





1 Preface

i In papers [1 3 it has been developed the rnacroscoplc theory of
~magnetic twist resonances associated with the normal long wave-
. length tors1on-11ke vibrations of an 1ncompreSS1ble nucleus.  The

- method regarded in these articles allowed one to estimate the en-

~ ergy and excitation probablhty as functlons of mass riumber and
‘ multlpole degree.. ‘Similar problem has been’ solved in [4-7]).in the

. model of an elastic compressible Fermi-globe w1thout resort to the
: ‘long wavelength approximation (see also [8,9]). The problern of '
_ excitations of these collectlve modes by 1nelast1cally scattered elec- -
;trons is’ cons1dered in [10 12). However the d1ss1pat10n of trans-

. verse collective rnotlons resulting in rnagnetlc resonances ‘has not

s been. d1scussed in.the literature. The purpose of this paper is, to
' -analyze the fluid- dynanncal approach to this problern based on the‘

; two body mechanism of nuclear d1ss1pat10n

. The darnp1ng mechanism under cons1derat10n lmplles that nuw-

i clear dissipation’originates from nucleon collisions with each other.

As is known from the. Macroscopic theory of contlnuurn, the two- .,
A body d1ss1pat10n is described in terms of viscous stress tensor. The shar T

effect of twisting or shearing viscosity has a volume origin and 1s

R characterlzed by coefficient of dynamical V1scos1ty e which aprioriis
' ‘unknown. ‘However, as it is pointed out in [13), this coefficient may
T be adjusted from the data on the kinetic. energy. of ﬁssmn fragrnents i

' The numerlcal value for the coefﬁc1ent of dynarmcal v1scos1ty glven A

‘in th1s paper is

"—003_I:001TP lTP_0948h/fm

. ‘where abbrev1at10n TP stands for. terap01se [14] In our calcula—A :
. tions we will’ use the coefficient of kinematical (den51ty 1ndepen- R
~dent) viscosity v which is defined as follows v = p /po, where p,is |

~ . the equilibrium den31ty of nuclear matter. The used by us method -
T of calculations ‘is relayed on the results of papers [13-15] where S
- ~presented profound physical argurnents for the descrlptlon of. the : -

S nuclear damplng mechanlsm in term of two—body v1sc051ty

In what follows we consider a dissipative fluid dynamical model
to obtain an estimate for the magnetic resonance width as a func-
tion of mass number, multipole degree and energy.

2 Dissipative nuclear fluid-dynamics

The macroscopic treatment of dissipative nuclear fluid-dynamics is
the following. Starting point is the Lagrange equation governing the
small-amplitude collective vibrations. The d1s31pat1on is descrlbed
by supplementary term with the Reyleigh’s dissipation function F
[15,16], so that the basic dynamical equation takes the form

daL__a£.+—a—F—'_0 (21)

dtda, Oax  Bay

The Lagrangian L of simple-harmonic oscillations is given by

_B@)? _ Oae) (22
) 2

The inertia By and stiffness Cj for the long-wavelength torswn—llke
motions we write down in the form [17]

AA+1) Mo
(22 +1) 5

AN —1) <72 >,

| (2.3)
which explicitly take into account the diffuse of nuclear edge. In
the sharp edge approx1matlon the value of By and C) have been
derived in [2]. For < r* > we use the standard definition of average
radius of the order of A which can be found in [18]. By M is denoted

the nucleus mass and vp stands for the Fermi-velocity.
The R,eylelgh’s dissipation function F is defined as (see, for

instance, eq.(3.8) in {15])

a3 ?_‘_1_2 + ?_a_? 2'd1- (2.4)
F=—T”/p dz;  Ox; .
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As in refs.[2,13], by a}(r) we denote the field of instantaneous dis-
placements and a,(t) is interpreted as a collective time-dependent
amplitude in accord with the Bohr and Mottelson treatment of nu-
clear vibrations. It is convenient to represent the latter equation in

the form ‘ o
AN
where D, —.Z/ (g:; + a—a’) dr, (2.5)

is the friction coefﬁaent Substltutlon of (2 2) and (2.5) into (2.1)
yields

22
F = =D,

) B,\a,\ + D,\a,\ + C)\a,\ = 0, T ’ (26)

which is the standard equation of damped harmonic oscillator. The
energy Ey and width I'(M )) of a resonance are computed as follows

E(M)) = h(C\/B\)?, T(M\)=hD,/B,. (2.7)

The toroidal field of displacement a*(r) which corresponds to
the long wavelength torsion-like oscillations resultlng in the MA
twist resonances is given by [2]

a*(r) = rot r P, (9), | : '(2.8)

where Py (0) are the Legendre polynomials. Upon substltutlng this
ﬁeld into (2.5) we find

- Dy=Mv <25 2N -1).. - (2.9)

The width of M) twist mode is givén by ‘
P22

(M/\) = ﬁV(?/\ +1)(A - 1) e (2.10)

Taking into account that the energy of twist elgenrnode (when the
real density is presumed) is given by [17]

1/2

22-2
>
_<_r-_.._ o, (2.1 1)

E(M)X) =h [—vp(2A+1)( -1 <>
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we can recalculate T'(M)) in terms of E). As a result we obtain

T(M)) = -,i)—”% [E(MA)? MeV. (2.12)

3 Results and discussion

As a first application of the above presented picture we estimate
the magnetic resonance width as function of mass number and mul-
tipole degree by use of the sharp edge approximation. In this ap-
proximation eq.(2.10) take the form

T(M)) = [E(M/\)]z MeV~!, (3.1)

- 1)=§"7F

where p, = 3m/(4xr,) and vp = h/(2mr,)(97)'/3. Using the fol-
lowing set of constants

r, = 1.25fm, k = 197.32858 MeV fm/c, m = 931.5016 MeV /c?
and g given in Sect.l the width is given by
I‘(MA) =6.23(2\ +3)(A — 1) A=A MeV, (3.2)

so, the two- body damping mechanism relults in the A-%/3 depen-
dence of the magnetlc resonance width on mass number.

In ref.[2] it is found that the energy of M twist resonance is

given by

M A

B = F

Noticing the similar multipole dependence of both energy and width,

we can represent (M) in term of E(M ). As a result we obtain

1/2
fop [1(2A+3)(A-1)] SN CE)

T(M)) = p5" [E(MA)] MeV-" = 1.87-10°2 [E(MA)]* MeV ™.

o (3.4)




Equations (3.2) and (3.2) are the basic predictions of the paper.
It is interesting to compare the above presented estimates with
those for isoscalar electric resonances obtained by Nix and Sierk

[13] for the same macroscopic damping mechanism. The result of

[13] reads

2hp

(BN = =L@ + DA -1). (3.5)

It worth to notice that the kinetic approach to the damping prob-
lem of electric giant resonances developed in refs.[19,20] also leads
to the A~?/3 mass number dependence of E()) resonance width.
Comparing the spreading widths of magnetic (3.4) and electric (3.5)
resonances we find

L(M)) 1 (22+43)

.22 o, for

TEY ~2 (@ +1) Az2. (36)

Thus we found that the width of magnetic resbna.nce turns out

always lower than the width of electric resonance.
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Fig. 1: Calculated and experimental [21,22] en-
ergies E(M2) of magnetic quadrupole resonance vs.
mass number A. Full curve, calculation with Fermi
distribution; broken curve, step densite calculation.

In Figs.1 and 2 the energy and width of quadrupole twist mode
as function of mass number are pictured. These figures clearly
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display the effect of the nuclear edge diffuse which is to reduce the
absolute values of both the energy of resonance and its width. For
the electric resonances this effect is stressed in [23,24].
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Fig. 2: Computed width I'(M2)T of magnetic
quadrupole resonance vs. mass number A. Full
curve, calculation with Fermi distribution; broken
curve, step densite calculation.

Table 1: Energy E(M2) and width I‘(M2)T magnetic
quadrupole resonance.

Nucleus || Energy E(M2), MeV | Width I'(M2)1, MeV
Exp. [21, '22] Theory Theory
Bgj 13-16 10.5-13.5 2.6-2.7
NZr |- 810 8-10 1.5-1.6
140Ce 7.5-10 7.5-9.5 1.2-1.3
208pp 6-8 6.5-8.5 1.0-1.1




In table 1, the list of E(M2) and I'(M2) for several specific
spherical nuclei is presented. It is seen that the nuclear fluid-
dynamics yields a reasonable description of energies. As to the
spreading magnetic resonance widths is concerned, the data by
now are completely lacking to be compared with the above pre-
sented predictions. In recent paper [25], the first calculations of
M1 resonance width for deformed nuclei have been performed and
found that the width is approximately proportional to square of
energy. This conclusion well agrees with the predictions inferred in
the present paper for the magnetic resonances with A > 2 which,
as we beleave, will be subjected to experimental tests during the
coming years.

4 The authors are indebted to W. Nawrocka and V. Ponomarev
for useful discussion of some problem herein.
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