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1. Introduction 

Perturbation theory [1,2] is one of the powerful mathematical methods of investigating 
quantum mechanical problems. Many versions [1-4] of this theory are realised by the 
uniform, from the mathematical viewpoint, scheme based on the iteration method known 
in the theory of di:fferential equations [5]. In that scheme, one can, rather conditionally, 
distinguish five basic stages. 

Stage 1. The initial problem for a set F of unknown functions is formulated in terms 
of new unknown functions forming some set y. This formulation should satisfy two basic 
requirements: first, the representation 

f = J(Y, ... ) (1) 

of each sought function j, connected with the initial problem (f E F), should be rather 
smooth and simple; second, the problem for new unknown functions should have a form 
most convenient for its investigation by the standard iteration method. 

Stage 2. By this method, each function y of the set Y is put into correspondence with 
the iteration sequence {y(m)}~=-l· Usually, as its first element y(-l) one uses a known and 
easily calculable function having a simple physical meaning and the rest of the elements are 
constructed in the following recursive way. Index m successively (m = 0, 1, ... ) increases. 
At each step, the element y(m) is determined by the equality 

ylm) = y( y(m-1), .. •) (2) 

i.e., is assumed to be equal to the right-hand side of the relation 

y = y( y, ... ) (3) 

determining the corresponding function y, in which all the functions of the set Y are 
replaced by (m-1) elements, found earlier, of the corresponding iteration sequences. This 
change generates a set y(m) from the set Y-

Stage 3. First, the conditions are determined under which for any function y of the 
set yin a predetermined sense ( for instance, in the C0-metric {6]) the following limiting 
relations hold: 

m --> oo (4) 

due to which approximation y ~ y(m) of the function y of the elements y(m) of its iteration 
sequence is valid at large enough m. Then, the accuracy (m)y of that approximation is 
estimated. 

Stage 4. Each sought function f of the set F is put into correspondence to the se­
quence {f(m)}~=o· Each its element is determined as right-hand side of the corresponding 
representation (1) in which each function y is replaced by the function y(m-l) approxi­
mating it: 

m = 0,1, ... (5) 
Then, it is proved that the limiting relations 

Jim) --> J m --> oo (6) 



hold in the same sense and under the same conditions as the relations (4). 
Stage 5). It is analysed how sufficient conditions of perturbation theory and the 

relations (6) depend on parameters and functions containing in them. The main aim of 
that analysis are: to establish all the cases in which sufficient conditions hold; to indicate 
the additional conditions under which perturbation theory becomes more effective and to 
explain the meaning of the last conditions from intuitive-physical point of view. 

Physical and mathematical intuition is the guarantee of successful realisation of the 
first and second stages of the above-described sheme. This intuition helps one to re­
formulate the initial problem and choose the zero approximation in a most appropriate 
way. 

As a rule, the third and fourth stages of the above scheme are most difficult. However) 
they provide a mathematical correctness of perturbation theory developed, i.e. ensure 
that, first, the constructed function f{m) iS really an approximation of the function J 
studied, and second, is an approximation being improved with increasing m. lt is obvious 
that the use of J(m) instead of f without such an assurance is senseless. A rich and 
brilliant collection of instructive examples confirming this statement is available in tltc 

book [7] by Peierls. 
The last stage is an urgent and interesting investigation which establishes tlJC r(;gion of 

applicability of perturbation theory and, moreover, discoveres new possibilities for using 
of this theory. 

The present paper is aimed at constructing, according to the above-described scheme) 
a peculiar perturbation theory for the one-dimensional SchrOdinger scattering problem: 

(a; -l(l + I)x-2
- l!;(x)- V(x) + q' )uf(x,q) = 0 x En+ (7a) 

ur = Q( X±(i+I/2)+1/2 ) X~ 0 (71>) 

uf(x,q) ~sin( p- ryln2p- (21 + 1 'F l)rr/4 + 5d(q) + 51(q)), x ~ oo (7c) 

with really fixed parameters land q (IE n+:::::: l: 0 S l S co, 0 < q <co), Coulomb 
potential 1<: = signR/x and the potential V obeying the only rather a general condition 

J,(b, x) = ( 2rr /(21 + I) ) l/2 [ t IV( t) I dt < oo (8) 

Here we have used the system of units, in which ft = 211- = 1, instead of the distance ·r 
anJ momentum k we have introduced the dimensionless independent variable x = r/IRI 
and dimensionless parameter q =:== kiHI, the ilohr radius [1] H =:== h2 /2f.1-Z1 Z2c2 is deter­
mined so that signR = signlt~, and the symbols p =:== kr = qx, 11 :::::=: 1/2kR = signR/2q, ut, 
u;- and 61 denote, respectively, the standard Coulomb variable, the lommerfeld parame­
ter, the sought regular and irregular wave functions aud the scattering phase generated 
by the interference of the Coulomb potential and the potential V in addition to the pure 
Coulomb phase 8c1. 

Further, where possible, the inJex l is omitted; if not specified, it is assumed tha.t 
x En+, p = qx, and the symbol b denotes a certain fixed value of the variable x. 
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2. Perturbation Theory 

Stage 1. The Coulomb functions [8] F,(p,~) and G,(p,~) are thoroughly studied 
and coincide with the solutions u+(x, q) and u-(x, q) of the problem (7) in the trivial 
case (V = 0). Therefore, it is reasonable to use F and G as known and , to a certain 
extent, standard functions. Moreover, to use them so as to reduce the initial problem to 
a simpler one. Just for this purpose, the method of varying constant coefficients [5] ( in 
fact, equivalent to the linear version of the variable phase approach [9,10]) is applied as 
follows. 

Instead of each sought function u+ and u- the couple new unknown functions c+, 
s+ and , respectively, c-, s- are introduced. By definition c± and s± are "constant" 
coefficients [5] or amplitude functions [10] satisfying the following Lagrange identities [11]: 

(9) 

The solution u+ and then u- is sought for in the form 

(lOa) 

where 
(lOb) 

and N±(q), and a(q) are determined as factors ensuring the normalisation (7c). 
By the known method [5,10], based on the substitution of the functions u± in the form 

of {lOa) into eq. (?a) and subsequent use of the Wronskian relation [8] 

G(p, ~) B.F(p, ~) - F(p, ~) 8.G(p, ~) = q 

and the identity (9), one can get two systems ( the first for c+ and s+, and the second for 
c- and s-) of ordinary linear and homogeneous differential equations of the first order: 

(lla) 

For the wave functions u± in the form of (10) to have the required asymptotics (7b), 
the systems of eqs. (Ila) for c+, s+ and c-, s- are to be added by the corresponding 
boundary conditions: 

{ c:(x,q) } ~ { 1 } + q-1 !." V(t) F(M) { +G(p,~) } dt (11b) 
s (x,q) 0 0 -F(p, ~) 

and 

c-(x,q) ~ c-(x0 ,q) + q-1 1" V(t) G2 (p,~) dt 

"' 
s-(x,q) ~ -q-1 

[ V(t) F(p,~) G(p,~) dt (llc) 

Here x --+ 0, p = tq; if the Product V(x) Cfl(p, 71) is integrable in the vicinity of zero, 
then x0 = 0 and c-(x,q) = 0 otherwise x0 is an arbitrary but fixed parameter satisfying 
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the inequalities x < x 0 and x 0 q <t: 1 ; and the functions c- and s- are derived by the 

method described below. It is based on the displacement of boundary conditions from 

the point x = 0 to the point x = x 0 and on the identity 

( 12a) 

for the Wronskian relation [5] of the problem (11). The method consists in the following 

construction. 
So let the function V(x) G2 (p, 77) be integrable in the vicinity of zero. Then, according 

to (llb) and (11c) the function c-, unlike the functions c+, s+ and s-, has asymptotics 

diverging as x-----+ 0. The values of.c+(x0 ,q), s+(x0 ,q) and s-(x0 ,q) are. found by solving 

the problem (-11) for the functions c+ and s+ in the intervat [O,x 0], and correspondingly, 

by formula (llc) for the asymptotics of s-. These values are substituted into the identity 

(12a) written down at x = x0 • The equation derived is solved with respect to c-(x0 , q). 

Now, with the values of c-(x0 , q) and s-(x0 , q) being known, the sought functions c- aJl(l 

s- are given at x ::; Xo explicitly by their asymptotics (llc) and at x 2: x 0 they em: 

determined as a solution of eqs. (11a) with the boundary conditions at the point x = x0 . 

Using the construction described and the known theorems [5] one can easily prove, 

first 1 that under the condition (8) both the problems (11) are uniquely solvable in the 

class of functions having first derivatives on R+, and second, that the solutions of these 

problems satisfy the identity (12a) and the follpwing inequalities: 

ls±(x,q) I< oo 

x>O 

(12b) 

(12c) 

For instance, the identity (12a) is valid because from cqs. (11a) and the a.symptotics 

(lib) and (llc) it follows that ilxW(x,q) '::' 0 for any x > 0 and W(O,q) = 1. 

Since both the problems (11) are uniquely solvable and their solutions have the prop­

erties (11b), (llc) and (12), each of the functions .4(x,q) = O(x,q), .f\T±(x,q), a(x,q) given 

by the corresponding formulae 

8(x,q) '::'.arctan( s+(x,q)jc+(x,q)) 

( 
2 ')'fl/2 

N±(x,q) '= (c+(x,q)) + (s+(x,q)) 

a(x,q) "0 -c+(x,q) c-(x,q) -- s+(.x,q) s-(x,q) 

is everywhere unique and timited, and therefore, has the finite limit. 

A(q) "'}~! A(x, q) 

( J.3a) 

(13b) 

( l3c) 

(14) 

Using t.h~se properties of the [unctions (13), t.hc identity (12a) and the known asymp­

t.olics of the Coulomb functions as .T ~ 00 1 one can easily bf~ convinccJ in that t.he 

wave functions (JOa) will have t.hc required asymptotics (7c) if the :->ca.ttering, phase b(q) 

and normalisation factors N± and a(q) arc determined as the limits (14) of the relevant 

functions (13). , 

It is to be noted that each of the functions A= c±, s± <'tnd A= 0, N±, a determined 

by the relations (1]) and ( 13) has a rernarlmblc property 

ACc,q)"' A(b,q) X 2: b (15) 
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if V(x) = 0 at x?: b, and therefore, has a clear physical meaning. Indeed, the values of 
the functions c±(x,q) and s±(x,q) at some point x =bare the amplitudes with which 
the Coulomb functions F and G are contained at x = b in the wave functions (lOb) 
nonnormalised to unit density of the flux as x --+ oo, \vhereas the functions 6(x, q) , 
N±(x,q) and o(x,q) at the point x = b, as it follows from formulae (13)-(15), are the 
phase D(q) and the normalisation factors N±(q), o(q) in the case when the potential Vis 
cut off at that point. 

So for the construction of solutions u± of the initial problem (7) by formulae (10) one 
should solve the problems (11) and then find the limit (14) for each function {13). 

However, this is not the final stage of the reformulation of the problem (7). A further 
reformulation is prompted by the following obvious facts: 

1. the structure of the problems ( 11) is so simple that. their numerical solution in some 
finite interval [0, b] = {x, b: 0 :S x :S b < oo} does not cause any difficulties; , 

2. usually, in the inner region, i.e. in that interval, the potential v· is a function more 
complicated for analytical study of the problem {11) than in the outer region, i.e. 
in the infinite half"intcrval [b,oo)::;::: {:r,b: 0 < b :S :r < oo}; 

3. from the condition (8), determining the class of potentials used, it follows that 
V(b)~Oasb~oo. 

From the above-mentioned facts it seems quite reasonable. to calculate the functions 
c± and s·± in the interval [0, b] numerically, to supplement eqs. (lla) by the limiting values 
c±(b,q) and s±(b,q) found, and than to conStruct the solutions of thus obtained problems 
in the half-interval [b, co) analytically, namely as limits c±(oo) and s±(oo) of some sequences 
{c±(m)}~=O and {s±(m)}~=O uniformly converging in the C 0-metric if x E [b, oo] , m--+ oo 

and b is large enough. 
To construct those sequences it is proposed to introduce instead of the functions c± 

and s± new unknown functions yf and yg= satisfying the uncoupled integral Volterra 
problems [12] that can easily be inv(:stigatcd by the iteration method. The derivation of 
tl1ese equations is simple enough a.nd ccm be realised. as follows. 
. It is assumed that the functions c± and s± are known at some point x = b an'd 

connected with new unknown functions !J~ and vi' by the fol!owitig formulae: 

{ 
c±(x,q)}- ({+I}· b. J){ Y~(",q)} 
s±(x,q) -exp -1 · JJJ( ··~·,f/ yf(:r,q) ( 16<i) 

Here B3 is one of the three integrals used !J"•low and determined by 

where n = 1, 2, 3; p = tq and b,,,,.. is the h:nmeckt'r symht)l [8]. Owing to lhP condition 
(8) the integrals B1,1. and fh,3 arc always limit.<•d, Hnd thP inlt~gr;d BI,J can diverge ;I! lh<' 
lower limit only iu the case b = 0, l > 0. 

Equations (lla) with thf' boundary com!it.iolls shiftt·d lu t.ht~ point ,r ~'00 (J ;nc rcdnn'd, 
by the substitution (16), to difl"ercnt.ia! equations for Tit'\\' uuknown functions yf <tlld y'} 
given at that point by . 
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yf(b,q) = c±(b,q) yf(b,q) = s±(b,q) ( 17) 

The problems thus obtained are written in an equivalent ·integral form 

yf( x, q) = yf'( _,) ( x, q) + (X IF;(b, q) I yf(t, q)) (!So) 

Hereafter the indices i and j = j(i) take the values 1, 2 and 1 + 0;,1; by definition it is 
assumed that 

±(-')( ) - ±(b ) Yi x,q :;::: Y; ,q (!Sb) 

and the operators A map any function z(x,q) into the integrals 

(xiF,(b,q)lz(t,q)) = {' P,(b,t,q)z(t,q)dt 
. }, ( !Sc) 

with the kernals 

P;(b, x,q) = iJ,B;(b, x, q) exp( ( -1) 0 2Ba(b, x, q) ) (18d) 

containing the functions (16b). 
As early as the fin>t iteration eqs. ( 18a) are diagonalised and take the form 

yf(x, q) = yfl'1(x, q) + ( x IT;( b, q )I yf( t, q)) (19a) 

where fOr brevity the following notation is used: 

±to)( l- ±HJ( J ( IP.. (b ll ±Hl( J J Y; x,q =Yi x,q + x i ,q Yj t,q (19b) 

and the operator products 'h ::::: Pi Pi are determined in a standard way: for any function 

z it is assumed that f. z = P; (Pi z) and . 

(xiT.(b,q)lz(t',q)) = ;.• P;(b,x,q)dt [ P;(b,t',q)z(t',q)dt' (19c) 

According to (17), (!Sb) and (19b), eqs. (19a) determining the functions Yi and Yi 
or Yl and Yi are connected with each other only by the constants, known by assumption. 
These constants are the values of the functions c+ and s+ or c- and s- at the point x =b. 
Such a simple connection, achieved due to a properly chosell substitutiOn, allows one to 
analyse the solutions Yi and Yt or Yl and Y2 of the problems (18) independently from 
each other and to realise rather elegantly the remaining stages. 

To a great extent, this is .favoured by the simplicity and smoothness of the represen­
tation ( 1) of each sought function of the starting problem (7) ~nd each auxiliary func­
tion (13). These representations are easily found by substituting (16) into formulae (10) 
and (13). 

Stage 2. To investigate new problems (3), i.e. the problemS {18) in the half-interval 

[b, oo ), we introduce iteration sequences {yt'(m)}~=-t with the elements determined by 

formulae (2) in the following recurrent way: Y;±(-t) are the constants (18b), y'f(o) are 
the functions (19b), and then as the order of the index m increases ( m = 1, 2, ... ) it is 
a.ssurned that y~(m) is the right-hand side of the relevant eq. (1 Sa) in which yf is replaced 
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by y;{m-1). By virtue of this definition and the relations (18b) and (19c), two equivalent 
representations hold: 

(20a) 

m 

ytlm>(x, q) = y/'~-'>(b,q) z)x ITf(b,q)l e(t)) 
p=O 

m 
±{ 1) """' ~ A +Y;- (b,q)L..(xiTfP;(b,q)IO(t)), (20b) 

p=O 

where m = 0, 1, ... , 0 is the theta function [8] and the integer degrees of the operators T, 
are determined in a standard way: tio z = z ' and tr z = t ( rr- 1 z) for any function z 
and any p = 1,2, .... 

The simplicity and equivalence of these representations essentially simplify the proof 
of the key statement of the proposed theory. This statement establishes the relation (4) 
and is formulated below as the theorem. 

Stage 3. 
Theorem 

Let x E [b,oo), b > 0 and the function (8) be limited so that 

I,(b,x) < (1/2)ln3 , xE[b,oo) . (21) 

Then, the sequences {yt/m)}~=-1 uniformly converge in the C0-metric to the solutions 

vt1 of the problem (18) and the differences {m)yt1 = yt1 - y~1(m) satisfy the following 
inequalities: 

in which i = 1,2; j = 1 + 0;, 1 i m = -1, 0, ... ; r is the gamma function [8]; 

DtJ,m(b, x, q) = I Yt/-'1(b, q) I w;-'(b, x, q) ( O(m) +0( -m- 1) v!{b, x)/2) 

+I yf.t'1(b, q) I w/-;(b, x, q) v,(b, x)/(2m + 3) 

v,(b,x): ( exp(2I,(b,x))-1 )12 ; 

w,(b,x,q) = max { ( (21 + 1)/(2~p2 ) )
112 

G/(M)} 
b$_pfq$_z 

Proof. 
The Klarsfeld inequalities [13] 

(22b) 

(22c) 

(22d) 

(23) 

valid under the conditions p' = qx' :5 p = qx. are the key ones for proving the theorem 
by the method of contracting mappings [6]. 

First, it is necessary to prove auxiliary majorant estimates for absolute values of the 
integrals B2 , B3 of (16b), the kernals Pi of (18d), all the images Pi 0 , T, () , T, Pi 0 of 
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the theta. function entering into the representations (20), and finally, for the differences 
±(n) ±(m) 

Yi - Yi · 
By virtue of the relations (8), (16b) and (23) 

IB.(b,x,q) I< I(b,x) , n = 2,3 . (24) 

If in the definitions (18d) one majorizes q-1 F 2 and B 2 , B 3 by the right-hand sides of 
inequalities (23) and (24) and then uses the notation (8), (22c) and obvious identity 
D:t:v = Dxi exp(2/), one can get the following estimates: 

I P;(b, x, q) I < ( 0;,.( (21 + 1)/2,-p' ) '" G'(p, q) + 8,,,) a.v(b, X) (25) 

Owing to them and the definitions (18c), (22c) and (22d), 

l(xll\(b,q)IO(t))l < v(b,x)w'-'(b1x,q) {26) 

To prove the relations 

I (X IT[( b, q) I 0( t) ) I < lx a,, v( b, t,) dt, l' a,, v( b, t,) dt, .. ·["-' a,,, v( b, t,,)dt,, (27 a) 
= v 2'(b,x)jr(2p+ l) (27b) 

in the case of p = 1, one should assume in the integral (19c) z = 0, majorise B3 and 
q-1 G(qt1 ,t]) F(qt2,'t]) by the right-hand sides of inequalities (24) and (23) and then use 
the definitions (8), (22c) and the identity Dxv = Dxl eXp(2I). Further, taking into account 
the identities 1"{' =iT- I 'i'1 , one can easily prove by induction the validity of the relations 
(27) for any p = 2, 3, .... 

Unfortunately, the functions ( x iTf(b,q)l O(t)), p = 1, 2, ... , cannot be estimated in 
an analogous way. The fact is that according to formulae (16b), (18c) and (19c) the 
arguments P1 = qt 1 and p2 = qt 2 of the Coulomb functions F(p1 ~"7) and G(p2 ,ry) which 
are comprised in the kernels of the,operators i'f, p = 1, 2, ... , do not satisfy the condition 
p1 < p2 under which for lq-1 FGI inequality (20) holds. However, by virtue of the 
definitions Ti = P, Pi and 1'f = T!- 1 'i;, p = 1, 2, ... , the equalities if = P2 i'f- 1 P1, 
p = 1, 2, ... are valid. Owing to them and the estimates (24-27) one has 

l(xiT;'(b,q)IO(t))l <w(b,x,q) [ a,v(b,t)l(tlir'(b,q)l8ev(b,t'))ldt (28a) 

<w(b,x,q)v2'(b,x)jr(2p+l) p=l,2,.... (28b) 

To prove the bounds 

1 ( x (i'[(b, q) P,(b, q)l O(t)) I < w'-'(b, .x, q) v''+'(b. x) I r(2p + 2) {29) 

in the case i = 1 one should first majorizc the function ( t1P1 (b, q)l O(t')) in the identity 
'i'f i\ 0 = ij ( f\ 0 ) by inequality (26) anrl then apply the estimate (27a); in the case 
i = 2 or1c has to use the identity i'f P2 :::::: P2 if and the e,stimates (25) and (27b). 
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Using the representations (20), the definitions (22b). (22c) and tl1e results (26)-(29) 
obtained one can easily show that 

n~m~t 

lvt(")(cr,q)-yf(m)(x,q)l < Dtm(b,x,q) L v'(p+m+>l(b,x)jf(2(p+m+l)+l) (30) 
p=O 

for any i = 1,2; j = 1 +0;,1 ; n = 0,1, ... and m = ---'-l, ... ,n-1. 
Now, having all necessary estimates, one can immediately prove both the statements 

of lhe theorem. Inequalities 0 S::: v(b, x) < 1, (following from the condition (21) and the 
defmition (22c) ) and the estimates (27)-(30) imply that in the half-interval [b, oo) the 
operators T, and T; P; are contracting ones [6] and the sequences {y;{m)}~=~I converge 
uniformly [6] to the functions yf satisfying eqs. (I Sa). Due to thise factes, in inequali­
ties (30) one can put n = oo and Yt(oo) = Y't in order to get the estimates (22), using the 
known power expansions [8] of the hyperbolic cosinuse, and thus to complete the proof. 

Uy virtue of the theorem the condition (21) is suf-ficient for the fulfillmeut of the 
relatiollS (4) in the C0 -metric in the half-interval [b,oo). 

Stage 4. Let the problem (11) or (18) be solved in t!JC interval [O,b], where b is such 
that the inequality (21) is fulfilled, and the sequences {c±(m)}~=o and {s±(ml}:=o, are 
defined as follows: 

{ 
c±(ml(x,q) } _ { c±(x,q) } , { +I } { yf(x,q) } ±(m)( ) = ±( ) = cxp( -I IJ,(b,,r,q)) ±(, ) B x,q s x,q Yz .r,q 

ifx:S:band 

{ 
c±(ml(x q) } { ' = exp s±(m}(x, q) - ( 

if b s; :~; s 00 . 

+I 
-I } { 

±(m-1)( ) } 
I33 (b,,r,q) O(m -I)) y~ 1 .,_ 11 x,q 

!h (x, q) 

(3la) 

( 31 b) 

Here m = 0, 1, ... , B 3 is the integral ( 16h), V~( -I l Bre the constants ( ISb) and Yt(mJ 
arc the functions (20). 

These sequences converge uniformly in the whole scmiaxis n+ to the solutions of the 
problems {11). The functions c±(O) and s±(O), owing to equalities (18b) and (:~l), have the 
property ( 15) and are the exact solutions of these problems if the potential is cut off at 
the point x = b. 

Due lo the above-mentioned properties of the sequences {c±(m)}:'=o and {$±(m)}:=o 
the following two assertions are valid. 

First, to each function f = {),N±,a,U±,u± there can be put into corrcspo1Hlcncc {5) 
the sequence {f{m) }~=O uniformly converging Oil J?._+ t.o tltis function. For this purpose, 
one should determine the clements f(m) as the rig,ht-h;-llld sides of the rl'lc\·aut represen­
tations (10) a.nd (13) in which the functions c± and.~± arc Stlbst.itutcd by t.hc ftllt<·lii)JlS 
(:.~) ), i.e. t.o assume t.ha.t, at <my m = 0, I, ... illld :r E R"1 

(:L:a) 

') 



(32c) 

(32d) 

±im)( ) _ N±lm)( ) u±im)( ) + { 0 } 
u x,q = oo,q x,q (m)( ) +(m){ ) 

a oo,q u x,q 
(32e) 

Second, the functions 6°, N±{o), a 0 , u±(O) and u±(O) thus determined have an apparent 

physical meaning: they are the relevant functions (10) and (13) in the case when the 

potential V is cut at the point x == b. 

Using formulae {10), {13), (22), {31), {32) and the identities f = Jloo) one can easily 

estimate from above the differences {m) f = f- J(m) for the functions f = c±, s± , 

{ 
l(m)c±{x,q)l} ({+I} ) { Nm-l(b,x,q)} 
l(m)s±(x,q)l <exp -1 B,(b,x,q)O(m-1) Df.m-l(b,x,q) 

X coshv(b,x) v2m(b,x)ff(2m + 1), m = 0, 1, ... , {33a) 

and ,then for all the functions f = 6, N±, a, U±, u± . After this one can easily verify 

that these estimates have the form of the following asymptotic inequalities 

l(m)ft(x,q) I~ O(x- b) 0( v 2m+'(-m){b,x)/f(2m +I)) 

11m)uf(x,q) I< o( v'm+'l-m)(b, oo) I f(2m + 1)) 

if band 1 are fixed and m ......... oo, or if m is fixed and v1(b,x)-+ 0 for all x ~ b. 

(33b) 

The validity of the estimates (33b) in the first case implies that relations (6) are proved 

under the condition (21 ). Consequently, the fourth stage is accomplished. 

The validity of these estimates in the second case allows one to use perturbation theory 

for constructing asymptotics of the functions (10) and (13) in the region x 2": bin two 

interesting, from the physical point of view, limits: l--+ oo at fixed q and q --+ 0 at fixed 

l. To show how to do that, one should first analyse the condition (21) and the estimates 

{-33). 
Stage 5. At x 2": b the functions (8) and (22b) arc monotonously vanishing if lis fixed 

and b increases , 
v1 (b,x)~o (34) 

or vice versa, if b is fixed and l increases , 

v,(b, x) = 0( r''') l~oo (35) 

Therefore, inequality (21) is certainly valid in two cases: first, at any fixed l and any b 

exceeding the root bmin {l) of the equation 

I1(bm,.{l),oo) = ( 2~/(21 + 1) )'1' r t I V(t) I dt = (ln3)/2 
}bmm(l) 
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and second, at any fixed b and any l exceeding the root 

lm;n(b) = 1r( (2jln3) t IV(t) I dt) -1/2 1
= 2 

(37) 

of the equation 
J,m,.(b)(b,oo) = (ln3)/2 

Thus, perturbation theory constructed can certainly be applied at x 2:: b > 0 in the two 

above-mentioned cases. Due to relations (34) and {35), the estimates (33) characterizing 

tl:ie efficiency of this theory, improve in the first case with increasing band in the second 

case with increasing l. 
The qualitative explanation of these conclusions is the following. According to inequal­

ity (8), in the region x ? b > 0 the potential Vi' 'creened (I V(x) I <; 1(1 + l)x-2 ) by 

the repulsive centrifugal barrier, thus being perturbation if lis fixed and b is rather large 

( b > bmin(l)) or vice versa, if b is fixed and lis rather large ( l > lmin(b)) . Obviously, 

the degree of screening improves in the first case with increasing b and in the second case 

with increasing l. 
It is intuitively clear that at sufficiently large l the centrifugal barrier can screen the 

potential, satisfying the condition (8), everywhere, i.e. at all X E n+. Therefore, it is 

interesting to generalize perturbation theory to the case b = 0. For this purpose, it is 

necessary to reconsider the proof of the theorem and all the subsequent constructions first 

for the functions with the sign " + " and then for the functions with the sign 11 
- ". 

Let b = 0 and the condition (21) be fulfilled. Then, owing to formulae (llb) and (17), 

y;{-l)(O, q) = ai,l I i = 1, 2. Therefore, the representations (20b) for the functions Yt{m) 

are simplified , 

m 

Yf(m)(x, q) = ~) x I:I'[(O, q) ft;-'(0, q)l O(t)) m = 0,1, ... , (38) 
p=O 

and what is more important, contain only limited operators. Using formulae (38) and 

assuming w = 1, one can easily be convinced in the following. 

For the functions yf, v;t(m) and (m)yf the theorem remains valid. Consequently, valid 

are also all the subsequent assertions concerning the functions c+, s+, 0, N±, u+ and u+ 

whose representations (10), (13) and (16) do not contain the functions y} and Y2. 
Then, the relevant formulae (31) and (32) are essentially simplified. For instance, at 

m = 0 they reduce to the identities 

c+(O) = N±(O) ;: 1 1 s+{O) = s(o) = 0 1 u+{O) = u+(O) = F 1 (39) 

and at m = 1 to the equalities 

c+(ll(x,q) = exp( B3(0,x,q)) s+(l)(x, q) = ( x IP,(O, q)l 0( t) ) / c+(l)(x, q) 

ol'l(x, q) = arctan ( exp( -2B3 (0, x, q)) ( x IP2(0, q)l O(t)) ) 

N±(ll(x,q) = ( cos6<1l(x,q) exp( -B3(0,x,q)) t' 
11 

(40a) 

(40b) 

(40c) 



u+III = exp( 8 3 (0, x, q) ) ( F(p, ~)+tan oi'l(x, q) G(p, ~) ) {40d) 

u+l'l(x,q) = cosoi'l(oo,q) exp( B3 (x,oo,q)) ( F(p,rf)+lano1 1 l(x,q)G(p,~)) (40e) 

Finally, the estimates (33a.) for the functions (m)c+ and (m)s+ are also simplified. For 
instance, at m = 0, 1 

I (m)c+(x, q) I < (1/2) exp( 8 3 (0, x, q) Om,o) v2(0, x) cosh v(O, x) 

( 41) 

Let now b --+ 0 and the condition (21) be fulfilled at b = 0. In virtue of the relations 
{llb) and (17) the representations (20) for the functions Yi(m) always (even at b = 0} 
contain the mappings A 0, Tf (), 'i[ P1 (}of the theta function. The estimates {26), (28) 
and (29) of these mappings become meaningless at b = 0, as w(b, x, q) ---+ oo, if b --+ 0. 
Moreover, as it follows from the definitions {18c) and (18d), 

I (X IA(b,q)l O(t)) I~ 00 V G2 rf_ -C/o,xo) 

From the afore-said the following construction seems to be reasonable. First, by the 
method described at stage 1. the functions c- and s- are found in the interval [0, x0 ]. 

Then, perturbation theory is used in the half-interval [b,oo). Under a construction like 
that it is assumed in formulae (16)-(32) that b = x 0 , the functions c-(ml, s:-(m), o:(ml, 

u-(m), u-(m) have a correct a.symptotics at zero, and the relevant estimates (33) are valid 
at all x ~ 0. 

So if inequality (21) is valid at b = 0, then perturbation theory can be used to a.p­
proximate the functions c+, s+, 0, N±, u+ and u+ on the whole semi axis n+ and to 
approximate the functions c, s-, a, u-, and u- on the region x ~ x0 . According to 
equalities (36} and {37), the above condition is fulfilled if lis fixed and the potential V is 
such that bmin(l) = 0 or if Vis an, arbitrary {satisfying the condition (8)) potential and 
l > lmin(O). In these cases formulae (38)-(41) hold. 

Now, it is necessary to study the non-Coulomb limit R -too. As lf(x) ~ R2V(xiRI}, 
where V is the potential in the r-represcntation, the integral (8), and consequently, tbe 
condition (21) are independent of R. This can be verified by writing them in the variable 
r. The key estimates (23) arc also independent of Rand remain valid [13,15) as R -too, 
when [8] F1(p,ry) ~ j 1(p) and G1(p,ry) ~ -n1(p). 

Owing to the afore-mentioned facts, all said above (all conclusions, relations and 
formulae) remain also valid in the non-Coulomb limit ( Vc =: 0, R = oo) if everywhere 
beginning from eq. (7a) one assumes TJ = 0, x ~ p = kr, q =: 1, F1(p, 11) ~ j 1(x) , 
G1(p,ry) =: -n1(x) and bei\rs in mind that now V(x) = k- 2 V(xfl.~). 

The next interesting limit is Fl -t 0+. In this case, the repulsive Coulomb barrier 
increases (Vc -too) and screens the potential V first at x ~ b > 0 and then a.t nll x ~ 0. 
Unfortunately, we did not succeed in taking this effect into a.ccount in the framework 
of perturbation theory constructed. Indeed, the estimates (33), chnracterising its effi­
ciency, do not improve at R -~ 0+, as contain only tlte hmctiou v which by definition is 
independent of R. 
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Completing the analysis of the relations (21) and (33) it is useful to discuss the quality 
of the estimates (33) and to sliow

1 
the way of their improvement. According to the proof 

of the theorem, the condition (21) and then the definition (22c) of the function v and the 
structure of the relations (33) arc generated by the key estimates (23). These estimates 
do not contain the Bohr radius R as a parameter and are rather rough especially as x --+ 0 
and X--+ 00 when [8] Ft =a( x(/+l) qCJ(q)) and 1·/, Gt = 0(1). What is rllore important, 
the estimates (23) do not contain the Coulomb barrier factor 

C1(q) = (2q)' I f(l + 1 + i/2q) I exp( -11"/4kR) 

and, therefore, they do not take into account the dependence C1(q) --+ oo as R --+ 0+ 
reflecting the efTect of Coulomb screening. It is evident that the estimates (33) also 
do not describe this dependence and are rather rough. Hence, for each function (10) 
and (13) the approximation f ~ J{m) is indeed more accurate than the corresponding 
estimate (33) gives. Obviously, all these estimates can be essentially improved. For this 
purpose, instead of the relations (23), one should use less universal but more accurate 
estimates taking account of the structure of Coulomb: functions in a proper 'vay. For 
instance, a.s q- 0 one can usc the known [8,16] a.'iymptotic (lr1l - oo) representations 
( Besscl~Clifford series [8], WKB-asymptotics [14] and so on) and at 17 = 0 one can use 
uniform in :r estimates [3] 

It is to be noted that perturbation theory can be generalised to the case when the 
potential V decreases more rapidly than centrifugal one hut m6re slowly than the CoU:lomb 
potential and satisfies the condition that is more weak than the condition (8).-namely: 

xl V(x) I C L/o.b) I V(x) I c £/,.=1 O<b<oo 

For a generalisation like that une should use at p ;:}.> I the relations F, G = 0( I) iustead 
of the inequalities (23). 

It is customary to dcmoustrate the cfliciency of the theory, using several examples, 
after its construction. 

3. Examples of Application of Perturbation Theory 

Example 1. Control and improvement of accuracy of the numerical 
solution of the problems (7) and (11). 

ln practice, the problems ( 11) are solved numerically not on the whole scmi<t.Xis n+ 
but on its certain finite interval [O,b], i.e., the approximation l'(x) =::=.: 0, .z· 2:: U, is used 
which is zeroth for the proposed perturbation theory. \:Vith its help one can: C\'illuatc tlw 
accuracy of this approximation {O) f; if llCC"C'ssary, t.o·<:;;nstruct <my fnnct.ion f u[ ( 10). ( 1:q 
more exactly by forpudoc (31) ;md CJ2) with 111 = I; tu chous(' the point b so that tilt' 
function f(m), m. = 0, l found should appr~)Xillld!.e t.lw son~ht. one with the gi\'t'n ah::uhtte 
accuracy e. Such a choice is made in a usual way: the fnnct.ion (m)Q(h,.l'.lf), majoriziug 
I (m) f I, is calculated by formnl<1.c (33) a.nd contpmcd withE ;d .. r 2:: b; if U><lq >c. then 
\.be value of b sl10uld be enlarged until the iuversc t't]lt<tli!y is fullilbl. 
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In a special case, when the condition (21) is fulfilled at b = 0, the numerical solution of 

the problems (11) is not required, and therefore, perturbation theory becomes an effective 

method for analytical investigation of the initial problem (7). In this case, the construction 

of the functions j(ml, m = 0, 1, ... , approximating the corresponding function (10) or (13) 

at all x ;::::- 0, reduces to the calculation of integrals of multiplicity not higher than m + 1, 

and the accuracy of approximation f:::::::::: f(m) is controlled by the estimates (33) in which 

b = 0 is assumed. Especially simple are formulae (39) and (40) determining the zeroth 

and first approximations of the functions c+, s+, {j, N±, u+ and u+. These formulae 

and the estimates (41) .are sufficient for deriving new qualitative results given below as 

examples 2 and 3. 

Example 2. Qualitative study of the factor N+ 

Let b = 0 and the condition (21) be fulfilled. Then, for the normalisation factor 

N+(q)::::;; N+(oo,q) one has the lower bound 

( ) 

-1/2 

N+(q) ~ !+v2{0,oo) coshv{O,oo)( J+coshv{O,oo)( !+v2{0,oo)/4)) , {42) 

which is uniform in energy E = q2.and can easily be proved by formulae (13b), (39)-(41) 
and equalities c+ = 1 +(o) c+ and s+ =(o) s+. This bound allow one to estimate from below 

the function u+ in the region of qx «:: 1, where, owing to the relations (10) and (llb), 

uj ~ Nt(q) xl+l qCt(q). Such a simple estimate may turn out to be rather useful for 

analysing many approximate formulae (for instance, Deser a't. al formula [17]) containing 

asymptotics of the function u+ at zero. 
It is to be noted that the estimate (42) is rather rough: 'it depends neither on energy 

nor on the sign of the potential V. Within the first approximation, more accurate lower 

and upper estimates, 

( ) 

-1/2 

N+{ll(q) > exp( -B3 (0,oo,q)) I +exp( -4B3 {0,oo,q)) v2{0,oo) {43a) 

N+{ll(q) < exp( -B3 (0,oo,q)) (43b) 

arc valid. To prove inequalities (43a) and (43b) one should begin from the definition 

(32b ), and correspondingly, from the representation ( 40c) and theri to take· into account 

formulae ( 40a) and ( 26). 
The following asymptotic estimates 

I N,+(q)- II< OW'1') I N,+1' 1(q) I N,+(q) -II< 0( 1-l) (44) 

determine the behaviour of the normalisation factor as l ----t oo and are derived by formulae 

{13b), (39), {40c) and estimates (45) obtained below. 

Example 3. The behaviour of the scattering phase and amplitude as l -+ oo 

Let l -t oo and q is fixed. Then, as has been ·mentioned at stage 5, at any l exceeding 

lm;n(O) the function f 1 :::: ct, sj, 61, N1± can be approximated on the whole semiaxis 

x 2: b = 0 by the function J/m) given by the corresponding formula (39) or (40). By virtue 
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of the relations (35) the accuracy of an approximation like that improves' with increasing 
l. For instance, the estimates (41) take the form of asymptotic (1---t oo) inequalities 

m = 0,1. 

The latter and equalities (13a), (39) and {40b) generate the following asymptotic 
estimates: 

I tan 8/(q) I < O(lc1
/

2
) 

I tan 8,( q) -tan 8j'1 ( q) I < o(l-'12 ) , I tan 8j'1 ( q)f tan 8/(q) -I I < o(r' ) 
specifying the behaviour of the scattering phase in the limit of a large l. 

Using these estimates and usual definition of the scattering amplitude [1,3] , 

A 1(q) = q-1 sin81(q) exp( i81(q)) 

and its first approximation , 

one can show that at fixed q 

l ---t' 00 

(45) 

(46a) 

' (46b) 

(47) 

(48) 

The estimates (46b) and (48) mean that with increasing l the phase and amplitude of 
scattering tend to zero as the functions ·61(

1
) and Af1l, respectively. 

The deCrease of the scattering amplitUde as l ---t oo can be qualitatively explained by 
the effect of screening but its striCt m'athematical proof has first been given by 
Klarsfeld [13] . Comparing his result 

I Af(q) I A,(q) -!I= O(r'/2
) l --> 00 

with the estimate ( 48) one can easily be convinced that at large l the functions f5p) and 
A~ 1 ) approximate the phase and amplitude of scattering more exactly than the functions 
Of and AP given by the standard Born formulae [3J 

(49) 

Now pursueing the comparison of the Born approximations Of and AP with the first 
approximations ov> and A~ 1l of the theory proposed we should like to note that 0} 1

> ---t Of 
and A~1 ) ---t Af as B3,,(0., x, q) ~ 0 for all x ~ 0. This can be verified by assuming 
8 3,1--> 0 in formulae (!Sc), (40b) and (47). 

Example 4. Construction of low-energy representations 

As is known (1,9J, the low-energy scattering of two particles is mainly determined by 
the behaviour of the potential tail. Therefore, at q <t: 1 it is extrem~ly necessary [18,19J to 
take into account of a long-range potential in the whole region of large distances though 
it is rather a difficult task. Its solution by numerica] integration of the problem (7) or 
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even {11) is rather an inefficient way in comparison with the construction of low-energy 

representations [9,20]. 
Representations of that type for the functions {10) and (13) can be obtained by using 

the known asymptotic forms of the Coulomb functions [8,16J as !771 ----+ oo and perturbation 

theory. This can be exemplified for the case Yc > 0. 

The key idea of the construction proposed below is to choose the point b so that a.t 

x $ bone could use the results of the previous paper J20]; and at x > b, the results of the 

present work. 
Let q --+ 0 , l be fixed and by definition 

b =<X~=< (~jq)P ( 1 + ( 1 +I( I+ 1)/~ )112 
)' (50) 

where 2/3 < p < 1, and Xc is the Coulomb-turning point [1]. Then, b <t:: Xc and in the 

interval [0, b] the conditions q --+ 0, x <t:: Xc hold which allow one to change the functions 

F, G and c+, s+ by the corresponding finite sums of Bessel-Clifford series and expansions 

clx,q- qlq) 2n c,nx 
{ 

±( ) } { ( C2( )(-1±1)/2 } = { ± ( ) } 

4(x,q) - (qCf(q))(+l±1)/2 ~q sf,(x) 
(51) 

The way of constructing the latter has been proposed in -Ref. [20]. Also, expansions of 

the functions {lOb) and (13) as q----+ 0 and x $ b <t:: Xc have been derived in that paper. 

By the definition {50) b----+ oo as q----+ 0; therefore, for any potential satisfying inequality 

(8) the condition (21) is fulfilled at~small ~nough q. At q like that and x;:::: b any of the 

functions {10) and {13) can be approximated by the function f(m), m = 0, 1, _ .. , given 

by the corresponding formula (32). To construct the asymptotic (q __.. 0) estimates of 

accuracy (m) f of such an approximation, one should, first, consistently determine the 

behaviour of the functions I, v, w, y;<-tl and Dtm as q -t 0 and x;:::: b, then by formulae 

(33a) obtain asymptotic estimates for the functions {m)c+ and (mls+ and finally, using 

definitions (10), (13) and (32) construct asymptotic estimates for all other functions (m) f. 
As an example, it is useful to estimate a relative accuracy of the Hrst approximation 

for the scattering phase generated by the long-range potential 

V(x) o- a~-d d>2 x>l (52) 

and to reproduce from that estimate the known result [21]: C1(q) = 0( C1
8 (q)) as q--+ 0 . 

. In what follows we assume that x ;:::: b, q __.. 0 and l is fixed so that 2ql(l + 1) « 1. 

By the definition (50) b = 0( q- 2
P ); therefore, for the potential (.52) inequality (21) is 

valid at 

( 
1/2 )l/2p(d-2} 

q<qm,.(l)o- ((21+1)/2~) (d-2)(ln3)/2lal 

and the functions (8) and (22c) are such that 

I(b,x), v(b,x) = 0( q''(d-Z)) (.53) 

A rough estimate [8] j G(p, ry) j $ 0( q-116
) is sufficient to derive from the defiuition 

(22d) the inequality 
w(b,x,q) <;: O(q..,_4, 3 ) (51) 
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By virtue of the representations (51) and equalities (1-7} and (18b), 

(55) 

Relations (53)-(55) allow one to estimate the functions (22b) and then to obtain the 
asymptotic form of inequalities (33a): 

l(m)c+(x,q)l < O(g41'-'Jim+O{-mJip/f(2m+20(-m)+l)) 

(56) 

m = 0,1, ... 

Now, using the definitions (13a), (32a) and estimates (55) and (56) one can derive the 
sought relation 

1 tano~'l(q)/ tano(q)- 11 < O(g'ld-2IP) (57) 

and t.hus to prove for the first time the following statement: all terms of the asymptotic 
expansion of the function tan O(l)(q) decreasing slower than 0( q4(d-l)p) arc the terms of 
the <lsymptotic expansioll of the function tan /J(q). 

lL remains to show that inequality (57) results in the relation 

tan o(q) = 0( tan o8 (q)) (58) 

!.hat has first been established in Ref. [21] and implies that leading terms of low-energy 
a.symptotics of the scattering phase and its Born approximation {49) depend on q in a 
similar way, uamcly as q2d- 3 . 

Owing to the estimates (26) and {53) the integral B3 is sttch that I B3 1 < 0( q2P(d- 2 ) ); 

therefOI:e, the definition (32a) results in the asymptotic equality ()(ll(q) = O(t58 (q)). The 
latter and inequality (57) generate the relation (58), which was to be proved. 

4. Conclusion 
The main results of the present paper are the following. 
The complete construction and analysis of perturbation theory arc given for the one­

dimensional scattering problem (7) with the condition (R). For this theory \\'C have es­
tablished: a sufficient condition (21 ). tlw range of applicability ( b > bm;n(l) or I> lm;n(b) 
indcpendeutly of whether Vc < 0, v, > 0 or v;, = u) alld Hliljorant estimates (33) fllld ('11) 
of a.bsolute a.ccnracy I (m) f I of approximation f ~ f!"'l of each function J investigated. It 
is shown that these estimates can be improved if the structure of the Coulomb functions 
is taken into account in more detaiL 

lt is explained how the constructed theory Cflll be applied in order to take correctly 
into account the potential V at x ;::- h > 0 (in some cases, at all x '2: 0), to get. estimates 
for the Borrnali~ation factor N+ and to study the problem (7) in the low-energy and large 
angular momentum limit. It is the first time that C'stimat.es ('12)-(41), (48) and (57) arc 
obtained. 

In conclusion, we would like to note the following. 
Tn the present paper. the linear version of t.lH~ variahlt> phas{' <tpproach [9.10] is sllp­

plcmcntcd by a method of constr11rting an irregular wave fuwtiun. 
Usually, <t perturbation theory is const-ructed for studyi11g only out' of the unkn•_J\\'ll 

functions, for instance, a scattering pilasc or <t regular wa.\·c ftmd.ion [1-·!]. Tilt' jlrOJlOS('d 

pcrturbatiou theory allows one not only to inn:-stigat.<' in detail all the fundions nJtlnedcd 
with the initial problem (7) b11t is an asymptotic n1cthud in twu physically interesting 
limits. 
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