





1 Introductlon

The present paper is devoted to the problem of 1sosca1a.r electric dipole response in heavy
spherical nuclei which nowadays is a subject of intensive discussions in nuclear physics
of giant resonances. Accordmg to a recent review by van der Woude [1}, the strength of
1-,T=0 exc1tatlon is clustered in the nuclear spectrum as follows. The low-energy 1hw

 dipole resonance (LEDR) located as is presumed, at energy 30-50 A~!/3 MeV exhausts
of the order of 10-20% of the isoscalar sum rule {2] computed with the function r®Y;,.
Theoretlca.l drscuss:on of thxs mode can be found in (3, 4]. The last data on LEDR have
been reported in [5]. The hlgh-energy 3w 1=, T = 0 resonance (HEDR) with energy 120-
130 A~1/2 MeV depletes ebout 40-50% of the aboye mentioned sum rule. This resonance
has been discussed by mztny authors in both microscopic and macrosoepic approaches. The
ma,cres'copic interpretation of HEDR as the dipole squeezing mode, caused by longitudinal
dipole compression oscillations of nucleons, is generally accepted by now (see, for ihsta.nce,
[3, 6, 7]). So, we see that the data available exhibit the lack of approximately 30-50% of
1;,T = 0 strength. In view of this, it seems to be reasonable to explore new mechanisms
of dipole nuclear response which could make up this deficiency. One of such mechanisms
is discussed below.

Our analysis is based on similarity of the fluid-dynamical equations governing the
nuclear vibrations and the electrodynamical equations for oscillations of an electric current
in the metal sphere. From the electromagnetic theory it is known that the current motions

ofa dlpole symmetry may. be generated in conducting sphere by a ma.gnetlc field (see {8}
Sec.9.24): havmg penetrated into the sphere the magnetic field induces the current Wthh
is descnbed by the poloxda.l dlpole field with a torus-like structure of stream lines (Fig.1).

’ The physical a.rguments underlylng this mechanism of dipole distribution of current has
been considered by Elsasser (see for details ref. [9] p.206 and refi[10] p. 29) in connection
with the problem of terrestrial magnetism (the model of Earth’s oore)

" Oneof the principal findings of the nuclear fluid- vdyna.rmcs (NFD) is that linear pertur-
bations of a mrcleué may also result in transverse (essentially rotational) oscillations of a
nucleon flow like those for electric current in a metallic pa.rticle. Note that in the standard
hydrodynamical model of liquid drop (LDM) the collective modes are interpreted only in
terms of longitudinal (irrotational) motions. From continuum theory we know that both

the transverse and longitudinal oscillations are an inherent property of perfectly elastic
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medium (see, for exa.n;ple, [11]). In this conjunction it should be stressed that the NFD
has brought new insight into the fundamental macroscopic properties of nuclear matter
to be a quantum elastic-like solid (discovered by Bertsch in ref.[12]). In particular, the
nuclear fluid-dynamics states that isoscalar resonances may be interpreted as a dynamical
manifestation of ‘quantum elasticity. In Sect.2, the fluid-dynamical method is outlined
to make more consistent the analysis of the current-dependent mechanism of transverse
dipole response. ‘ ' o o »
In Sect.3, the vélocity field of a transverse flow pattern is derived by making use of
the condition that the nucleus center of mass is at rest. It is shown that the obtained
poloidal dipole field: of velocity corresponds to the sphericai.vortex’ of Hill. The latter is
“pictured by the torus-like distribution of stream-lines. Therefore, the resonance related
"to such a current response is réferred‘to as the dipole torus mode. It is interesting to note
" that recent microscopic investigations of nuclear dipole reépbnse performed in [13-15] have
revealed just the same behavior of the particle flow. The macroscopic a.na]):'sis of such a
flow pattern can be found in [16-18]. Thereby, our purpose is mainly to supplement these
investigations. - o s
In Sect.4, the fluid-dynamical approach is applied to compute the form factor and
transition current density which are derived in the plane wave Born approximation. The
concluding remarks concerning the experimental search for the dipole torus excitation are

. pi-esented in Sect.5.

2 Goverrvxingl fluid-dynamical equations

The mathematical treatment of the NFD is based on the "thirteenmoments approxima-
tion”. This terminology, borrowed from the plasma physics, originates from the fact
that macroscopic variables of nuclear collective motions such as the bulk density p, three
components of the mean velocity V; and nine components of the strain tensor P,; are
introduced as zero, first and second p-moments of quantum distribution function. The
relevant equations for these variables are obtained from the kinetic equa’tion which in turn
can be derived from the many-particle Schrhddinger equation (see for details [19-21] ).
In the linear approximation, the equations governing small oscillations of incompressible
nuclear continuum (in the collisionless regime of single-particle Fermi-motion) are written
as follows [22-24] : A
’ asV;
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Here 6V; is the perturbed velocity of collective flow and 6F; stands for small fluctuations
in the strain tensor. By p, we denote the ground state density and P, is the pressure
(diagonal part of the equilibrium strain tensor). They are the input parameters of the

method and may be taken from microscopic self-consistent calculations., In particular,

0. | (@23)

F, related to.the ground state energy £, by means of the equation of state," may be
parametrized in the form :

e

2 po<v?>
Pn ==£ =
o€ T (2.4)

where < v? > stands for the mean square velocity of the single-particle Fermi-motion
of nucleons setting in the self-consistent mean field. Eqs.(2.1) and (2.2) are the same as
in the LDM: first of them is the-equation of continuity and the second one is the Euler
equation. The linear evolution of elastic stresses is described by eq.(2.3). A nucleus in the
ground state, in such an approach, is modelled by an elastic-like globe of spin - and isospin
saturated incompressible Fermi-continuum. The resonance excitations are specified by the

form of collective velocity.
In what follows it is convenient to represent the velocity departures in the form
6Vi(r,t) = a}(r)an(t), (2.5)
A . . ) X L
where a;} is the field of instantaneous displacements and a* is the time-dependent ampli-
tude of harmonic oscillations (ax ~ sinwyt). The latter may be interpreted as a colléctive
variable in accord with the Bohr and Mottelson treatment of normal nuclear vibratidhs’
It can be verified that €qs.(2.1)-(2.3) are reduced to standard wave’s equation for field
of collective velocity §V and further to the Helmholtz equation for standing spherical
waves [4]. In the long wavelength approximation, which is justified by numerous cal-

culations in the nuclear physics, the latter equation is transformed into the equation of
Laplace for the solenoidal field of displacements

Aa*=0, diva*=0." (2.6)

In the frame with a fixed polar axis, the last equation has two independent solutions - the

poloidal (following the terminology introduced by Elsasser [25] and accepted in physics
of plasma and astrophysics) ‘

M) — ATA v
a,(r) = N,rot rot rr* P, (cos 0) = —N)(A + 1)grad r*Py(cos 0), (2.7



and the toroidal
a)(r) = N}rotrr* Py(cosd). . (2.8)
As it has been pointed out above, the resonance excitations are classified in the NFD by
the form of perturbed mean velocity (2.5). The poloidal solution describes the harmonic
distortions of nuclear shape. These motions are responsible for electric resonances, since
a} is the truth vector field of normal parity = = (—1)*. The toroidal solution describes
" torsion-like motions and corresponds to magnetic resonances, since a} is the pseudovector
field of abnormal parity = = (—1)**'. :
In refs.[22-24], it is shown that eqs.(2.1)-(2.3) may be reduced to the standard Hamil-

tonian of normal vibrations

. 2 3
g=Da Gay C (29
2 2
where the inertia By and stiffness C) are given by
da?}
= dr. 2.10
BA—-/poaad‘r, C= /P az, (az, 3.‘) T (2.10)

The eigenfrequencies of resonance excitations are defined as w? = C»/Bs.
The fluid-dynamical interpretation of restoring force of normal nuclear vibrations is
. linked with the elastic properties of single-particle orbits.  According to "scaling hy-
pothesis”, it is assumed that external perturbations (with energies of giant resonances
~ 6 < E, < 20MeV) give rise to the coherent distortions of one-nucleon orbits or, in
other words, evoke local deformations of the shape of an equilibrium Ferml-dlstnbutlon
(the distorted Fermi-surface model). In the nucleus volume, these distortions are associ-

ated with a harmonically fluctuating field of elastic strains

da} 0aj ' ‘
. - . 2.11
6P; = -P, (a +az‘)ou (211)

These strains strive to restore the initial equilibrium shape of Fermi-sphere and, hence,
return a nucleus to the ground state. The tensor of elastic deformations (2.11), obtained
from eq.(2.3) after substitution (2.5), possesses the quadrupole symmetry like the tensor
of quadrupole moment: the trace of 6P; is zero owing to assumption of incompressibility.
Thus, the coherent elasticity of single-particle orbits (qua.drupole deformations of Fermi-
sphere) is the main physical factor determining the quantum nature of restoring force for
normal vibrations resulting in giant resonances (quantum Hooke’s law). -On this reason the

nuclear fluid-dynamics may be considered as an example of quantum theory of elastncxty

Based on this scheme, in [26] it has first been found that the energies of isoscalar
quadrupole resonances are well reproduced throughout the periodic table if one puts the.
displacement field in the form: a; = —z,ay, = —y,a, = 2z. It is easy to check that -
this field is a particular case of general poloidal solution (2.7). The inertia and stiffness
computed with the field (2. 7) are

By = (N2)’MA < -2 }, C= (N:)’;A(A —1)2A =M <v® ><rP 5] (212)
where M is the nucleus mass. For the energy we obtain .

< p2r-1 >} 1/2

. | . F(EX)= [ (2A_1)(A—1)<” >2’_zm

(2.13)

‘Note that arbitrary- constants N:. disappear in the final formula for energy. Using the

sharp edge approximation for the nucleus surface and Fermi-ga.s estimate for equilibrium

pressure, the spectrum of electric isoscalar resonances (2.13) is replaced by

[2(2)\ +1)(A - 1)} vz

3 E(EA) (2 14)

The latter equation ha.s first been derived by le and Slerk [22] (see also [27 30]) w1thm ‘

‘the above outlmed approach Note that the poloxdal ﬁeld of velocity exa.ctly comcxdes

w1th velocnty of 1rrotatlonal flow which is consxdered in the standard LDM. Thereby, the
fluid- dyna.mmal treatment of electric isoscalar resona.nces repeats the well known Tassxe
interpretation of electric collective excitations accepted in the LDM. However, the main

difference between fluid- dynamlcal and hydrodynamlcal approaches is the treatment of

“restormg forces of normal vibrations. SRR R T S T

The collective motions describing by the toroidal field (2 8) are unique to the NFD and
does not appear in the LDM. Based on the above given approach Holzwart and Eckart [31]

.have envisaged the 2~ twist resonance (see also [20, 32]) which is interpreted in terms of

shear oscillations accompa.med by the field of dlsplacements of the form a; = —yz,a, =

zz,a; = 0. This ﬁeld is a particular qua.drupole solution of the general toroidal one -

given by (2.8). We stress again that the magnetic excitations, caused by the transverse

oscillations of nucleons, may be excited essentially owing to the elastic properties of nuclear

*matter The characteristics of twist resonances may be reprmented as follows

A+ 1),

2ty e, o= (N,")’%A(A’ DM <P >< P, (215)

'< -2 >] 1/2

sl _ 2
E(MM) =k [5(2A+ DA -1) <ot > T2

(2.16)



The model with a sharp edge yields [23]
‘ 112
E(M)) = huwr [@A—”;(L-ﬂ] . (2.17)

Both electric and magnetic resonances predicted by NFD have a volume origin, i.e. all the
nucleons of a nucleus are involved in the collective motions (see ref.[30]). This fact actually
means that the giant resonances are mostly determined by the saturation properties of
nuclear matter. ’

It is interesting to note that the‘ ?Fermi-frequency” wy occurs to be equel to the
oscillator frequency w of the single-particle shell model for a spherical nucleus. Indeed,
let us consider the semiclassical limit of the shell model with the oscillator Hamiltonian
(ignoring the spin-orbit coupling). Making. use.of, first, quantum and then statistical

~averaging of this Hamiltonian and applying the ”virial theorem”- (according to which

" < Thin >=< Uyt > for oscillator) we find < v? >= w? <.r? >. In a simplified model
< v? >=3/5v} and < r? >= 3/5R?. So the virial theorem yields w = wg = vp/R. The
latter identity can also be found in ref.[26] (compare the fluid-dynamical calculation of
the giant quadrupole frequency w(GQR) \/pr with the result of the self-consistent
oscillator model w(GQR) = V2w, egs. (51) and (58) in [26] respectively). ' :

' From the above presented equatxons for energxes it follows that dipole excitations of
both parities are unstable (the frequency is zero). The purpose of the next section is to

analyze the question why the dipole electric mode occurs to be excluded

3 Hill vortex as a macroscopic mechanism of the
* dipole torus mode
The long wavelength dipole oscillations with the poloidal field

 al(r)= Nirotrotrr Py(cosf) = 2N}V r Py(cosd), 3.1)

contribute only to- the mass parameter By (kinetic energy), whereas the parameter of
rigidity C) is canceled. As a result, a nucleus is moved as a whole without changing its
intrinsic state. This conclusion is due to the fact that we have used the approximation
of long wavelength oscillations. Thereby, in order to investigate the dipole transverse
response one has to go beyond the long wavelength limit and include higher terms into

the radial parts of the function x! entering into the poloidal dipole field

p(r) N,frot rotr Y(r,0). . (3.2)

T —

" Our further consxderatxon is relied on the microscopic analysis of a nucleon flow’ under |
a dipole response performed in refs. (13, 14] within the self-consistent Hartree-Fock and
Random Phase Approximations. In these articles, the probe response ‘operator has been
taken in the form rY], and then was corrected for the center of mass motion. Following
the prescription of [13, 14], we explore the trial function x! of the same form ‘

x’(r‘,ﬂ) =73 P,(cos 9), (3 3) .

i.e. the radial part of x! is taken in the next order beyond the long wavelength approx-
imation. To establish an explicit expression for the displacement field corrected for the

center of mass motion ‘we insert a,,(r), with x! given by (3.3), into the condition for the
center of mass Rc,,. ‘to be at rest )

_fealr | ' l
AR, = —=0. .
. Toir =° | 34
This procedure yields
a) = Nlrotrotrr(r? — R?) Py(cosf). 35)

In spherical components eq.(3.5) is rewritten as

_ 1 3
@) = Crgmpag = 207~ B cosd, (36)
1 .0 ‘ ‘
(@) = ‘m%h?lv:(?r’—n’)sinv, | .7
"(a,’,)¢ = 0. | o ‘ . (3.8)

. Fig.1. Meridional cross section of the
poloidal dipale field of displacements
for the spherical vortex of Hill associ-

ated with the dipole torus mode.




At this point it should be stressed that the obtained field of displacements precisely k

coincides with that for the spherica.l Hill vortex known in the theoretical hydrodynamics
from the last century(33, 34] The theory of the poloidal dipole flow is described in detail in
ref.[35] which also contains the exhaustive mathematical treatment of solenoidal (poloidal
and toroidal) vector fields in sphenca.l geometry.

The Stokes stream function v for- the vortex of Hill is given by
¥(r,8) = NX(r? = R?)r? sin’(6), (3.9)

The merldlonal cross sectxon of the poloidal dlpole ﬁeld for Hill vortex is pictured in
Fig.1. The critical pomts are fixed by the conditions e, =0 and a3 = 0: r. = R/\/2 \/_ and
0. = £x. By virtue of the torus-like form of Hill vortex, this collectlve excxtatlon of a
nucleus is referred below to as the dipole torus mode.

. -Having established the field of an oscillating flow, we are able to evaluate the energy

of a dipole torus mode. Inserting eq.(3.5) into egs.(2.8) the inertia and stiffness become

B, = ;(Npl)zM < r4‘>, C = 13_0(Npl)2M <vi><rls, | (3.10)
The energy is given by
, ot : s B
- - 1/2 _ 2 < 7'2 >
E(1t0ms) = h(C/B) -y [5 <v'>— >]‘ (3.11)

For the elastic Fernu—globe of the ra.dlus R= roA‘/a we get

B = —(N‘)’MR‘ C = -(1vl Y Mo R?, E(ltows) = ‘/ hwp ~ 2w, (3.12)

Using the parameters of the realistic Fermi-distribution for the density [2] in calculations
of < r* > we obtain

E(lgypys) = 65— 854715, MeV, e (3.13)
i.e. the mode under consideration turns out to be localized somewhat lower (approxi-

mately by 10-20%) than the isovector giant dipole resonance.

So, the nuclear fluid-dynamics predicts that the dipole torus mode may be interpreted

as the 2hw dipole isoscalar resonance, caused by the excitation in the nucleus volume of
"the spherical Hill vortex. ' 4
For the sake of comparison we note that in contrast with the transverse character of
dipole torus excita.t.ions,~ the squeezing dipole mode (3fiw resonance) is accompanied by
the longitudinal oscillations with the field of displacements a, = Vr? (r —4/5R) P,. This

L A

field is also corrected for the center of mass motion. However, it does not satisfy the
equation of incompressibility (2.1), i.e. the squeezing dipole resonance is essentially the
compression excitation.[3, 37, 38]. .

-

4 Form factor and transition current density for
dipole torus mode

To complete the analysis of the dipole torus excitation we present here calculations of
the transverse electric form factor and transition current density making use of the plane
wave Born approximation. The knowledge of these quantities is of interest since the form
factor can be directly measured in reactions with inelastically scattered electrons [39; 40]
The disturbed (transition) current density in the fluid-dynamical vl"epresentation is given

by (see for comparison [13,14])
8 =n, 6V =n, a,(r) (t). TRY

Here n, = Z/An, and n, stands for the particle density; &(t) = a,w coswt and a, is given

by [2] -
o= (%6) : | (42)

The transverse electric form factor is introduced on the basis of a tensor-function (see
[39], eq. (1.25)) , .
TE(k,t) = %/[V X jA(krk)Y»;l]r- 83(r,t))dr. (4.3)

This function depends harmonically on time due to an analogous time dependency of
current 6J. The electric form factor F} i (k) may be defined by

AFEP =< E OF > (4.4)

where the symbol < ... >, stands for the tlme averaging.

Taking into account eq.(4.1), the form factor can be represented as follows

2
IFFIF = o8 [ [ e (2ilir) = 7= < >hiatkeyear| (49

This "‘equa.‘tionﬂ shows that FZ(k) depends only on two nuclear parametefs: .the ground

state density and nucleus radius.



In the model of an elastic Fermi- globe with the uniform dens:ty, the integral (4 5) is
taken analytically '

FE(k) = —4 [k5R5 —575(15sin(kR) — 6k*R?sin(kR) — 15k R cos(kR) + k*R® cos(kR)) ,
(4.6)
where y=N} n,,a,,z..vR5 In Fig.2, the plot of II"“E"(k)I2 for ®Zr and °*Pb is presented to
illustrate the dependence of strength of the torus excitation on nucleus mass and charge.
This figure displays the enhancement of the torus effect in heavy nuclei as compared to
light ones; first maximum of the form factor is shifted towards the small momenta. transfer

when we proceed to nuclei wnth la.rge 7 and A.

The knowledge of form factor allows us to evaluate the contnbut:on to the cross section
of photoa.bsorptlon Asa result we obtaln

2x%e?

oy(1orys) = o |FE(k = L.,)|‘~1o-3 1072%/A MeV fm®.  © (4.7)

This value, probably, is too small to be observed in the photonuclear processes.
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Fig.2. PWBA computed form Fig.3. Transition current density
factor |FE(K)]* for 17,T. = 0 for 17, T = 0 torus excitation in
torus mode in ®Zr and 2°2Pb, - - %0Zr and 3 Pp,

Having computed the form factor we can calculate the transition current density which
is found [13,14] to be an important characteristics of collective oscillations as well. Accord-

ing to the general theory of electron scattering on nuclei, the transition current denslty is

10

defined as follows (see [40],.eq.(9))

() = -Zi—f— / FE (k) (kr)Ridk. (49)

Here, the indexes ¢ and f stand for initial and finale states and J = V2T ¥1. For the
torus mode A=1 J; =1, J. = 0. So, we have o

JT_J.,(r)———— / FE(k )ja(kr)k3dk. Lo (4.9)

Thie integral may,be computed only numerically. The tra.nsmon current density is plotted
m Flg 3. ’ ) . /

It is worthwhlle to note that a.ccordmg to ref.[36] (see also references therein), the
poloxdal torus- like current structures may be described by a new class of electromagnetic
”toroid” multlpole moments a.nalogous to the electnc and. magnetlc ones. The nuclear
dxpole toroid moment has been investigated in [16, 18] ’

: Thus the fluid-dynamical approach permits one to obta.ln rather a complete mforma—
tlon to 1dent1fy the dipole torus mode in the experiment.

5 Summary

ln the present paper it is shown that the nuclear fluid-dynamics predxcts a new macro-
scopxc mechanism of resonance d1pole excitation which is accompanied by transverse os-
cillations of nucleons. In the considered approach a spherical nucleus is modelled by
an elastic-like globe of spin and isospin saturated incompressible Fermi-continuum. The
festoring force of oscillations is interpreted in terms of quadrupole distortions of a spheri-
cal Fermi-distribution. The velocity field is derived by using the condition for the nucleus
center of gravity to be at rest. This field corresponds to the spherical vortex of Hill which
has a torus-like form of a flow pattern; the nucleus shape remains spherical. Tn view of
this, the collective excitation under consideration is referred to as the dipole torus mode.

An analytic calculation of energy performed within the distorted Fermi-surface model
predicts E(1y, . )~65 — 85A~"/°MeV. This estimate allows one to interpret the dipole
torus mode as 2hw 17, T == 0 current-dependent transverse resonance. The torus mode
happens to be well discriminated by energy from the isoscalar low-energy 1%w and high-

energy 3hw resonances and is expected to be found somewhat lower than the isovector
GDR. '
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Concerning the experimental search for the dipole torus excitation one may note the
following. An analogy with classical electrodynamics (see Sec.1) permits one to conclude
that ‘ma.gnetic forces should play a dominant role in the considered mechanism. There
by the torus mode should manifest itself in 'measurements with charged particles like
e, p, a, 7 etc. which produce the magnetic field. At nonrelativistic energies the magnetic
effects happen to be appreciably suppressed compared to the electric ones. This is a

“probable reason why we have got the small magnitude of photoa.bsorptlon cross sectlon
which is found to be ‘7‘7(1torus)"‘10-3 - 10"‘Z’/A MeV fm?. ) ’

~ We believe that the torus mode may be excited by melastlcally scattered electrons
at large a.ngla The conditions for such measurements should be the same as for the
ma.gnetrc‘resona.nces (see for deta.rls [41]) because the torus excitation is caused by con-
vectional transverse os:cilla.tioknskx of nucleons. in particular, for 2P, the dipole torus
reeorlance is expected to be at energies 10.5-13.5 MeV, i.e. just in between the isor/e(_:-
tor dipole and isoscalar quadrupole resonances which'in backwerd electron ecdttering a.re
suppressed Although this is region of M 3 resonance predlcted in [23], the excntatron
strength of the latter is somewhat weaker as compa.red to that for electric torus mode,
the magnetic quadrupole resonance located at 6-8 MeV will be excited at far smaller mo-

menta transferred to the nucleus. So, one may hope to detect the dipole torus response

in (e,e’) measurements under backward angles. With this in mind, we have computed the .

form factor and transition current density for such an experiment.

One should note that from the above presented considerations it follows that the torus
excitation is not related to the spin and i 1sosp1n degrees of freedom This means that the
measurements with isoscalar spinless probes is presumed to be more prefera.ble Therefore,
the conditions of the KVI experiment reported in [42] are,'in our opinion, qulte sultable

to suspect the exc:ta.tlon of the dlpole torus mode in the (e, ,7) rea,ctlon '
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