; =144;; ;m=—1,0,...; I' is the gamma function [g];

Diim(8:2,0) = 1557 b,0) | 077 (b,,0) ((0(m) + 0(=m — 1) v (5,2)/2 )

HYE b, 0) | W (b z,0) wlb,2)f(2m +3) (220)
w(b,z) = (exp(?l;(b,z-)) -1 )/2 ; (22¢)
wi(h,z,q) = bé:!?éx{ (@ +1)/(2np%) )1/2 G, ) } . (224)

Proof.
The Klarsfeld inequalities {13}

Fem), R ) Glaml<ge(2rzz/@+1))7 (23)

valid under the conditions ¢’ = gz’ £ p = gz. are the key ones for proving the theorem
by the method of contracting mappings [6].

First, it is necessary to prove auxiliary majorant estimates for absolute values of the
mtegrals B,, Bj of (16b), the kernals P; of (18d), all the images P60 , T:6 , T: .0 of

7



the theta function entering into the representations (20), and finally, for the differences
E(n} _ i("ﬂ)

Y
By vn"tue of the relations (8) {16b) and (23)
| Bu(b,z,q) | < I(b,2) , n=23 . (24)

If in the definitions (18d) one majorizes ¢ *F? and B;, B3 by the right-hand sides of
inequalities (23) and (24) and then uses the notation (8}, (22c) and obvious identity
d.v = 8.1 exp(2]), one can get the following estimates:

| Pibym,q) | < (& (2 +0)/200° ) Cooym) 4605 ) Bulbiz) . (25)
Owing to them and the definitions {18¢c), (22¢) and {22d), .

{2 [P0, )1 0(2) )] < v(b,2) w*~ (b, ,0) . {26)

To prove the relations

k4 131 tzp—1
|(xITf(b,Q)|9(i))i<f 3z1v(b,t:)dhf auv(b,tz)dtn-“[ Oz, 0{b, bap)dtay, (27a)
b b : b .

=v?(ba) /T{2p +1) (270)

in the case of p = 1, one should assume in the integral (19¢) z = 0, majorise By and

g7 Glgts,n) F{qiz,ﬂ) by the right-hand sides of inequalities (24) and (23) and then usc
the definitions (8), (22¢) and the identity ;v = 0.1 exp(27). Further, taking into account
the identities Tp = "'—1 Ty, ane can easily preve by induction the validity of the relations
(27) for any p = 2,3,.

Unfortunately, the {unctions (2 |T2(b,9)0(2) },p=1,2,..., cannol be estimated in
an analogous way. The fact is that according to formalae (16b), (18¢) and (19¢) the
arguments p; = gty and p; = gty of the Coulomb functions F{p,7) and G(p2,7) which
are comprised in the kernels of the-operators j 22 =1,2,..., do not satisfy the condition
p1 < py under which for [q—1FG| 1ncquahty (23) holds However, by virtue of the
definitions T} = P, P; and 177 = TP T, p = 1,2,.. ., the equalities 77 = B, TP By,
p=12 .. arevalid. Owing to them dnd the estxmate:, {24-27) one has

| {2 T} (5, 0)100)) | < W(b,?,q)]b Bew(b, ) [ (177 (b, ¢) Dol #) ) | dt (28a)
<wlbz,¢) v {ba}/TRp+1) p=1,2,.... ‘ (285)

To prove the hounds
|2 170 0) Pib, ) 0(1) ) | < (b, ) o7 (b,2) / V(2P + 2) (29)

in the case i = 1 one should first majorize the function (1 |P, (5, )| 6(¢' }} in the identity
TPPg=TP( P0) by inequality {26) and then apply the estimate (27a); in the casc
7 = 2 one has to use the identity T Pg =B T” and the egtimates (25) and (27h).



Using the representations (20), the definitions (22b), {22c) and the results (26)-(29)
obtained one can easily show that

n-ti—1

|5 (20 =3 (@) | < DE,(br,g) 3 b 2) S T2(p 4 m+ 1) 21) (30)

p=0

forany i=1,2j=14+681;n=0,1,... and m = ~1,...,n—1.

Now, having all necessary estimates, one can immediately prove both the statements
of the theorem. Inequalities 0 < v(b,z) < 1, (following from the condition (21} and the
definition (22c) ) and the estimates (27}-£30) imply that in the half-interval [6,00) the
operators T; and T; P are coniracting ones [6] and the sequences {yfﬂm)}"m‘;_l converge
uniformly [6] to the functions yi satisfying egs. {18a). Due to thise factes, in inequali-
ties {30) one can put » = co and y,-i(w’ = y¥ in order to get the estimates {22), using the
known power expansions [8] of the hyperbolic cosinuse, and thus to complete the proof.

By virtue of the theorem the condition (21) is sufficient for the fulfillment of the
relations (4) in the C%metric in the half-interval [b, co) . '

Stage 4. Let the problem (11) or (18) be solved in the interval [0, 5], where & is such
that the inequality (21) is fulfilled, and the sequences {etim)y=_ and {s¥lmhe - are
defined as follows:

Ci(m) z, _ ct x, +1 !i z, ..
{ S:l:(m)%x‘g; }= { sigm.gg }:cxp({ -1 }B3(b,.r.q}){ ii%lg; } . (3la)

ifz <band

by i . S : ‘
{ Cnl? ool 1} }aitmg oim-1) { A } LG

ilb<ez<co.

Here m = 0,1,..., By is the integral (16h), y*") are the constants (18b} and y2t™
are the functions {20). _

These sequences converge uniformly in the whole semiaxis R* to the solutions of the
preblems (11). The functions ¢*® and 39, owing 1o equalities (18L) and (31), have the
property (15) and are the exact solutions of these probicms if the potential is cut off at
the point z = b. .

Duc to the above-menticned properties of the sequences {extmee | and (st
the following lwo assertions are valid.

First, to each function f = §, N o, U¥, u* there can be pul into correspondence (5)
the sequence {f)}%_ unilormly converging on R to this function. - For this purpose,
one should determine the elements ™) as the right-hand sides of the relevant represen-
tations (10} and (13) in which the functions ¢ and % are substituted by the functions
(31), i.e. to assume that at any m=0,1,. .. and x € R

.5['"){;1".,(;) = aretan .q"'{”")(.r‘q}/('“"'](‘r.q) ) . (32a)

F1/2

fV:Hm](I, q) = ( (C+(m)(;7',q)): + (51‘[7"){;“1("))! ) . t}_){l)



a(m)(x,q) = —c"'(""(x,q) c’(”‘)(x,q) - S"H’“)(x, g} s_(""(a:,q) . (32¢)

U (5 gy = ¢ (2, q) Flp, 1} + s (2, 9) Glpum) (32d)

+(m) — i) +(m) 0
Wz, q) = N¥™)(c0,q) U {mn{a(m,(oo,qw{m)(m’q)} L (@)

Second, the functions 8%, N0, o®, U= and «*9 thus determined have an apparent

. physical meaning: they are the relevant functions (10) and (13) in the case when the
potential V is cut at the point z = b.

Using formulae (10), (13}, (22), (31), (32) and the identities f = f**°} one can casily

estimate from above the differences V™) f = f — f™ for the functions f = ot st

ez, o f 1) g Dyl
{ )5 (5. q) | } <exp({ 1 } Ba{b,z,q) 0{m — 1) ){ Di_i(b,z.9) }
x cosho(b, z) v*™{b,z) /T(Zm + 1), m=01,..., (330)

and then for all the functions f =6, N¥, ‘«, U*, ut . After this one can easily verify
that these estimates have the form of the following asymptotic inequalities

| i (z,9) | < B — B) O(w*™ "™ b,2) /TEm+ 1)), f#u"

| (z,q)§ < O(v*™ )b 00} (T(2m +1) ) (33b)

if b and I are fixed and m — oo, or if m is fixed and v(b,z) — Oforallz > b

The validity of the estimates (33b) in the first case implies that relations {§) are proved
under the condition (21). Consequently, the fourth stage is accomplished.

The validity of these estimates in the second case allows one to use perturbation theory
for constructing asymptotics of the functions (10} and (13) in the region = > b in two
interesting, {rom the physical point of view, limits: | — oo at fixed ¢ and ¢ — 0 at fixed
! To show how to do that, one should first analyse the condition (21) and the estimates
(33).

Stage 5. At z > b the functions (8) and {22b) are monotonously vanishing if 1 is fixed
and b increases , :

Ib,z) , wlbz)—0 , b—oo (34)

or vice versa, if b is fixed and ! Increases ,
I(b,z) , wibz)=0("*) , " I—ooo . (35)

Therefore, inequality (21) is certainly valid in two cases: first, at any fixed ! and any b
exceeding the root b (1) of the equation

bmin00) = (om0 [ RICERICOL I
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and second, at any fixed b and any { exceeding the root
() = {2/ n 3)/ v la) -1 (37)
b

of the equation
Iim;“(b)(b, oo} = (In3)/2

Thus, perturbation theory constructed can certainly be applied at z 2 b > 0 in the two
above-mentioned cases. Due to relations (34) and {35), the estimates (33} characterizing
the efficiency of this theory, improve in the first case with increasing b and in the second
case with increasing [.

The qualitative explanation of these conclusions is the following. According to inequal-
ity (8), in the region = > b > 0 the potential V' is screened ([V{z)} <11+ 1)z"?) by
the repulsive centrifugal barrier, thus being perturbation if lis fixed and b is rather large
(b > buman(1)) or vice versa, if b is fixed and { is rather large ({ > lnin(8)) . Obviously,
the degree of screening improves in the first case with increasing b and in the second case
with increasing {.

Tt is intuitively clear that at sufficiently large ! the centrifugal barrier can screen the
potential, satisfying the condition (8), everywhere, ie. at all ¢ € Rt. Therefore, it is
interesting to generalize perturbation theory to the case b = (. For this purpose, it is
necessary to reconsider the proof of the theorem and all the subsequent constructions first
for the functions with the sign ” +” and then for the functions with the sign * — 7.

Let b = 0 and the condition (21) be fulfilled. Then, owing to formulae (11b) and (17),
y,ﬂ_l)(ﬂ, g) = 6i1 , i = 1,2. Therefore, the representations (20b) for the functions yf{m)
are simplified ,

vtz g) = Y (2 (T20,0) PO, 010(0)) .  m=01,..., (38)
p=0

and what is more important, contain only himited operators. Using formulae {38) and
assuming w = 1, one can easily be convinced in the following.

For the functions ¥}, ¥} "} and (m}y¥ the theorem remains valid. Consequently, valid
are also all the subsequent assertions concerning the functions ¢*, s*, §, N = U+ and ut
whose representations (10}, (13) and (16} do not contain the functions y; and y; .

Then, the relevant formulae (31} and (32) are essentially simplified. Yor instance, at
m = 0 they reduce to the identities

O = NEO =1 O =g =g, U=t O =P, (39)

and at m = 1 to the equalities

¢ (z,q) =exp( Ba(0,2,9) } s*0(z,q) = (= 1P(0, )1 0()) / P (z,q) , (40a)

§0)(s,q) = axctan exp( 250, 7,0)) (2 [B0,0100)) ), (40)
N*“)(:F,q)_= (cos 6(1)(m,_q) exp( -Bs(ﬂ,x,q.) ) )ﬂ , (@00)
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U = exp( Ba(0,2,9) )( Flp,n) + tan 6"z, q} Glo,n) ) (40d)
w0z, ¢) = cos 6(c0, q) exp( Ba(z,00,9) ) ( F(p,n) +1an 8" (z,9) G(p,m) ) , (40¢)

Finally, the estimates (33a) for the functions (™ ¢t and ™ s* are also simplified. For
instance, at m = 0,1

[(’")c"'(:.v:,q)[ < (1/2) exp( B;(0,2,9) 6mo ) vz((),:c) coshv(0,z)

(41)
(st (z,q) < exp( —Bs(0,2,q) 6mo ) v"™ (0,2} coshv{0,z)/ (1 +5 bp.y)

Let now b — 0 and the condition {21) be fulfilled at & == 0. In virtue of the relations
(11b) and (17) the representations (20) for the functions 7™ always (even at b = 0)
contain the mappings £, 8, T8 8, T% P, 8 of the thela functlon The estimates (26), {28)
and (29) of these mappings becorne meaningless at b = 0, as w(b, x,9) — o0, if b — 0.
Moreover, as it follows from the definitions (18¢) and (18d),

{z|Bib)0)) | » o0 , b—0 , VGigLh

£

From the afore-said the following construction seems to be reasonable. First, by the
method described at stage 1. the functions ¢~ and s~ are found in the interval [0, zo].
Then, perturbation theory is used in the half-interval [b,oc). Under a construction like
that it is assumed in formulae (16)-(32) that & = zg, the functions ¢ (™), g7 glm),
U~ 40" have a correct asymptotics at zero, and the relevant estimates (33) are va.hd
at aliz > 0.

So if inequality (21) is valid at & = 0, then perturbation theory can be used to ap-
proximate the functions ¢*, st, §, N*, U* and u* on the whole semiaxis R* and to
approximate the functions ¢, 37, o, U~, and u~ on the region r > z;. According to
equalities (36} and (37), the above condition is fulfilled if { is fixed and the potential V is
such that bni(!) = 0 or if V is an.arbitrary (satisfying the condition (8)) potential and
!> [ (0). In these cases formulae (38)-(41) hold. '

Now, it is necessary to study the non-Coulomb limit B — oo. As V(z) = R*V(z|R)|),
where V is the potential in the r—representation, the integral (8), and consequently, the
condition (21) are independent of B. This can be verified by writing them in the variable
7. The key estimates (23) are also independent of R and remain valid [13,15] as B — oo,
when [8] F(p,1) — juls) and Gi(p,) - —mu(p).

Owing to the afore-mentioned facts, all said above (all conclusions, relations and
formulae} remain alse valid in the non-Coulemb limit (V, = 0, R = co) if everywhere
beginning from eq. (7a) one assumes 7 = 0, 2 = p = kr, ¢ = 1, Filp,n) = ji(x) ,
Gi(p,n) = —ni(z) and bears in mind that now V(z) = &2V (x/k).

The next interesting limit is ® — 0+. In this case, the repulsive Coulomb barrier
increases (V. — o0) and screens the potential ¥ first at > b > 0 and then at all z > 0.
Unfortunately, we did not succeed in taking this effect into account in the frarnework
of perturbation theory constructed. Indeed, the estimates (33), characterising its effi-
clency, do not improve at 2 — 0+, as contain only the function v which by definition is
independent of R.
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Completing the analysis of the relations (21} and (33) it is useful to discuss the quality
of the estimates (33) and to show the way of their improvement. According to the proof
of the theorem, the condition (21) and then the definition (22¢) of the function v and the
structure of the relations (33) are generated by the key estimates (23). These estimates
do not contain the Bohr radius R as a parameter and are rather rough especially as ¢ — 0
and = = oo when [8] F; = 02"+ ¢Ci(g) ) and £, Gi = O(1) . What is more important,
the estimates (23) do not centain the Coulomb barrier factor .

Cila) = (20)' | T+ 1+ 1/2q) | exp( —m/4kR)

and, therefore, they do not take into account the dependence Ci{g) — o0 as R — 0+
reflecting the effect of Coulomb screening. It is evident that the estimates {33) also
do not describe this dependence and are rather rough. Hence, for each function (10)
and (13) the approximation f =~ f{"™) is indeed more accurate than the corresponding
cstimate {33) gives. Obviously, all these estimates can be essentially improved. For this
purpose, instcad of the relations (23), one should use less universal but more accurate
cstimates taking account of the structure of Coulomb, functions in a proper way. For
instance, as ¢ — 0 one can use the known [8,16} asymptotic (|5 — oo) representations
{ Bessel-Clifford series (3], WKB-asymptolics [14] and so on) and at 4 = 0 one can use
uniform in 2 estimates [3]

)= 0( (1427 ), mle) =0( (1427 )

It is to be noted that perturbation theory can be generalised to the case when the
potential ¥ decreases more rapidly than centrifugal one but more slowly than the Coulomb
potential and satisfies the condition that is more weak than the condition (8). namely:

| V(z)| C Loy » IV(2}] C Loy > 0<b<oo

For a generalisation like that one should use at p 3 1 the relatious /, & = O(1} instead
of the inequalities (23). )

It is customary to demounstrate the efficiency of the theory, using several examples,
after its construction. '

3. Examples of Application of Perturbation Theory

Example 1. Control and improvement of accuracy of the numerical
solution of the problems (7) and (11}

In practice, the problems (11) are solved numerically not on the whele semiaxis R*Y
but on ils certain finite interval [0, 4], i.c., the approximation V(z) = 0, = > b, is used
which is zeroth for the proposed perturbation theory. With its help one can: evaluate the
accuracy of this approximation W f: il necessary, to Construct any function f of (10). {13)
more exactly by formulae (31) and (32) with 1 = 1} Lo choose the point b so that the
function 0™ m = 0,1 found should approximate the sought one with the siven ahsolute
accuracy £. Such a choice is made in a usual way: the Tunction Y™Q(h, x, ¢), majorizing
|t 7], is caleulated by formulae (33) and compared with ¢ at e = b5 if ®9¢ > ¢ then
the value of & should be enlarged until the inverse vquality is fulfilled.
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In a special case, when the condition {21) is fulfilled at & = 0, the numerical solution of
the problems (11} is not required, and therefore, perturbation theory becomes an effective
method for analytical investigation of the initial problem {7). In this case, the construction
of the functions f™), m = 0, 1,..., approximating the corresponding function (10) or (13)
at all z > 0, reduces to the calculation of integrals of multiplicity not higher than m + 1,
and the accuracy of approximation f =~ f™! is controlled by the estimates (33) in which
b = 0 is assumed. Fspecially simple are formulae (39) and (40} determining the zeroth
and first approximations of the functions ¢¥, s¥, §, N, Ut and u*. These formulae
and the estimates (41) are sufficient for deriving new qualitative results given below as
examples 2 and 3.

Example 2. Qualitative study of the factor NT

Let b= 0 and the condition (21) be fulfilled. Then, for the normalisation factor
Nt{¢) = N*(o0,4) one has the lower bound

Nt(g) = ( 1+ v%(0, 00) cosh v{0, co}{ 1 +cosh v{(0, 0o ){ -1:_-{-.1)2(0,00)/4 )) )_1/2 , (42)

which is uniform in energy E = g% and can easily be proved by formulae {13b), (39)-(41)
and equalities ¢t = 14@ ¢t and st = g*. This bound allow one to estimate from below
the function u* in the region of gz < 1, where, owing to the relations {10) and (11b),
uf o NF(g)z"*' ¢Ci(g). Such a simple estimate may turn out to be rather uwseful for
analysing many approximate formulae (for instance, Deser at. al formula [17]) containing
asymptotics of the function u* at zero. .

It is to be noted that the estimate (42) is rather rough: it depends neither on energy
nor on the sign of the potential V. Within the first approximation, more accurate jower
and upper estimates, :

NtW{g) > exp{ —Bs(0,0,9) ) ( 1 +exp( —483(0,00,¢9) ) vg(q,oo) )_]/2 ,  (43q)

N+(1)(q) < exp( _83(01 0, Q‘) ) * (435)

are valid. To prove inequalities (43a) and (43b) one should begin from the definition
(32b), and correspondingly, from the representation (40c) and then to take into account
formulae (40a) and {26). )

The following asymptolic estimates ¢

INFg) =1 <o), INT(g /N —1i<0() (44)

determine the behaviour of the normalisation factor as I — oo and are derived by formulae
(13b), (39), (40c} and estimates (45) obtained below.

Example 3. The behaviour of the scattering phase and amplitude as [ — oo

Let ! — oo and q is fixed. Then, as has been mentioned at stage 3, at any { exceeding
Lain(0) the function f; = ¢, s}, &, Nft can be approximated on the whole semiaxis

z 2 b = 0 by the function f}(m) given by the corresponding formula (39) or (40). By virtue
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of the relations (35) the accuracy of an approximation like that improves with increasing
I. For instance, the estimates (41) take the form of asymptotic (! — oo) inequalities

[ (z,q) | < OU) [Pt (z,0)| < O™ ), m=0,1. (45)

The latter and equalities (13a), (39) and (40b) generate the.followiqg asymptotic
estimates:. . : o :
| tan &ilg)| < O(171%) . (46a)

| tan i(g)—tan & (q)| < O(1%) , | tans{V(g)/ tanbi(g) —1| < O(I1) , (46b)

speciflying the behaviour of the scattering phase in the limit of a large I.
Using these estimates and usual definition of the scattering amplitude [1,3] ,

Adg) = q7" sindy(q) exp(ibilg))

and its first approximation ,

Ag) = a7t sinq) exp(i6{() ) )

one can show that at fixed ¢
140/ Alg) —t]<O() , 1= . (48)

The estimates (46b) and (48) mean that with increasing ! the phase and amplitude of
scattering ténd to zero as the functions ‘6,“) and Am, respectively. : )

The decrease of the scattering amplitide as ! — oo can be qualitatively explained by
the effect of screening but its strict mathematical proof has first been given by
Klarsfeld [13] . Comparing his result

|AP@)/ Adg) —1{=0(F ") |, Iooo |

with the estimate (48} one can easily be convinced that at large ! the functions 61{1) and

Aﬁl) approximate the phase and amplitude of scatiering more exactly than the functions
&P and AP given by the standard Born formulae (3]

ot = - [ VO Fpad=eaP@ (49)

Now pursueing the comparison of the Born approximations 62 and A with the first
approximations 5{(1} and A,(lJ of the theory proposed we should like to note that 6,(1) — 58
and A}l) — AP as B3)(0,z,9) — 0 for all z > 0. This can be verified by assuming
By — 0 in formulae {18c), (40b) and (47). .

Example 4. Construction of low-energy representations

As is known [1,9], the low-energy scattering of two particles is mainly determined by
the behaviour of the potential tail. Therefore, at ¢ < 1 it is extremely necessary [18,19] to
take into account of a long-range potential in the whole region of large distances though
it is rather a difficult task. Its solution by numerical integration of the problem {7) or
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even {11) is rather an inefficient way in comparison with the construction of low-energy
representations [9,20].

Representations of that type for the functions (10) and (13) can be obtained by using
the known asymptotic forms of the Coulomb functions [8,16] as }5j — oo and perturbation
theory. This can be exemplified for the case V. > 0. )

The key idea of the construction proposed below is to choose the point b so that at
z < b one could use the results of the previous paper {20]; and at 2 > b, the results of the
present work.

Let ¢ — 0, [ be fixed and by definition

b= =(/ap (1+(1+ 1+ /)" ),, . (50)

where 2/3 < p < 1, and z. is the Coulomb turning peint [1]. Then, b < z. and in the
interval [0, 5] the conditions ¢ ~ 0, z < z. hold which allow one to change the functions
F, G and ¢*, s* by the corresponding finite sums of Bessel-Clifford series and expansions
{ ct(z.q) } IR EC O S { () } (51)
si(z,q) (qu(q))H'u‘l)‘f2 vt Sia(T) '

The way of constructing the latter has been proposed in Ref. [20]. Also, expansions of
the functions (10b) and (13) as ¢ — 0 and = < b < z, have been derived in that paper.
By the definition (50) b — co as ¢ — 0; therefore, for any potential satisfying inequality
(8) the condition (21) is fulfilled at small enough ¢. At g like that and = 2 b any of the
functions (10) and (13) can be approximated by the function ) mo= 0,1,...; given
by the corresponding formula (32). To construct the asymptotic {¢ — 0) estimates of
accuracy "™ f of such an approximation, one should, first, consistently determine the
behaviour of the functions I, v, w, y‘#(—” and Dfm as ¢ — 0 and z > b, then by formulac
(33a) obtain asymptotic estimates for the funclions (et and (™st and finally, using
definitions (10}, {13) and (32) construct asymptotic estimates for all other functions ) f,

As an example, it is useful to estimate a relative accuracy of the first approximation
for the scattering phase generated by the long-range potential

Vizg)~azx™ |, d>2 , z31 (52)
and to reproduce from that estimate the known result [21]: &(q) = O( 6P(q) ) as ¢ — 0.
. In what follows we assume that ¢ > b, ¢ — 0 and [ is fixed so that 2ql(I + 1)« 1.
By the definition (50) b = O g~2* }; therefore, for the potential (52) inequality (21} is
valid at '

¢ < amal = ((@41)/20 ) @ DA )

and the functions (8} and (22c¢) are such that
Ib,3); wlbz)=0(¢#ED) . (53)

A rough estimate [8] [G{p,n) | < O(q~"®) is sufficient to derive from the definition
(22d) the inequality
w(b,x,q) £ 07 - (54)
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By virtue of the t‘epz;esentations (51) and equalities (17) and (18b},

Flat), o) =00) i s, W e =0(eCHa)) - (59)
Relations {53)-{55) allew one to estimate the functions (22b) and then to obtain the
asymptotic form of inequalities (33a):

et (z,q)| < O(g@ IR (T(2m 4 20(-m) + 1))
(56)
|(m)5+(x,q) | < O( q'l(d—Z)(m-Fl)P/l"(gm +2) ) , m=01,....

Now, using the definitions (13a), (32a) and estimates (55) and (56) one can derive the
sought relation :
| tan6M(g) / tan 6(g) — 1] < O(g*#=22) | (57)
and thus to prove for the first time the following statement: all terms of the asymptotic
expansion of the funetion tan §07(g) decreasing stower than O( g" =37} are the terms of
the asymptotic expansion of the funclion tan 8{g).
IL remalns to show that inequality {57) results in the relation

tan §{q) = O(1an 6%(¢)) (58)

that has first been established in Ref. [21] and implies that leading terms of low-energy
asymptotics of the scattering phase and its Born approximation {49) depend on ¢ in a
similar way, namely as ¢2%-%,

Owing to the estimates (26) and (53) ihe integral By is such that | By | < Of 2442},
therefore, the definition (32a) results in the asymptotic equality §3(g) = O{6%(¢)). The
latler and inequality (57) gencrate the relation (58), which was to be proved..

4. Conclusion

The main results of the present paper are the following.

The complete construction and analysis of perturbation theory arc given for the one-
dimensional scattering problem (7) with the condition (8). For this theory we lave es-
Llablished: a sufficient condition (21}, the range of applicability {b > b or I > ,.(8)
independently of whether V, < 0, ¥, > 0 or V¥, = 0) and majorant estimates {33) and {41}
of absolute accuracy | ™ f | of approximation f =~ (U of cach function [ investigated. It
is sliown that these estimates can be improved if the structure of the Coulomb functions
is taken into account in more detail. '

1t is explained how the constructed theory can he applied in order to take correctly
inte account the potential ¥V at z > & > 0 (in some casés, at all x 2 0), to get estimates
for the normalization factor N* and to study the preblem {7} in the low-energy and large
angular momentum fimit. It is the first time that estimates (42}-(44), (48} and {37} arce
obtained.

I conclusion, we would like to note the following.

In the present paper. the lincar version of the variable phase approach [9,10] is sup-
plemented by a method of constructing an irregular wave unction.

Usually, a perturbation theory is construcied for studying only one of the unknown
functions, for instance, a scattering phase or a regular wave lunction [1-4]. The proposed
perturbation theory allows one not only Lo fnvestigate in detail all the functions connected
with the initial problem {7} but is an-asymplotic metlod in two physically interesting
limits.
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