


- . of 'two'interacting. partlcles The: qua51potent1al approach is presumably,

B l’rThe present work deals w1th the old problem of a relatw1st1c descr1pt1on

- :the ‘most popular-one: among otherss This approach:to ‘the two’pa.rt1cle i
relativistic problem has been dC\eloped first by Logunov.and Tavkhe- =
~ff,._11dze [1].:: Quasipotential equations are. differential ones with the struc--

- ture of a one- body equation, - wrth an energy- dependent qua.81potent1al

:vahd for statlonary states in the centre- of- mass (CM) system.  In most
: appllcatlons iparticle: 2; has, been: treated non relat1v15t1cally -The, first

equatlon which avoided non- -relativistic expans10ns in.the qua51potent1al

and ‘which still allowed: exact solution was that of Todorov [2]. So ‘the
5 nost popular solutlon ‘of the two—body splnless problem is given by the
Todorov Komar:Droz- Vincent equatlon [2-4]. Similar equations, for the -
‘ two- fermlon and. fermlon—boson cases, have been proposed by Sa.zdpa.n

[5]. In modern works [6- 7] the authors con51der the Todorov equat1on as,
the base  one has to compare w1th : . L

..In-thé"second 'section” of - this’ paper we ;.rw1ll construct an equatlon
= for two. free: particles:that : Leeps full relativistic k1nemat1cs Then we -
~owill’ 1ntroducelthe electromagnetlc intéraction:#It willibe! done in several |

_steps: a pure Coulomb. potentlal at first then a. transversal (magnet1c)
" contribution, and the third —'a?. contrlbutlons In the th1rd section we.

will consider, the propertles: f the solutlons 1n -various hmlt cases: the

;non—relat1v1st1c case, theicase:of: equal masses, the case of one . partlcle o
ﬂ_belng at rest and the ultra—relatw:stnc case. In the fourth sectlon we w1ll.7,r‘ s
0 _dlscuss the problem of retardatlon and make some conclusions

}' ,Let us sta.rt w1th the Schrodm
’ . (c = ;-- 1) TR

R where U= w(t, 3:1,3:2) is the wave funct1on of two scala‘ part1cles We‘;‘
- «bégin our cons1derat10n in the equal time formalism, later on the problem

Lot




of the retardatlon wrll be d1scussed At ﬁrst we can tal\e the Hamlltoman ,
H as the sum of energreS'

T r

: Here p. has to be conmdered asan’ operator. We don t l\now how to \vorl\
‘with square roots of operators S0, we take the tlme derlvatwe once morc
‘and obtaln :~,i_5s,,t;;5 Aot Bt i LI :

o
7
1

4

(S

fy‘\a

*'There are‘"sqi’l'are' Toots \agam But we can; avord the
choose the frame of reference wherc R R s Vo

It is convement because ‘we' w1ll COIlSldCI‘ mteractmns depcndmg on ...
We can now con51der p1 as the dllferentral opcrator ; ‘ o

S i 2m; a ,

p12 s A )

. Or m; +m2 o s

So we rewrrte eq. (5) in the fm m T ~, “
82\11 h : .

a —-4-,3—_,——+(m] +TI?2) V.= (3) v

. . g

v

t Thls two- partlcle equation’is analogous to. thc one- partu‘lc I\l(‘m Gordon
“ one, but it can be considered only in the chosen reference frame.
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Now we will 1ntroduce an 1nteract10n. “We W111 dlSCllSS a 51mple but
interesting example: the electromagnetlc 1nteract10n between two scalar.”
part1cles. We use the mlnlmal substltutlon'

3

~ oAt first iwe: w1ll take only the: Coulomb ,potentlal (w1thout a_
We can mtroduce 1t by the substrtutlon o
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" E — the sum of the energles of the particles (see (2)) Note that in our

approach for that intéraction we have’ 10 T€ason’ ito' go off: ‘the mass shell.’
ants ;"I'he form of this equation is JllSt the same as the one of the Schrédin-

. geT, equatlon for the hydrogen atom. The dlfference }s only in' deﬁmtlons
‘of parameters ‘and in'the choice of a reference frame. The exact solution '

_ of an equation like that is well-known: (see for example [9]) For a partla.l

wave we have the radlal equatlon. :

(9)



17 — the Sommerfeld parameter for electromagnetlc 1nteractlons We can
callv a generalized relative Veloclty, in the non- relat1V1st1c limit v is the

common relative veloc1ty In a relativistic case, as we see, v depends on

the way of the introduction of an mteractlon So, in the solutron we have

; two main parameters v and & a. S
Now we will try to- complete the m1n1mal substltutlon We w1ll take
into’ account the transversal (magnetlc) mteractlon Equatlon (5) can ‘be
frewntten ina symmetrlcal form : T AR Lo
2

| 6.
We can make this transformatlon due to the correlatlon between mo-
“menta (4) There is’a serious- problem .we:have to’avoid-the ”double

~ counting”™. It would arise ‘if .we put the interaction twice:: the. action of -

‘the first particle on the second one and the other.way round.: Note that
we do not meet. with. this problem for the. Coulomb potentlal while we
have only one time varlable for two partlcles The solutlon is well-known

"in the conventional electrodynamics —— we have to ‘put in the Hamilto-

“nian the half of the total interaction. So let us try to put the mlmmal:

B substltutlon only into py:

i Pl—"'lyh.-l-gﬂ‘ezpz——'l’z ’ ‘ (17)
’ AWe obtam the followmg modlﬁcatlon of eq. (14)

[k2 E& 8(?' _Z ,___-1u_u (m1 +mz)] =0. (18)

~ This equation differs from the: Coulomb one (14) by the substltutlon in
. the qua.51potent1al : \

f;‘ E—4E+ Mn+mﬁ—E+AE

\/—-7

.Temains- unchanged We have only a shlft m the value of the parameter
v, :

PR T
E+AE ~ 1+v%/4

s — (my —m2)? s — (my —m2)?

,A;"; 4 .

v +[(P1 P2)2+(m1 +m2) l‘I’ 0. (’16)"

TWhere u is a functlon of the elgenva.lue E The form of the equatlon

\’ , s ~ (my + my)? (1’+ , —(m1 +m2)2)_, , . (19)
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where vc ~ the value of our. generallzed relatlve veloc1ty4 in the ca.se of 2 )
, pure Coulomb potentlal 5 : :

symmetry : .
‘There is an_ additional- 1nterest1ng feature of the result ‘the meamng ,

“of a relative velocity is restored in‘eqr'(19): Now v'is Just the relativistic

relative velocity of two particles.’ It is the’ relat1v1st1c sum of 28 a.nd o
(note that ul and u2 are colhnear) s D @ ‘

" Ifwe take now'into account’ the a? telms from the Coulomb and the ‘
i 'parts of the mteractlon, we: obtam an addxtlonal term 1n\eq

t"where "—1” comes:from the- Coulomb ‘part ‘and u? - from the magnetlc

one. The effect can be cons1de1ed as a shlft of the quantum number [:

charge = Our value for"it ;differs from the Todorov one (acr = 1/7)
" The & terms’ cause some other problems like a smgulauty of a wave

" function at the point r = 0. 'Ihese problems are’ now beyond the scope
_of our: cons1derat10n Note only that in the 1elat1v1st1c case (u ‘

jral



| 3 — The limits

Now we will discuss’ the propertles of 'the solutlon There are several
pornts where we have to compare the results with'the prev1ous ones. "

At ﬁrst we'can cons1der then non relat1v1st1c llmlt In thls case we have

“to compare ‘the results of the equatlon w1th the spectra of hydrogen :like
“atoms. We can easlly obtain condltlons on bound states'in’an analogy
w1th the Schrodlnger equatlon From our equatlon we' have the bound
“state’ energy in reference frame (4). It is ot dlfﬁcult to make a relativistic
“transformation into the CM system ‘Insithe ﬁrst order 1n a? the relatrvrzed
Balmer formula is reproduced e

~2

LS P FIIS S B, L IR RN o mimg
E' - =— :
CM ‘Hjh + mz 2n2/4 v BE T m2 . (23)
,u = the reduced mass The next approxxmatron reads . )
; : &2 at (. - mim? ©8um \
E =m;+m 3 12
ow =i+ me = ( A Gyt may (2z+1)) @

In the last formula we take into: account the Coulomb potentlal as.well
_-as the magnetic ] interaction and. the &%:terms. But we have omltted dn
;eq.(14) and.in‘eq::(18) terms-arising’ from ‘commutators of E and 1/r.

. This remains to be our problem. .. e S L SR SR

- The equal -mass limit turns out to be 1mportant in our cons1derat10n

For the case m; =m; =m the Todorov equatxon gives

.(25)

,_‘P; |72 = 71)/21; (26)

@

The non—relat1v1st1c l1m1ts are equal or all these values
Here we can involve an- add1t10nal check In the paper by Bmer and
Fadln [11] the correctlon ‘due’ to the Coulomb 1nteractlon of two charged
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. final (or mltlal) partlcles to’ the cross section of a process is conmdered In e
“the case of equal masses the mﬁnlte sum of ladder d1agrams is' calculated
“in [11]; omlttmg the dlangS with crossed photon lines: It means taking
into account only the Coulomb part of the interaction. The correction

' has the same form as that one. obtamed by Sakharov [12] from the non--
relat1v1st1c Schirddinger equatlon b

A 21ra/v
—"’exp( 21ra/v)

Here We 'see our’ parameter v.”Sakharov receives v as the' non-relatlvrstlc
“velocity, Baier and Fadin — just*(27): ‘We stiggest that- the comparison
~with the result of the' summatlon of the infinite ladder d1agram series -
prov1des us with a good check in‘the equal~mass 'limit.’ HER

" 'We have also to consider the limit'when one of the partlcles is at rest.
Todorov [2] suggested that any quasrpotentlal equatlon in the case m;
(or m2)’— oo has to give the'same ‘results‘as the Klein-Gordon' equatlon
w1th)the Coulomb interaction:"This means:that ‘the: parameter vin this

case has to’ be equal to: the relat1V1st1c velocrty of: the ”hght” partxcle

4 :-‘Ipzl

We suggest a more general condltlon Zand equatlon in‘the: reference ‘
“frame where one of the' particles is at-rest has to‘ reproduce the value
:7(29). For the Coulomb potential we have e expresswn . (27). It is written in
the form which is sultable to make any chorce of a reference frame We
take sin the case p] = 0 ' B ‘ '

where one partlcle is at rest because it is proportlonal to the product
} of two veloc1t1es When we choose another reference frame, we have to
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A make a full: relatrvrstlc transformatron of 1ntera.ct10ns starting from [full
equatron (18) in. the reference frame (4) So We use. (19) and obtam .

" Our approach allows us'to descrlbe also the ultra-relat1v1st1c case. In
thrs case we can compare our results w1th the-ones of the correspondmg
‘Feynman. diagram. Let us take two* scalar particles scattermg on each
-‘other by exchanging with a photon.. We can consider the case of. arbltrary
~'masses.. In the ultra-relatIV1st1c case we have s

1n1t1al and ﬁnal partrcles qiis: the transfer momentum ,.“ )
+The. drfferentlal cross, sectlon of the process-can be wrrtten m the form

; 1 ok d3p1 d3p2 n 3
|U1 - U2| 4k°k°lMI 2p,(27r)3 2p°(27r)3( ) 6 (kl + k2 pz)_-

M is, the matrlx element of the process,

— 2K,\U
ﬂ ‘|M| 5
Vg

T } EDRRER TS S S R -‘l,“,
= (- pz) ~,—4pz sm’(02/2), S CU)

e f"‘;"f’ ’1)“'

; cross sections dependlng on the parameters of the second particle we'

\ obtain:

: E 02 o l : ‘*""::..,:‘f:-: Litg
- L dQs 4 sm'(02/7) P2’ (38)
{\lt has the form of the Rutherford formula [8]

From' 'our. equation we have

It ha.s the usual form‘ and the
110D S, we can irte'at onk from e

n exact solutlon for the wave functlon

o A K .‘_1—0—-. —i( ¢ 02 p _,!">,21 e fo e
- . ) : dQ ERNE N (E + 4E)v2/2 ’ ::Sin‘i(@/z) ]
8 .

4 The dlscussmn and conclusmns

but this result is written for an effectlve partrcle with the momentum E

'.(see (6)) We have to return now to the parameters of real partlcles

mr'l'mz s

——-—-——,! 92?_9 2m
GE (40)

(Note that in the ultra-relat1vnst1c case we" “have: to consider small scat-'

tering angles ) ‘Then*we obtam the result coinciding' with (38)-

‘There is“an’ mt.erest.mg pomt here.” We ‘take now mto ‘account’ both'
the: Coulomb mteractmn &nd‘the magnetlc one. But'if we'took only the
Coulomb ‘one (use ¢ eq ((14)) we would:obtain for the dlfferentral Cross

section the result being four times as ‘small as (38):"We can ‘see this. also

‘from the dlagram itself: The matrix’ element (36) has two parts in the

product’ of the four- momenta (k) + ) (k24 p3) and’ (Fy + (ks + pg) »

_ '1he ﬁrst part corresponds to the Coulomb mteractlon and the second —

to the magnetlc one. And in* the ultra-relatrvrstlc case they 1ve equal'
contributions’. i A AT : T e e

So, .we.can. conclude that :dn-an ultra-relatrvrstlc ‘case" for arbltrary ‘
masses "the’ equatlon glves al good descrrptlon of charged partrcles scat-

* tering: "Note that in’ ‘this ‘case spins of’ the’ partrcles ‘are not:important, -

the calculatlon of the’ I‘eynman dlagram for: two spmors grves also (38)...

L : “mr‘» P A L ;
) Vol s e T [ ,_,L,._ . ;

Now we have to clarlfy the 1easons for our'use of the equal trme formal-
s, At first; ‘we note that the Correct’ ultra-relat1vrst1c llmlt means that
the retardation-was taken into’ account’in’a; certam way "(A:Feynman
‘diagram- ”knows all” about the 1etardatlon) Let ‘us lool\ at the retarded

P TT DTS PR
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" The second particle acts on the first one via this potentral We see that

only in the frame of reference we have chosen (see (11)) the retardation:
factors ‘are equal for both actions 1 — 2 and 2 — 1. Then we can say
tllat in an equatlon hl\e eq (14) \vhen we put a retardation in-the form




% .we have to:put also~ '

It ‘means that the varrable r also acqulres a generahzatlon when we

' con51der any. relativistic 1nteract10n'

el i
‘fv’é St

We have- also to: dlscuss relat1v18t1c propertles of our equatlon It 1s
seen that ,we cannot make:a; relativistic transformatlon in it,(we, cannot
choose:another reference frame) It is. because of the equal time formal-
ism, that-we choose;: and of the problem of square1 roots of operators But
we. cansay.that;the. equatlon is; the relat1v1st1c one.in a.’weak;sense”
This means that we.can make any relatlvxstlc transformatlon in the solu~
tion of the-equation! . These transformatlons would not; change the form

of the solution. That change of reference frames has been made above Jin

the limit case of one partlcle being at rest. - R s
~+..»We.could-return, to the, first.steps: of the derlva 1on of he<equatlon
!and«avord the equal-tlme formahsm We can take two tlme varlables

ooy f ; : . A
IR I SEoevdyy " P et
: LR AR I oL '

1 6 l 0 : baoomigal
(z oty « + 1 atz)‘ll(tl,tz, 1, 322) = H\I’(tlat2axl,$2) (41)

¥ T .r" i . "“”z >
4 '3 TEL bl M‘ 3, » i

Then we would-repeat all the steps of the derlvatlon There would appear '

- the problem of;the. double countrng ifor the, Coulomb. potent1a1 It would
. be solved in Just the same; way,.as-for, the, magnetlc one., So, if we stlll
/worked in our frame of reference; we-would obtalnAJust the same results

isSo, our; equatlon has really relatlvrstrc properties: | It keeps exactly the
re1at1v1st1c kinematics and the relativistic properties of the electromag—

“netic interaction. The reference frame, that we have chosen appears to-

be more suitable for relat1v1st1c 1nteractrons of two' partrcles w1th different
" masses than the centre- of~mass system S S

The a.uthor expresses sincere gratltude to B A Arbuzov A T F 111p-
pov, S.B. Gerasimov and LL Nemenov for valuable discussions.

| V,References

[] ] Bl]tcl)ml .m(l J BI()(]\.NH

. 51[9]1

” []0] N o Mott and 1 b \\’ MassL)

| [12] A D Sakharov Zh. rlﬁ,, Teor. Iu., 18; 6‘;1’ 635 (mls).{

[1] AA. Io«runox and A N. Ja\l\hchd/e Nuovo szento 29 380 399
.(1963).

PSRN y eiv o L Nt R -
I P RSN TR B b ed T LY

[)] LT, ’To'domv Pth Rev l) 10 )3)1 "356 (19;1)._'»5&2

['3] A I\omar PhJs Ilev D 18 1891 let (]918)

) [4) P Droz Vlncent Ilep ,\[,,[/, p,,JS 88 9 (1979);‘.,;,s .

], II~. Sazdjlan: Phys. -/m D, 33 31013121 (1986). R

[6] Il Pllkuhn Pth B 25 ")‘) ”JI 5 (l‘)‘)’)

(1()0))

:{Bcthc and I° L ..Salpdu Qmmlum Mechamcs::of One-'
~Two-Electron Atoms (P]cmnn l’ul lishing Corporati

N Y 1977

(Cl"ucndon prcss, O\fond l.)(u))

on May 19, 1993. ‘

11



