


1 Introduction

Historically, nuclear physicists preferred projectiles that were as simple as possible,
the focus was only on one of the reaction partners, the target. This attitude was
obviously also linked to a limited ability to produce qualitative beams of heavier nuclei
in the early light-ion era. With the heavy-ions a more democratic treatment of the two
reaction partners became a necessity and focus has been shlfted to the projectile with
the occurrence of exotic radioactive beams.

With increased ambitions for a quantitative understanding of quasielastic reactions,
such as charge-exchange or nucleon-transfer, a qualitative description of the projectile-
ejectile partners of the collision is also called for. One hopes that the very nature of
exotic beams will enhance fundamental aspects of such reactions and thus will serve as
an extreme testing ground. The reduced intensity of such beams obviously does not
make the job easy.

The recent progress in the light radioactive beam technique provides unique pos-
sibilities to study the nuclear structure near the neutron drip line.’ The ' Li nucleus
is partially interesting, the existence of a neutron halo having been experimentally
proved. Apparently, the ® He nucleus is another candidate for a neutron halo nucleus
which has properties similar to !'L: (abnormally large electromagnetic dissociation
cross section, a very large radius in the nuclear scale, twofold component momentum
distribution of a-particles for fragmentation of ®He on light targets [1]). -

The experimental studies of the !* Li 4 p [2] and ' Li +% i [3] elastic scattering are
in the very beginning, experiments of the ® He + p elastic scattering are also in progress.
These studies will certainly probe the extension of the halo, but being a highly inte-
grated (inclusive) observable, elastic scattering may not carry much information on the
detailed halo-structure of the exotic nuclei such as 1! Li, reaction processes (for exam-
ple, two-neutron transfer reactions p(*!Li,® Li)t or 2C(11L1,% L:)'*C [4]) being better
candidates. Discussions of the latter made, however, in standard theoretical approaches
rely on elastic channel information for their optical potentials.' The main ingredient in
the conventional treatment of elastic scattering is the single particle densities evaluated .
in some nuclear models.

Details of the 11Li density are still somewhat a matter of debate. The situation
is more clear-cut for ®He, also a halo-like nucleus. Contrary to 'L: the existing
experimental data for N-N and N-a scattering allow us to extract the corresponding
potentials and hnce we can calculate reasonably correct wave functions for the system
N+ N+« in the framework of the microscopic three-body approach [5]. In ref. [6] the
calculated wave functions and corresponding deénsities were tested against a variety of
weak and electromagnetic data as well as nucleon- induced quasielastic reactions (p,p’),
(n,p) and (p,n) on ®L: as a target. An additional possibility to test the resulting wave

functions is to compare 8Lz and ®He elastic scattering on proton and nucleus targets;
" the structures of these nuclei are comparable in a global sense (in the framework of a
three-body model) but differ in the correlations of the extra nucleons which may be
examined experimentally. ' Therefore, we carry out a comparative analysis of elastic
scattering of 8Lt and ®He, ' Li and '2C on proton and nucleus targets at intermediate
energies within the framework of the optical potential model and Glauber approach.
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The main aim of this paper is to describe the theoretical procedure and to discuss the
effect of the halo-like structure of ®He and ' Li on elastic scattering.

2 Optical model analysis of l_le elastlc scatterlng
on 57 at E/A=29 MeV -

To elucidate the behavior of interaction potentials for exotic nucIen recent data from
elastic scattering of secondary 'Li (29 MeV/A) and 7Li (254 MeV/A) beams on
2851 measured at Ganil [7) (Gaml Dubna collaboratlon) are useful. The corresponding
angular distribution for 7Li is. shown in Fig.1. It is in qualitative agreement with
measurements at lower projectile energies [8]. All they have shapes typical of stable
nuclei scattering in the Fraunhofer diffraction region - the ratio o/op decreases with
increasing scattering angle. The use of the thick target, the angular resolution 660 ~

1.5° and the lack of separation between elastic and inelastic scattering results in a
flattening of the diffraction structure of the spectra in Fig.l. For the case of NL
(Flg 2.) the behavior of experimental data is unusual - the ratio o /og is almost constant
in the measured range of angles, or has some tendency to decrease with increasing
scattering angle. Furthermore, o /o exceeds for ! Li the one observed in an analogous

distribution for the elastic scattering of the loosely bound nuclei 6Li [9] and °Be [10] ~

on 57 at approximately the same energies of relative motion.
The analysis of the elastic scattering was carried out in the framework of the con-
ventional optlca.l model usmg the standard Saxon-Woods form,

U(r) = Veou(r) = V f(zr) — iW f(z1),

f(zi) = (1 + ezp|(r — Ri)/ai])™,

where R; = r;A l/ 3 while Vgou(r) is the Coulomb potentlal of the uniformly charged
sphere. Potentlal parameters were fitted by the x? method for the best description of
the experimental data. -

We estirnated the inelastic cross section in the framework of the DWBA, with an
inelastic form factor chosen as derivative of the optical potential

Fr) = Baby T 4 ipay TG
with 2Ry =8, Rw = 1.21 fm [11]. In Fig.1 the results of the ca.lculatlons are compared
with_experimental data for the scattering of 7Li. The geometric parameters of the
optical potential were taken from the global parametrization [8], and the potential
depths V and W were fitted (see table 1). From the calculations it follows that the
contribution from inelastic processes is important except for very forward angles and
that the experimental data can be described by usual optical potentials.

In the case of ' Li the situation is different. The calculations based on the usual
optical potentials cannot give a reasonable description of the experimental data. Fig.2
shows the elastic cross section of 'Li calculated with the optical potential from the

global parametrization [8]. The description of the experimental data can be obtained - .

only with an anomalous large value of surface diffuseness of the real part of the optical

- potential. The available experimental data for a rather nartow angle range only do

not ‘allow a detailed study of possible optical potential parameters. Therefore, only
one example of possible potentials is given in Table 2. The corresponding elastic cross
section, contribution from inelastic one, calculated in the same way as for the 7Li
case and the total cross section are shown in Fig. 2. As pointed out above, a striking
peculiarity of the ! Li optical potential (see table 2) is the unusual large value of surface
diffuseness of the real part which apparently is a reflection of the "neutron” halo in the
U Li density distribution. The r.n.s. radius of the real potential in this case is about
6 fm, and in the strong absorption region the potential has a refractive character.
Further important information about the scattering nature may be obtained from a
near-side/far-side decomposition of the elastic cross section {12]. The decomposition for
the ' Li elastic scattering is shown in Fig.3. The crossover point of the near-side and
far-side components is close to # ~ 2° and the region of diffractive oscillations occupies
the angular range up to ~ 8°. At larger angles, the far-side component dominates
the elastic cross section: In the case of "Li scattering the crossover point is near 8°

- and the region of diffractive oscillations spreads up to nearly 20°. The smoothness of

o/op in the ' Li case at angles larger than 6 > 10° may be connected with a stronger -
manifestation of nuclear refractive properties in halo nucléi. The elastic cross section
for the potential given in table 2 has characteristics of rainbow scattering [13].
course, it does not mean that clear rainbow scattering features are revealed in the ' Li
scattering: the appearance of this effect’ depends on the transparency of the nuclear
potentials. For a more definite answer, it is necessary to have the experimental data
for the .Li scattering in a wider angular interval, both the exponential fall-off of the
elastic cross sections and the diffractive oscillations at small angles.

3 nMicroscopic\approach to elastic proton scatter-
ing on nuclei in optical model

The description of nucleon elastic scattering on nuclei in the framework of the micro-
scopic approach contains a large number of assumptions where at least some require a
better justification from the first principles. In the intermediate-energy region (E, >
100 MeV) the description is somewhat simplified, implying a fewer approximations and
a corresponding increase in the reliability of the theoretical analysis.

Therefore, we restrict ourselves to investigation of the elastic proton scattering on
atomic nuclei at cnergies larger than 100 MeV. In this energy region the dynamics of
the quasielastic process may be described as a single-step transition and the theoretical
analysis is carried out in the framework of the distorted-wave impulse approximation
(DWIA). The elastic scattering is defincd By the optical potentlal which in the impulse
approximation has two ingredients:

1. the structural information contained in the single-particle density distribution;

2. the effective interaction between the projectile and target nucleons.



In addition, it is necessa.ry to take into account the identity of the nucleons in the
collision partners which brmgs nonloca.llty to the reaction amplitude. For calculations
of this amphtude nonlocal densities would, in _principle, be needed. The contribution of
exchange knock-out amplitudes can, however, be approximated in the pseudopotential
approach [14]. In that approximation, the nonlocal amplitude is reduced to a local one;
hence, the local densities.can be used in our cross section ca.lculatxons

The optical potential used for calculating elastic scattermg was. computed in a
pt-folding model [15] (in the following simply “folding-model”) where p is the single-

- particle matter density of atomic nucleus. The central part of the optical potential was
derived from the S=0, T=0 component of the NN forces. It is well known (16, 17]
that, in this channel, there are essential corrections due to the influence of the nuclear
medlum which creates the p dependence of the effective NN forces. The p dependence
of the effective forces was introduced in the evaluations of the optical potentials by a
simple prescription suggested in ref.[16]. The spin-orbital part of the optical potential
was evaluated without a p-dependent (l e 5) component of the t-matrix interaction.

* As an example, Fig.4 shows the comparison between experimental data (ref. [18])

- ‘and theoretical calculations for elastic proton scattering on ®Li at E,= 185 MeV. The.

dashed line corresponds to calculations with the t-matrix interaction describing the free
NN scattering (ref.[15]) while the solid one takes into’account medium effects. Qur
results correspond to miicroscopic calculations of elastic scattering with ingredients
tested against weak and electromagnetic data as well as nucleon-induced quasielastic
(p,p), (n,p) and (p,n) on ®Li as a target discussed in [6] On the whole, we have
reasonable agreement with experiment.

As far as the comparison between elastic cross sections on Li and ®He is concerned
the use of free NN interaction or other recipes for introducing the p dependence prac-
tically does not change the relative differences.

The single-particle matter densities of SHe and ®Li were calculated within the

framework of the hyperspherical function method using the & + N + N model with
conventional aN and NN potentials. - The elements of the method and some results
are outlined in Refs.[5, 6]. In Fig.5a the calculated matter densities of ®L: and He are
shown. One may notice that p for ®He is larger than for ®Li for asymptotic values of
r and, as a consequence, the opposite situation holds at smaller values of r.

The radial behavior of the calculated optical potentials changes systematically with
increasing projectile energy:.the real attractive part of the potential decreases and the
repulsive core becomes bigger at higher energies. As an example, the optical potentials
for protons at £,=100 MeV are given in Fig.6. The difference in nuclear structure gives
some changes in the optical potentials. As a consequence of a more loose structure at
distances r > 3 fmn, the absolute value of the ®He potentials is greater than for 8Li.
And vice versa, at small r the core is'somewhat more pronounced in the case of ®Li.

“InFig.7 the resulting elastic cross sections are shown. At the very forward angles,-
the Coulomb interaction dominates and, naturally, the cross section on ®Li is greater
than on ®He. At intermediate angles, the cross sections are close to each other. If we
switch off the Coulomb interactions, theoretical cross sections for proton scattering on
6Li and ®He become very similar in this region of angles. At larger angles (8 > 20°)
the cross section on ®Li is again greater than on ®He and the difference between them

increases with scattering angle. Therefore, the differences in the structure of the target
nuclei are displayed most clearly at large angles. :

It is interesting to investigate the sensitivity of the elastic cross section to modifica-
tions of the densities. A cut-off of the density at r > 4 fm gives a negligible contribution
to the elastic cross section while the region from 3 fm up 4 fm exerts some influence
on the cross section_at small angles. In Fig. 8a the real part of the potential for the
p+8He elastic scattering at E,=100 MeV is compared with that calculated with den-
sities cut at r=3 fm. In Fig. 8b the corresponding cross sections are shown. It is clear
that the neglect of the outer part of the density modifies the potential surface, which
is reflected mainly in the cross section form for angles § < 20°

Fig.5b shows the contributions to thetotal densities from the a-particle core and
outer nucleons. The outer nucleons in ®L: and ®He have different spatial distributions
and correlations which influence the part of the single particle distribution of these
nuclei determined by the a-particle. The total density at distances r' < 2.5 fm is
mainly determined by the nucleons of the core while at distances from 2.5 fm up to
3.5 fm it is determined both by the nucleons of the core and outer nucleons. ‘The
influence of the difference of the a-particle spatial distribution in ®Li and ®He due
to different correlations of the outer nucleons in these nuclei can be displayed in the
elastic scattering of protons on the a-particle core from ®Li and ®He. Fig.7d shows
that the difference at large angles and the value of the effect is comparable w1th that
at the scattering on L7 and He.

As is seen, the process of elastic scattering at intermediate energies shows up some,
although not pronounced, sensitivity to the correlation of the valence nucleons.

It is very interesting to estimate the elastic cross sections for proton scattermg on
1175 For the M Li matter density we will use three different nuclear structure mcdels.
In the first, in the same spirit as for A = 6 nuclei, the hyperharmonic. three-body
model for " Li with L coreis used. The second one (ref.[19]) is a simple three-body
cluster oscillator shell model approximation (COSMA) with parameters fixed by ' Li
geometrical characteristics. The third one (ref.[20]) is a self-consistent shell model in the
framework of the theory of finite-fermi systems. The potential of an average field and
nucleon distributions are calculated by the density functional method. The resulting
densities are presented in Fig.9a. The behavior of the density in the asymptotic region
is different in all models reflecting different structures of the neutron halo. At small
distances the most remarkable distinction is connected with the core and in the self-
consistent shell model the density is lower as compared with the other calculations.
But in the intermediate region (from r ~ 2 fm to ~ 4 fm) densities are similar for all
models. The corresponding proton elastic cross sections for E,= 100 MeV are given
in Fig.9b. The meaningful distinctions are seen only at large angles, conﬁrmmg the
sensitivity to difference in the density behavior at small distances.

At last, we can state that in proton elastic scattering at intermediate energies
it is difficult to comprehend the structure of neutron halo that. must be revealed at
small angles. But the influence of outer nucleons on the core can be investigated
at large angles. As follows from our calculation, the studies of neutron halo effects
have perspectives at lower energies where reactions become more peripheral and cross
sections for the pn-scattering increase. As a consequence, the contribution from neutron

halo reveals more clearly.
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4 Elastic scattering iﬁk\leaﬁbei’ approach

Itis well—known that 'a good description of the hadron nucleus and nucleus- nucleus
interactions has been obtained at high energies'in the Glauber’ multlple-scattermg
theory [24}-[26]. Recently a reasonable description has also been achieved of nucleus-
nucleus elastic scattering at 30 MeV/A and higher energies ‘within the optical limit
of the Glauber model [27]. This argues the Glauber approach to be a possible tool
for investigating the halo structure of the exotic nuclei in the elastic scattering in
the intermediate and-lower energy region. We will here give main ingredients of the
“Glauber multlplescattermg theory and results obtained within this framework. Varlous
approximations to this approach will also be briefly discussed. )

One of the main points of the theory is the assumptlon of elkonahzatlon of the
elastlc scattering amplitude

f(9)=;—k (21 + 1)(1 — e¥**) Pi(cos 0), - W
1

which means that a large number of partial waves contributes to the scattering ampli-
tude. By assuming the scattering phase x; to be a nonsingular function of I, the sum
can be replaced by an integral over b = (I + })/k

10)= 3= [ - 20y, )

b is the impact parameter, k the wave number of the incident particle, 7= E— F the
wave vector transfer. The quantity 7(5) =1 — &% {5 the so called profile function
or the scattering amplitude in the impact parameter representation. It is connected
with the interaction potential under the assumption of rectilinear propagation by the
relationship

.t )
1) =1~ exp[—;:; / V(Vb? + 22)dz]. (3)

In the case of hadron-nucleus scattering, one has due to the potential additivity

. i - :
TraB)=1-exp|-==3 [ V(/E-5P+(E-2z))dz|, . (4)
L mE

whére (55, 25) are the j-th nucleon coordinates, A the mass number of the nucleus. One
can rewrite the relationship (4) as follows: :

o e

e T i U eeemen T

A
Tha(d) = 1 eexp[ZiZX(E_ )=
. A J_l_;
= 1= -@-35). | %)

The last expression does not contain the potential explicitly.
To describe the scattering of hadrons on the nucleus, equation (5) should be aver-
aged over target nucleon positions, which gives

FhA = “/dz '(q.b){l H[l“ +( =5}V P .. dPra. | (6)

Thus, the Glauber approximation is based on the following assumptions:
# rectilinear propagation of ‘the hadron inside the nucleus

¢ additivity of phase shifts

e “freezing” of the motion of the nuc.leons in the nucleus

These assumptions while being well justified at high energies are questionable at
intermediate ones. Nevertheless, we attempt to determine the applicability of. this
approach for the intermediate energies considering its straightforward generalization
with minimal corrections.

First of all, the nuclear wave function has to be chosen. The simplest assumption
for the wave function squared is an uncorrelated product of single-particle densities

A S
: [ ¥4 *= [] pa5ir2i)- , M
-j=1

.

Substituting (7) into (6) gives in the limit A — oo

Piala) = 5= [ @01 - (1~ [ 4(E- pals s} ) =

- -;é'/d’be‘(f"’){;— exp[—A / (b — 3)pa(3, z)d*sdz]}. 8)

A more precise representation

A

A
| oa P= 8375/ A) [ a5 20) )

j=1 i=1




gives . » : N
Fualg) = i'-‘-K(q“) / d2beileh ) exp[‘—-'Ah‘ / ( —é)pA(s z)dzsdz]} (10)

The function K ((D is called the center of the mass correlatlon factor. If
pa= (*R—,)a,—e‘ */R% then :

K@=exp(Bapd) T

This factor has the same form in the oscillator mode! for the nucleus.

As is seen, K(§) — 1 for A — co. The Glauber amplitude in this case coincides
with the expression for the amplitude in the folding-model using the ¢—matrix of the
free NV scattering. For finite nuclei it differs both by the factor K(§) and the phase
expression.

The “folding-model” uses the single particle density defined by

pa(r) = 1 Z 4 P dry...d° rab(7 — 7).

i=1

It has a Gaussian form for the parametrization (9)

~r?A
PA(F) (WRQAI 1)3/2 exp[Rz( 1)]

The Glauber approximation deals with the density g4 describing a nuclear system
as a more “loose” nucleus than the real one. Therefore the “folding-model” predicts
' the diffraction maxima and minima to be positioned at some greater angles than the
Glauber approximation does. It also predicts a steeper decrease of the cross sections
versus scattering angle due to absence of the K(g) factor'. These differences can
"be minimized by introducing the matter corrections to the {—matrix or the effects
of dynamic polarization. Both these corrections are strongly model-dependent. The
Glauber approach gives, in this sense, a regular method for taking them into account.
In the calculations presented below, we use, for *He and €Li, proton and neutron
distributions (pf; and p%) calculated in [5, 6]). For "' Li the self-consistent shell model
density [20] was used. The squares of the wave functions were represented in the
form (9) by fitting 5% and §7%. It should be noted that in this representation nontrivial
correlations of the halo neutrons have been lost. Their influence on the differential cross
sections, as calculation shows, is small and does not affect the results. The ordinary
nucleus '2C was described in the oscillator model with the parameter obtained from
the elastic formfactor data.
The second question is the choice of the reference frame. As is known, the Glauber
approximation is nonrelativistic. Therefore, the choice of the frame is important. Usu-
ally, a center-of-mass-system is chosen. In this system the vector ¢ can be defined

11t does not take place for nucleus-nucleus scattering (see below).
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in a different way. If the z-axis is directed along the incident particle momentum E,
then ¢ = ksin g where 0 is the scattering angle. The best result is given, however, by
choosing the Breit frame. In this frame ¢ = 2ksin8/2. This definition provides the
simplest consideration of deviations from the rectilinear propagation of the incident
particle. In all calculations we used the last definition of q.

The amplitudes of pp— and pn— interactions over the pion production threshold
were parametrized in the form [28]

funla) = —'UNN(I —ip)e™ )

.Below the threshold the amplitudes are assumed to be isotropic. The cross sections
of the pp— and pn— interactions were calculated according to ref. [29] .
Fig.10 shows the calculations of the elastic scattering differential cross sections of
®He,.°Li, " Li and '2C nuclei on protons. As is seen, the Glauber model is in good

agreement with the experimental data on-!'Li + p at 60MeV/A. The description of’

6Li + p is of lesser quality. This may be due to the neglect of the Pauli principle and
spin dependence of the NN—~aniplitude. A simplistic treatment of the Pauli principle
[21] practically does not affect the cross section of the ' Li 4+ p but sizably decreases
the cross section of the 8Li + p both at small and large scattering angles. A correct
inclusion of the Pauli principle requires much more details of tlie wave function and
essentially complicates the calculations. Therefore, we restricted ourselves to this result
at the present stage of investigation. _

A larger difference between the cross sections for ©He —® Li and MLi— 120 at small
angles at low cnergies is explained mainly by the difference of the pp— and pn—cross
scctions that at 60MeV is about 86mb. Therefore, the presence of the neutron on
the ®He periphery instead of the proton in ®Li is revealed already. in the total cross
sections. At higher energies, when the pp— and pn— cross sections practically coincide,
the main differences in the cross sections for *He and L1 is due to slightly different
nucleus sizes. A large difference of ' Li and 2C cross sectxons at large angles is due to
the different density behavior of ! Li and '?C at small r.

In the large angular region, the order of distinction of the cross sectlon $He—SLi and
1[;-12C weekly depends on the energy and increases with the transferred momentum.
Taking into account the small intensity of the radioactive beams, we find that just the
experimental study of the elastic scattermg of exotic nuclei at cnerg]es 60MeV/A and
lower is of particular interest.

For nucleus-nucleus elastic scattering the amplitude is a straightforward generaliza-
tion of that for hadron-nucleus scattering

Pog - & [esona . o
= ;: d2be'(q'5)d31‘1 .d rAd3t1 datB’l ba ' | ¥5 l2

x {1_HH[1—7(b—s,+Tn)]} . (14)

i=1n=1 »



Expression (14) can be Simpliﬁed in the ilimit“A B 5 oo ABam;; — const
» " Fap(q) =~ —KA(t})KB(tD/d’be X -
- n- / Crdtpa@pp(Dr(b~ 5+ 7))} -
ik o o
~ gKA(z})KB(q) / d2beil@h) - x

(1= expl=AB [ & tpapan G5+ 7). (15)

Expression (15) is known as the Czyz-Maximon approximation [30]. An analog of the
Czyz—Maximon approximation was used [31] in the analysis of data on high-energy
inelastic reactions but led to unsatisfactory results. Theoretical corrections [32]-[34] to
the approximation appeared to. be so large that an alternative method for calculation
of the scattering amplitude should be looked for. In particular, a “rigid projectile”
approximation was suggested [35, 36). This approximation considers the projectile as
an “elementary” particle having no structure and characterized only by its scattering
amplitude. The corresponding expression is

K,,(q)KB(q)F,,B@ - %’/dﬁbe'ﬁ's’,{l —exp[-B / Piin@TnaG+ 7). (16)

~ This approximation improved the description of the data for interactions between
light and heavy nuclei [37].

A regular method for the F4p calculation was suggested in [38]-[41]. Briefly, it
consists in the following [41]. The amplitude is expanded in a power series of the
N N —interaction amplitude i '

Iap(d) =" AB / EPrdpa(P)pp)y(B - 5+ 7) -
L A(A-1 . .
- _(‘éT*“)B / Pridrydtpa(71)pa(P2)pp(E) (0~ 51 + T)y(b— 5 + 7) —
B(B

2 GG
A- o )/d3rd3t1détéPA('z')PB(il)PB(tg)'y(b_s +T1)7(b——.§'+ _?2)

AA-UBE-1) [ [ Er@ta@pm@nG-s+7] +.. (1)

At large A and B the binomial coefficients can be written as Ch ~ AF KL E < A
The series (17) then reduces to the exponential expression

- . 2
Lap(d) = 1——exp{—ABﬁA®ﬁB®‘y+ 5 PA®PBR PO YO+
A2
+ TﬁA@ﬁA®ﬁ5®‘7®‘7+
A’B? | .
+ W[PA@PB@’)’P‘F..-} (18)
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The first term in the exponential gives the Czyz-Maximon expression. Gathering
the terms of the first order in B, one obtains the “rigid projectile” approximation.
Finally, retaining all the leading terms in (17) gives [40]

T4p(b)=1 - exp[~(b)] (19)
o(8) = fd25[1:+y—u—-z—uz]
T = _.I!E.A f PA(m)dz’ (20)
y=4B f ps(\/w— 32 + 22)dz,
wand z are solutlous of the system of transcendental equatlons
u=ye* o R 1
{ z= J:c_" : ; ’ ’ : (-‘1)

This approximation is called the “tree” approximation because terms of the series (17)
retained in (20) are represented by bicolored (bipartite) tree graphs [41].

Unfortunatcly, these approaches encounter a number of difficulties when investigat-
ing scattering of the neutron halo nuclei which have essentially different proton and
neutron.distributions. The first difficulty is the determination of the center of the mass
correlation factor for nongaussian densitics. Onc may only hope that the factor K (@)
of the form (11) for a reasonable choice of Ry would describe even such exotic densities
but specific recipes are absent. Another problem is more scrious. The phase functlon
of clastic scattering in the Czyz-Maximon approximation is proportional to the nuclear
single-particle densities. Therefore, a natural generalization would be

Yc”(i’.) = _*{/d ‘d T"/pp(b ‘3+T [ZAP4(-)7BPB( )+NA/’A(:)’VBPB(T)]

SRR I AT B(7) + fVAPA(é')ZBﬂB(T)]}

Here Zy, Ni(Zp, Ng) arc the dlarge and the neutron number of the nucleus A(DB),
7 1(1’3) and p%(p%) are the corresponding single-particle densities; With this defini-

tion, however, a question about the correctness of the transition to the optical limit,

scparately fof‘ the protons and ncutrons, arises. Finite-mass-number corrections to the
Czyz-Maximon' approximation- can, in principle, be calcilated in the tree approxinia-
tion, but taking into consideration different densitics essentially complicates the final
cxpressions. - Morcover, the increase of Refyn(0)/Im fnn(0) with decreasing cnergy
requires calculation. of numerous corrections to the tree phasc’function (20).

To avoid these problems, we usc a method suggested in paper [42]. This method
consists in the direct Monte Carlo evaluation of the multiple integrals-of the Glauber
theory. The nucleus-nucleus profile: function I‘AB(E) is calculated in'this approach as
the mean value over the ensemble Q5 of Al sets of the nuclecon coordinates




{{"J }J-—l s {t"}n—l }--1

distributed according to their densities a.nd is given by the expression

A B
Tas(f) ~ % S -TIII -G -5+ 7. (22)

(Hideny  i=in=l

~ The method, in principle, allows arbitrary parametrization of ');NN and pa, pp. As has
been said previously, in particular calculations we used either the gaussian parametriza-
tion-of ynn or the‘isotropic one ’ '

onn(2kin)® l_iRefNN(O) J1(2kynb)
Yo ImfNN(O) 2k;le -

where k, is the nucleon wave number in the NN center-of-mass system. We defined
the value of M from the stability condition of the calculated results in the region of the
second diffraction maximum at twice increasing M. In the real calculation, M varied
from 10 to 10° depending on the energy and prolectlle-target combination.

To compare the results obtained in various approaches, we have calculated dif-
ferential elastic cross sections for nucleus- nucleus sca.ttermg at several energles and
pmJectlle target' combinations. e

“In Fig.11 calculations of the differential elastic cross sections for the *He +12C reac-
tion at energy 342MeV/A are shown. It is seen (Flg 11a) that the Czyz- Max1m0n ap-

wn(b) - = (23)

proxxma.tlon overestimates the cross section and gives incorrect positions’ of the diffrac-

tion minima and maxima. The folding-model, Czyz-Maximon’ approximation without
taking into account K(§), gives a better result. The description can be improved by a
tuning of the nuclear density, as was done in [27], but the success for a more correct
approximation is not guaranteed in this case. More substantiated “rigid projectile”
and tree approximations give, at the same time, reasonable results. without neglect-
ing the center-of-mass correlations (Fig.11b). Taking into account corrections for the
rﬁmteness of the mass numbers of colliding nuclei, the radii of NN —mteractlons etc.
can improve these results (see, i.e’, [40]).

Summarizing the results presented, we conclude that various approximations to the
Glauber theory give close results:in the region of the first diffraction maximum. At
large scattering angles, various approaches give different results.

. Similar conclusions.can be drawn from the calculations of .the 12C +12 C scattermg
at various energies (Fig.12). /In addition, we notice an increase in the accuracy of the
predictions of the Czyz-Maximon approximation (with the center of mass correlation
disregarded). ‘Unfortunately, an increase in statistical errors hampers the direct Monte-
Carlo evaluation of the cross section at an energy 30MeV/A beyond the first diffraction
minimum and ambiguities of -the solution of (21) prevent us from presenting the tree
approximation and Monte-Carlo results. Therefore, the applicability of the Glauber
theory at such low energies requires further investigations.
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Fig. 1 Comparison of the experimental data (triangles) with the theoretical calculations
for the 7Li scattering on 253 at the energy 177.8 MeV. Long-dashed line - elastic cross
section calculated with the optical potential from Table 1; short-dashed --inelastic
cross section; solid — sum of elastic and inelastic cross sections; open circles — elastic
cross section calculated with the potential from [8].

Table 1. Parameters of the optical potentials for TLi 48 Si at 20MeV/A

N v Rr ar w Ry ar '<ia S <rli>? og  X)N

C 226.75 1.286 0.853 37.26 1.739 0.809 438 5.08 1820. 7.0
8] 1142 1.286 0.853 29.75 1.739 0.809  4.38 5.08 1700. 10.4
Table 2. Parameters of the optical potential for 1 Li + 5
'V o Rpar W R et <>V <ri>Wag YN
204.48 0.585 1.737 8.23  2.18 0.425 6.604 "~ 5.36 1445.2 . 1.84
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Fig.11 The differential elastic cross sections for * He+'?C reactions at 342MeV/A

within the framework of various approximations to the Glauber theory: a)the “fold-
ing” approximation (dashed line), the Czyz-Maximon approximation (solid line), the
Monte-Carlo results (open circles), the experimental data [37](points); b)the tree ap-
proximation (solid line), the “rigid projectile” approximation {dashed line),the Monte-

Carlo results (open circles), the experimental data [37] (points).

In Fig.13 the Monte-Carlo calculations of the elastic scattering of the nuclei *He,
8Li, "' Li and '?C on the nucleus '?C are presented. The picture looks like the one
of scattering on hydrogen but less distinct; at low energies one can expect a total
cross section difference to be of an order of ~ 10% in comparison with ~ 30% for the
scattering on hydrogen. The differences in the large-angle region are greater for the 1 Li
and ?C:scattering (Fig.13b,d). Thus, for investigation of geometrical characteristics
of halo nuclei, experiments at low energies on the hydrogen target are preferable.

As is seen, the theoretical analysis of elastic scattering in.the first-diffraction-
maximum region is relatively model-independent and can be carried out practically
without free parameters. Therefore, the elastic scattering data on exotic nuclei and the
corresponding Glauber-like approaches can be considered an effective tool for studying
the neutron halo structure. '
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Fig.12 The differential elastic cross sections for 2C+!2C reactions at various ener-
gies (pointed in the pictures) within the framework of various approximations to the
Glauber theory: the 'folding’ approximation (long dashes), the Czyz-Maximon approx-
imation (short dashes), the Monte-Carlo results {open circles), the experimental data
[43] (full circles), the tree approximation (solid line).

At higher transferred momenta theoretical uncertainties are lar'gef. The reason for
the discrepancy may be both uncertainties of the approximations to the Glauber the-

- ory and drawbacks of the Glauber approach itself. The results of the direct evaluation

of the Glauber expressions, using the Monte-Carlo method [42], show that for correct
description of the data the Glauber approach should be modified. The most impor-
tant correction due to the deviation from the eikonal propagation could be taken into
account by using the optical potential reconstructed from the Glauber phase shifts [25)

i =124 [ 20, o)

)
VI —r2

which can be used in the conventional dlstorted wave approximation by properly tak-

ing into account the distortions in the relative motion of colliding nuclei due to the

Coulomb+nuclear forces [27 44].. Nevertheless, our preliminary results in the standard

Glauber approach scem to be very promising in describing both the absolute value and -
the functional dependence of elastic scattering without free parameters.
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Fig.13 a) The differential elastic cross sections for He+'?C, S Li+'*C reactions at
60MeV/n. The solid line corresponds to ® He+'2C; the dashed one, to 6Li+'?C. b) The
differential elastic cross sections for $He42C, 6Li+'2C reactions at 345MeV/A. The
solid line corresponds to ®He+'2C; the dashed one, to ®Li+'3C. c) The differential
elastic cross sections for " Li+'?C, *>C+?C reactions at 60MeV/A. The solid-line
corresponds to 11Li412C; the dashed one, to 22C+!?C. The points are the experimental
data [45] for 1 Li+!2C; d) The differential elastic cross sections for ' Li+'*C, ?C+'*C
reactions at 345MeV/A. The solid line corresponds to '*Li+'?C; the dashed one, to

- 1204120 reactions. -

5 Conclusions

In the present paper we display very preliminary resuits in the descrlptlon of elastic
* - scattering of exotic nuclei in various a.pprox1mat10ns As ‘we have demonstrated, the
elastic scattering will be able, in principle,. to give the accurate information about
integral properties of the neutron halo structure. Both theoretical and experimen-
tal investigations of the subject considered are in the very beginning and a further
systematic study is desirable.

We thank J.S.Vaagen for a critical reading of the manuscript and stimulating dis-
cussion of the problem. We are also grateful to J.S. Vaagen, B.V.Danilin, S.A.Fayans,
D.V.Fedorov and M.V.Zhukov for useful discussion. .
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