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D.aeTCSI (pJIIOHJJ.-JJ.HHaMH4eCKOe OnHCaHHe WHpHH MarHHTHblX pe3OHaHCOB, 
CBSl3aHHhlX C Jl.JIHHHOBOJIHOBblMH KpyTHJlbHO-nOJJ.OOHblMH KOJ1e6aHHSIMH 

ccpepH4eCKOro SIJJ.pa. TTpeJJ.nonaraeTCSI, 4TO MexaHH3M JJ.HCCHnau.HH 3HeprHH 

SIJJ.epHoro KOJIJleKTHBHOro ABH)l(eHHSI o6yCJ10BJ1eH HYKJIOH-HYKJIOHHhlMH CTOJIK­
HOBeHHSIMH, npHBOJJ.llW.HMH K BSl3KOCTH. Bb14HCJleHHaSI w11p11Ha MarHHTHOro 

pe3OHaHca, KaK <PYHKU.H!l Maccoeoro 4HCJla H MYJlbTHnOJlbHOCTH, HMeeT BHJJ. 

f(MJ) = 6J2(U + 3) (J - l)A-2/
3 

M3B. 
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Within the dissipative nuclear fluid-dynamics the prediciions are presented 

for the widths of magnetic twist resonances associated with the long wavelength 

torsion like vibrations of a spherical nucleus. The mechanism of nuclear 

dissipation is presumed to be caused by the individual nucleon collisi­
ons with each other resulting in shear viscosity. The magnetic resonance 

width as a function of mass number and multipole degree is found to be 

f(MJ) = 6.2(U + 3) (J - l)A-213 MeV. 

The investigation has been perfo~med at the Laboratory of Theoretical 
Physics, JINR. 
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1 Preface 

In p~p:ers [1-3] it has been developed the macroscopic theory of 
magnetic twist resonances associated with the' normal long wave­
length torsion-like ·vibrations of an incompressible nucleus. The 
method regarded in these· articles allowed· one to .estimate the · en­
ergy· and excitation. probabiHty. as functions of mass riumber and 
multipole degree. Similar problem has been solved in (4-7), in the 
model of an .elastic compressible Fermi~globe without resort to the 
long wavelength approximation (see also [8,91). The p:roblem of 
excitations of these collective modes by iµelastically.scattered elec­
trons is consider.ed in [10-12]. However the dissipation of trans­
.verse collective moti~ns resulting in magnetic resonances has not 
been. discussed in the literature. The purpose of this paper is to 
analyze the fluid-dynamical approach to this problem based on the 
two-body mechaJ!ism of nuclear dissipatio~. . _. 

· The damping mechanism under consideiation implies that. nu:c 
. clear dissipation'originates from nucleon collisions with each ~ther. 
As is known from the .macroscopic theory of continuum, .the two­
body dissipation is described in terms of viscous stress tensor. The_ 

, effect of twisting or shearing v_iscosity · has a _volume origin and is 
characterized by coefficient of dynamical ·viscosity µ which apriori is 
unkno~n. However, as it is pointed out in [13], this coefficient may · 
be adjusted from the data on the kinetic energy-~£ fission fragments. 
The numerical value for the coefficient of dynamical viscosity given 

. i~ this paper is · . . . . 

µ ~. 0.03 ± 0.01 TP, 1 TJ> . 0.948 Ii /fm3
, 

. where abbrev_iation TP stands for. terapoise [14] ... In our calcula­
tions we will use the coefficient of kinematical (~ensity indepen­
dent) viscosity·v which is defined as follows v - µ/p0 , where p0 is 
the equilibrium density of nuclear matter. The.used by us method 
of calculations is relayed on _the results of papers [13-15] where 
presented profound physical arguments for the description of the · 
nu~lea.r da~ping mechanism in term of two-bodyviscosity .. 
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In what follows we consider a dissipative fluid dynamical model 
to obtain an estimate for the magnetic resonance width as a func­
tion of mass number, multi pole degree and energy. 

2 Dissipative nuclear fluid-dynamics 

The macroscopic treatment of dissipative nuclear fluid-dynamics is 
the following. Starting point is the Lagrange equation governing the _ 
small-amplitude collective vibrations. The dissipation is described 
by supplementary term with the Reyleigh's dissipation function F 
[15,16], so that the basic dynamical equation takes the form 

d fJL aL . aF 
-d -a· --a +-a· = 0 (

2
-
1
) t a>. a>. a>. 

The Lagrangian L of simple-harmonic oscillations is given by 

L = B>.(il)2 - C>.(a>-)2 (2.2) 
2 2 

The inertia B>. and stiffness C>. for the long-wavelength torsion-like 
motions we write down in the form [17] 

,\(,\ + 1) < r2>. >, 
B>. =. M (2,\ + 1) 

Mv2 
C>. = __E,X(,\2 - 1) < r2>.-2 >, 

5 
(2.3) 

which explicitly take into account the diffuse of nuclear edge. In 
the sharp edge approximation the value of B>. and C>. have been 
derived in [2]. For< r>. > we use the standard definition of average 
radius of the order of,\ which can be found in [18]. By Mis denoted 
the nucleus mass and VF stands for the Fermi-velocity. 

The Reyleigh's dissipation function F is defined as (see, for 

instance, eq.(3.8) in (15]) 

al aat aat 
( )

2 

F=--vfp -+- dr. 
4 ax; ax; 
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• 
As in refs.(2,13], by a;(r) we denote the field of instantaneous dis-
placements and a-'(t) is interpreted as a collective time-dependent 
amplitude in accord with the Bohr and Mottelson treatment of nu­
clear vibrations. It is convenient to represent the latter equation in 
the form 

a2 
F= -D'>., 

2 

V 8a, a• 

( " a ") 
2 

where D" = 2 j p ax: + a~ dr, (2.5) 

is the friction coefficient. Substitution of (2.2) and (2;5) into (2.1) 
yields 

B-'a-' + D-'a-' + C-'a-' = 0, · (2.6) 

which is the standard equation of damped harmonic oscillator. The 
energy E-' and width f(M).) of a resonance are computed as follows 

E(M>.) = 1i(C,\/B,\)1l 2
, r(M).) = nD,\/B,\. (2.7) 

The toroidal field of displacement a-'(r) which corresponds to 
the long wavelength torsion-like oscillations resulting in the M). 

twist resonances is giv~n byJ2] 

a-'(r) = rot rr-' P"(O), (2.8) 

where· P-'(0) are the Legendre polynomials. Upon substituting this 
field into (2.5) we find · 

D-' = M v < r 2-'-2 > ).().2 - 1) .. (2.9) 

The width of M >. twist mode is given by 

. < r2-\-2 > 
r(M).) . 1iv(2). + 1)(). - 1) < r2-' > · (2.10) 

Taking into account that the energy of twist eigenmode ( when the 
real density is presumed) is given by (17] 

. [1 · .· < r2-\-2 >] 1/2 
E(MA)=n -vH2).+l)(A-1) ··2,\ ' 

5. · < r > (2.11) 
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we can recalculate r(M ).) in terms of E,\, As a res~lt we obtain 

f(M ).) = 1i
5
~ [E(M ).)]2 Mev-1

• 
Vp 

(2.12) 

3 Results and discussion 

As a first application of the above presented picture we estimate 
the magnetic resonance width as function of mass number and mul- · 
tipole degree by use of the sharp edge approximation. In this ap­
proximation eq.(2.10) take the form 

f(M).) = 1iRµ 2 (2>. + 3).(). - 1) = t
5
~ (E(M).)]2 Mev-1

, (3.1) 
Po nVp 

where p0 = 3m/(41rT0 ) and vp = 1i/(2mr0 )(91r)1
/

3
, Using the fol­

lowing set of constants 

r0 = 1.25 fm, n = 197.32858 MeV fm/c, m = 931.5016 MeV /c2 

and µ given in Sect.I the width is given by 

f(M).) = 6.23 (2). + 3)(). - 1) A-2/3 MeV, (3.2) 

so, the two-body damping mechanism relults in the A-2
/

3 depen­
dence of the magnetic resonance width on mass number. 

In ref.(2] it is found that the energy of M). twist resonance is 
given by 

[ l 
1/2 

E(M>.) = n; i(2). + 3)(). - 1) (3.3) 

Noticing the similar multi pole dependence of both energy and width, 
we can represent r(M).) in term of E(M).). As a result we obtain 

f(M).) = ~µ 2 [E(M).)]2 Mev-1 = l.87·10-2 [E(M).)]2 Mev-1
• 

pnvp 
(3.4) 
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• 
Equations (3.2) and (3.2) are the basic predictions of the paper. 

It is interesting to compare the above presented estimates with 
those for isoscalar electric resonances obtained by Nix and Sierk 
[13] for the same macroscopic damping mechanism. The result of 
[13] reads 

r(E.\) = 2
1iRµ

2 
(2.\ + 1)(.\ - 1). 

Po 
(3.5) 

It worth to notice that the kinetic approach to the damping prob­
lem of electric giant resonances developed in refs.[19,20] also leads 
to the A-2/ 3 mass number d~pendence of E(.\) resonance width. 
Comparing the spreading widths of magnetic (3.4) and electric (3.5) 
resonances we find 

r(M.\) 1 (2.\+3) 
r(E.\) = 2 · (2.\ + l) < 1, for .\ ~ 2. (3.6) 

Thus we found that the width of magnetic resonance turns out 
always lower than the width of electric resonance. 
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Fig. 1: Calculated and experimental [21,22] en­
ergies E(M2) of magnetic quadrupole resonance vs. 
mass number A. Full curve, calculation with Fermi 
distribution; broken curve, step densite calculation. 

In Figs.1 and 2 the energy and width of quadrupole twist mode 
as function of mass number are pictured. These figures clearly 
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display the effect of the nuclear edge diffuse which is to reduce the 
absolute values of both the energy of resonance and ib width. For 
the electric resonances this effect is stressed in [23,24]. 
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Fig. 2: Computed width r(M2)i of magnetic 
quadrupole resonance vs. mass number A. Full 
curve, calculation with Fermi distribution; broken 
curve, step densite calculation. 

Table 1: Energy E(M2) and width r(M2)i magnetic 
quadrupole resonance. 

Nucleus Energy E{M2), MeV Width I'(M2)j, MeV 

Exp. [21, 22] Theory Theory 

2ssi 13-16 10.5-13.5 2.6-2.7 

. 
90Zr 8-10 8-10 1.5-1.6 

140Ce 7.5-10 7.5-9.5 1.2-1.3 

2ospb 6-8 6.5-8.5 1.0-1.1 

7 



In table 1, the list of E(M2) and r(M2) for several specific 
spherical nuclei is presented. It is seen that the nuclear fluid­
dynamics yields a reasonable description of energies. As to the 
spreading magnetic resonance widths is concerned, the data by 
now are completely lacking to be compared with the above pre­
sented predictions. In recent paper [25], the first calculations of 
Ml resonance width for deformed nuclei have been performed and 
found that the width is approximately proportional to square of 
energy. This conclusion well agrees with the predictions inferred in 
the present paper for the magnetic resonances with A ~ 2 which, 
as we beleave, will be subjected to experimental tests during the 
commg years. 

The authors are indebted to W. Nawrocka and V. Ponomarev 
for useful discussion of some problem herein. 
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