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1 Introduction 

In this paper we consider a possible state of incompressible nuclear matter, the 
plain nuclear vortical "disks". They are finite regions of the constant vorticity 
on the plane, are limited by the uniform-rotating boundary. These states can 
be considered as the generalization of the Elliptic Kirchhoff Vortex [l). 

In this paper the nonlinear integro-differential equation for the "disk" shape 
evolution has been. derived in the framework of the semiclassical nuclear hydro
dynamics [2]. The method is suitable to analyze the "disks" of any type with7 

out further assumption about the ellipsoidal shape or approximations about the 
small deviations the "disk" shape from the. circle [1]. 

The plan of our exposition is as follows. In §2 basic equations for the plain 
nuclear "disks" are derived. In §3 main facts concerning the elliptic Kirchhoff 
vortex are presented. A qualitative analysis of the main features of the "disk" 
states is given in §4. 

2 Basic Equations 

We shall describe the dynamical behavior of nuclear matter in terms of macro
scopic fluid dynamical concepts. They appeal to our intuitive understanding 
of collective motion by involving as essential dynamical variables local macro
scopic fields like single-particle density p(x, t), current-density J(x, t), pressure 
tensor Pkn(x, t), etc. We shall follow the semiclassical nuclear hydrodynamics 
[2). This approach for the relaxation processes in heavy-ion collisions based on 
the current and density algebra and the soliton theory concepts. 

The standard continuity and Euler equations are: 
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where the pressure tensor expressed in terms of the local density p and two
body interaction U(x - y). In this pare we shall not use the explicit form for 
the Pkn(x, t). Aside from the currents and densities one is usually interested in 
the integrals of motion: the number of particles N , the total linear momentum 
P, the total angular momentum L, and the total energy E : 

N = J pd
3
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For an incompressible (p = p0 ) nuclear vortical flow· the Euler equation may be 
•reduced to the following kinematical form: 

a - [- ;-;i at rotv = rot V X rotvJ, j = pov, (3) 

where the velocity field of the nuclear matter v(x, t) has beeri introduced in the 
usual way. 

Further it is convenient to turn to the vorticity (, and the vector potential A : 

v = rotA., divA = 0, (4) 

( = rotv = rotrotA = graddivA - AA= -AA. 

a - -a/+ (v'v)( = o. 

We shall restrict ourselves to the simplest two-dimensionai motion in the plane 
(A= Ae, ( = (e,):. 
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where ( r, <f>) are polar coordinates of a point. 
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The current function can be derived from the Poisson equation (5) with the help 
of the two-dimensional Green funct~on for the Laplace operator: 

A(r, <I>) = 
2
~ j def/ dr
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If the region of the constant vorticity ((r', ¢', t) = (0 , is limited by the contour: 

f(1·, <!>) = r - R(</>) = 0, 

then the above formulae may be simplified to 

(o 1 I I I A(1-.ef>) = -2 def> dr r ln(l 6r I). 
;r r . 
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The velocity projections Vr,ll<f> can be determined from formulae (5) by differs 
entiating A( r, <f>) with respect to 1· and ef> . So we have only one-dimensional 
integral is taken along the contour. 

Up to now the consideration was pure kinematical. Therefore, it must be 
supplemented with the dynamical condition on the contour (n-v) = (n•vcontour) 
defined with the help of eq.(6). The normal vector n is given by 

o-'vf ( )( . )-1/2 
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, (8) 

dR 1 dR 1 dR 
n def> + Vr - V,p( R def>)= 0, S(<!>) = R def>, ·(9) 

where n is an angular velocity of the uniform-rotation of the contour, and a

defines the orientation of the contour. 
With the help of the formulae (5-8) the equation (9) for the "disk" boundary 

may be cast into the form of the nonlinear integro-different!al equation: 
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It is to be noted that the equations of motion for the local density and the 
velocity field of the nuclear matter are nonlinear and the equations (9),(10) are 
derived without the usual procedure oflinearization of the equations of motion in 
powers of v and the deviation of the single particle density from the equilibrium_ 
one. Before to analyze our equations, let us remind the well known solutions. 
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3 The .Elliptic Kirchhoff Vortex 

At present there are well known elliptic Kirchhoff vortex 1 and the solution 
for small perturbations of the circle (we shall refer to the fundamental Lamb's 
monograph [1], where the references to the old original papers, hardly accessible 
now, can be found).· 

The simplest case of a circle of the constant vorticity was· investigated by 
Kelvin [1]. Let us analyze small perturbations of the circle vortex : r(r, ef>) = 
r- Ro , where Ro is the radius of the circle. The direct calculation of the current 
function with the help of formula (8) gives for r $ Ro : 

1 2 2 A0 (r,</>)= 4(o(R0 -r ). (11) 

The small rotationless perturbation: 

(o 2 r 1 
c5A(r, </>) = o: 2 R0( Ro) cos(/¢ - wt), · (12) 

where I is an integer, gives us the following (habitual for nuclear physics) contour 
equation (for small o: ~ Ro): 

R(</>) = Ro(l + o: cos(/</> - wt)). (13) 

So the small perturbation given by trigonometrical functions (13), is a crimp 
moving along the circle vortex with the angular velocity 

fl=~- (/-1) 
· I -~(o: (14) 

For instance, at / = 2 the perturbed shape is an ellipse, rotating about its center 
with the angular velocity (o/4, that is half of the velocity of the fluid into the 
contour. 
Perturbations of the higher symmetry / 2: 3 are rotating still slower. 
A particular case of elliptic contour was solved exactly by Kirchhoff [1]. 

For the ellipse: 
x2 y2 • 
a2 + b2 = 1, 

one can derive the following connection between the frequency of the contour 
rotation and the vorticity 

ab 
fl= (a~b)2(o 

Thus, from the above examples it follows that 

(15) 

1 The author has paid his attention to elliptic vortex thanks to Prof. Smorodinsky Ya.A. 
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i) despite the internal part of the "disk" is rotating with a constant angular 
velocity, this motion differs from the motion of a rigid body, because the contour 
is rotating with a different velocity, more slowly; 

ii) the co~tour velocity depends on the symmetry of a perturbation: the 
perturbations of higher symmetry are rotating more slowly; 

iii) the fixed ratio fl/(0 and the symmetry of states define completely the 
shape of the contour (for instance, for the elliptic vortex its eccentricity). 

The "disk" is unstable if its shape is not consistent with the ratio fl/(0 

Therefore, the parameter fl/(0 will be the bifurcation parameter. 

4 Main Features of Nuclear Vortical "Disks"· 

For a quantitative analysis of the equation( 10) it is necessary to build its discrete 
analogue. Such investigation is in progress. However, in this paper we restrict 
ourselves to the qualitative ·analysis, which can be done like in the previous 
section. 

One may expect that the exact· solutions of nonlinear equation (10) also may 
be described approximately by .the symmetry relative to the turn by th~ angle 
21r /I. So if one makes Fourier analys of the contour, then the Fourier coeffitions 
of the corresponding cos(/¢) must be the largest. 

One may also expect that the parameter fl/(0 will be the bifurcat.ion pa
rameter and will determine the stability of the "disk". 

Equation (10) together with the definition of the velocity fields (5) will de
scribe the motion of the contour as the propagation of a nonlinear dispersion 
wave on a plane. At the beginning the moving contour will be inevitably dis
torted. However, if this state is stable, then the interference b.etween the nonlin
earity and the dispersion will lead to the return of the initial contour shape. If 
one could prove the existence of these states, then the vortical "disks" of nuclear 
matter will be an analogue of the solitons on a plane. 

It is necessary to note, that despite the thirty-years history of the soliton 
theory, up to now physical solutions in two- and three-dimensional spaces are 
practically absent. The generalization of the one-dimensional solution to the 
two- and three-dimensions is in principle highly difficalt. 

· If the contour motion is unstable, it is very interesting to investigate its 
evolution. The integrals of motion are the square of the "disk" which is a two
dimensional analogue of the particle number, and the circulation of the vortex 
defined by the help of ( 0 • So one mays expect the disintegration of the "disk" 
into the vortex filament and into the separate rotating "disks". 

It is very interesting to analyze three-dimensional axially symmetric finite 
"disks". It is necessary to mention the recent paper [3], where the head-on 
collisions of two nearly symmetric heavy ions were simulated by the Boltzmann -
Nordheim - Vlasov equation. During these calculations, nuclear "disks" formed. 
During a collision process a" disk" develops due to the side-squeezing of.nuclear 
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matter, whose thickness decreases and diameter increases monotonically with · 
increasing bombarding energy. If the "disk" b~comes thin, it breaks up into 
several fragments of a size commensurate with the thickness of the "disk". So 
the "disk" stability problem is connected with the multifragmentation. 

Finally, in thi~ paper· we have derived the basic equations for nuclear plain 
vortex. The evolution· of the shape of the" disk" is analogous to the propagation 
of a nonlinear dispersion wave on the plane. The qualitative analysis of the main 
features of the "disk" has been made. We have pointed out the possible relation 
of the "disk" stability problem to the multifragmentation process. 
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