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In a number of recent papers [2-4] the possibility is 

discussed of testing the consequences of the nonstationary 

Schrodinger equation in experiments with slow neutrons. It 

seems that most attractive in this connection are ultracold 

neutrons ( UCN). They have a large wavelength, 
. -6 

i\=h/mv ~5x10 cm .. The characteristic quantum time is also 

sufficiently large in their case: 

h 
't' "' 

-9 "'6.10 sec 
C 

(at the·energy c"' 10-7ev). 

Therefore, the experiments seem feasible. 

(1) 

This paper discusses the possibility of performing 

an experiment which consists in transmitting a monochromatic 

beam of UCNs through a periodically acting fast quantum 

chopper [3-4]. The theory of the effect this chopper produces 

on an initially monochromatic neutron beam can be developed 

self-consistently. The energy -spectrum of the transmitted 

neutrons appears to be a di'screte one. The fact is rather a 

characteristic consequence of the nonstationary quantum 

mechanics possible·to be checked on in the experiment. 

In· the simplest case it is a one-dimensional problem. 

The first step· towards the solution of it was made by 

Moshinsky in 1952, who analysed the case of an instantaneous 

removal of an ideal absorber from the neutron beam [1]. The 

initial state is a semi-infinite plane w~ve: 

ikx ~(x,O) = e 8(-x), (2) 

filling the left half-space. The. wave function a(k ) in the 

momentum representation [5], determines the evolution of this 

state as: 
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Here P means the principal value of 

Moshinsky's solution of, eqs. (2)-(3) 

dependence on the variable 

~ = vt-x. 

integration. The 

reveals strong 

(4) 

The point ~=:=o corresponds to the classical beam front 

traveling with the velocity v = hk/m_. This front is gradually 

spreading in scale on propagation: 

Ii~ "' l'ttx (5) 

-1) . (x"' vt; ~ = k . In the whole range of~ values the picture 

reported in [ 1] reproduces the Fresnel , light diffraction 

pattern from a sharp edge [6]. Note that, the analogous result 

was obtained by Zommerfeld and Brilloin in 1914 for the case 

of an electromagnetic wave front traveling in a dispersive 

medium [7]. 

Now, turning our attention, back, to the chopper, we 

shall concentrate on the periodical mode of its operation. 

This regime of operation , seems attractive from the 

theoretical and convenient from the experimental viewpoint. 

Let an absorbing shutter, be put in the beam ,at the time ... t=T 

and out at t=2T with many repetitions. The total period is 

2T. The condition 

-1 T » h/e = w (6) 

ensures quick enough recovery of the initial plane wave all 

over the left half-space x<O, in analogy with eq. (2). Then 

in accordance with the superposition principle the wave 

function of the transmitted neutrons can be expressed through 

the Moshinsky's wave function (3). 

After the (n+1)th shutter's operation, we have 

CX) 

t/J(x,t) = Jei(k'x-w't) 
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Then we may proceed to t.he limit n ➔ oo. With each of the two 
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terms in the numerator being independently integrated, 

poles appear, 

rr(2s-1) 2mw 1/2 

w = w + k = (~) s T s 

some 

(8) 

which define the new energy values. Here s, an integer, is 

the number of a satellite line. The energy change occurs in 

accordance with the uncertainly principle (e.g. see [5]) 

liE/it:::: h (9) 

and it is relatively small. The final result can be obtained 

in the form of a superposition 

1 i(kx-wt) ·i 
CX) 

ei(ksx-wst) 
I{! =-e + rr I (10) 2 s=-oo 2s-1 

These equidistant satellites ( 8) together with the initial 

line w, are related as the quasi-energy of the particle [8]. 

Rather a complicated wave structure of the transmitted 

neutron beam shows typical beats. At distances not far from 

the chopper 

X « 

their large-scale period is 

4mv3T2 

L"' 
rrh 

(vT)3 

11.2 

» VT, 

as it follows from the last term in the expansion: 

ksx 
n~ 

wt~ kx-wt- --s VT (2s-1) -
rr2 hx 

(2s-1)2. 
2 mv3T2 

(11) 

(12) 

Expression ( 11) can be obtained by making use of a 

simple relationship: 

(2s-1) 2=4s(s-1)+1, 
4s(s-1) 

= integer. (13) 
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It seems obvious that in the near chopper beam 

region there should appear some small-scale structure, 
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elements of linear dimensions~ vT. These structure elements 

propagate with the velocity v and we analyse their evolution 

below. For the numbering of these structure elements of 

density it is convenient to introduce the following 

notations: 

pvT < ~ < (p+1)vT, l;; = ~ - pvT. (14) 

The same integer index p can also be a number also a thin 

transition zone (a kink) in the region 1<1 « vT between the 

corresponding elementary structures. (The variable l;; is 

counted from the position of the classical front related to 

the p-th operation of the chopper). Under assumption of the 

smallness of the distance from the chopper, we neglect the 

square term in the dispersion law ( 12) and, by performing 

summation after eq.(10), obtain: 

(vT) 2 
t/J ~ ~ [ 1+(-1)J ei(kx-wt) X « --- (15) 

1t • 

in the interior of a given structure element. It is true, 

·however, that close to the point l;;=O i.e. in the transition 

layer, the square term becomes important again. But, in this 

case, eq. (10) allows substitution of summation over index s 

for integration: 

t/J = ei(kx-wt){+ + (-1 )P 
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Expression (16) describes the shape of the fronts 

(kinks)_. Applicability areas for eqs.(16) and (15) overlap. 

Thus, in this region the fragment (-1)p = + 1 having the same 
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neutron density 1~1 2~1 as the initial wave is confined within 

by Moshinsky's kinks [1]. 

With ~ncreasing distance x, the structure elements are 

merging due to the spreading of their fronts in accordance 

•with estimate (5). However, the discrete character of the 

spectrum (8) leads to the situation, when, in some 

comparatively localized regions, the small-scale ,structuring 

recovers and sometimes in rather unexpected forms. For the 

illustration of this recovery we shall turn to the region: 

mv3T2 

X = 
rrh 

+ x1 ' 

formulas 

(vT)2 
lx1 I « -- (17) 

It 

(10), (12)-(14) and procedures By using 

analogous to the 

results: 

above mentioned we arrive at the following 

t/J ~ ~ exp { i [ kx - wt-( :-1 / ~ ] } , 
1 

1~1 2 ~ - (18) 
✓2 . 4 2 

co · hx1 
i(kx-wt){ 1 · <-1 )p J -i 2mv re 

2 -il;;re ~} t/J=e --+-- e e 
2 2rr J re. 

-co 
( 19) 

1(1 « VT 

We see that here the structure ele~ents. of the phase 

type are present. The interior density of these elements is 

the same, but the sign of the additional pllase q> = rr/4 

alternates. Thus, the wave function phases of two 

neighbouring elements differ by rr/2. 

The density kink at the interface of the phase elements 

is described with exp.(19). The variable: 

~< ~ l~1x1 
gives estimate on the kink's width scale. One can easily find 

corresponding asymptotic expressions at small and large 

values of this variable. Figure 1 gives a more complete idea 
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of ho_w the phase hensity kink looks like over the whole range 

of< values. 
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Figure 1. 

Now we shall consider in brief the situation when the 

neutron.beam density is measured with the detector positioned 

in some fixed point. It is obvious that in this situation the 

dependence of density on time is a strictly periodic 

function: 

2 
(X) 

It/II = I 
n=-oo 

C e-iw t 
n · n w = n 

mr 
(20) 

T 

Coefficients en in the Fourier expansion of the neutron beam . 

density (20) can be calcuiated explicitly if the detector is 

positioned in the' area, where. the small-scale structure 

elements are distinct enough. For example, for the nearest to 

detector region and with an appropriately chosen origin fort 

we obtain: 
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hx 
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mv3T2 n = 2s * O 

Analogous expressions can also be obtained for the 

phase structuring area defined by exp.(17). 

Neutron beam beats can be observed in experiments. 

Supplementary to them could be the experiments on neutron 

beam polarization in an external homogeneous magnetic field. 

It is important to emphasize here the feasibility of a direct 

experiment on the measurement of discrete energy spectra of 

UCNs after the periodic chopping of the beam. 

In this experiment one must not necessarily shut the 

beam down fully and simultaneously over its whole 

cross-section. It appears sufficient just to periodically 

chop the beam at every point of the cross section. Thus we 

come. to the problem of the motion of a periodical absorbing 

structure across the beam. Let us consider this problem in 

detail. 

Imagine a plane wave, across of which at point x = 0 

an infinite plane grating with a spatial period 2a is moving 

with a velocity Vin the positive direction of they axis. It 

is assumed as before that the time T=a/V satisfies the 

condition (6). By solving the problem of diffraction in a 

moving reference frame connected with the grating, under the 

assumption that ka » 1, one obtains: 
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] x + resy -wt] 

Here the expression under the square root is found from 

the energy conservation law and the following notations are 

accepted: 

kw = 
.mv 

h 
w = w 

mv2 

2h 
res= rr(2s-1)/a. (23) 

Here s, is the integer that defines the diffraction order 

2s-1. Now we pass to the laboratory frame of reference ·J:iy 
applying the Galilean transformation to the wave function. In 

accordance with ref.[5] we must replace the variable yin (22) 

for the y-Vt and then multiply the whole expression for the 

wave function by ei(kwy-wyt). Besides, we take into account 

that 

res V 
rr 

= (2s-1)- = 
T 

w -w 
s re = s 

w -w 
s 

V 

and we arrive at the final formula 

l/1 (x, y, t)= 
1 

2 

i(kx-wt) 
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Provided the value for the inverse lattice vector re is 
s 

8 

small, one has: 

k » re 
w s 

/k2+2k re -re2 
w s = k + 

T » 

k re 
w s 

k 

h 
(25) 

mv2 

m 
= k + -- Vre ~ k hk s s 

(26) 

The term resy in (24) is purely diffractional. It 

disappears at large grating periods, i.e. at sma11· res. Now it 

is seen under what conditions exp. (24) transforms into the 

exp.(10). The transformation occurs, if the grating velocity 

V and the lattice constant a are simultaneously increased 

without changing the chopping time T=a/V. · It can be shown 

that the experimen~ with a moving grating can indeed be very 

well described with formulas (10). 

The idea seems attractive. of the use of a phase grating 

in this experiment. Under the requirement that the thickness 

of a transparent plate, phase grating, varies with a step a 

and a period 2a by a value 

rr 
~d = 

k(n-1) 
(27) 

where n is the refractive index of the transparent material 

of the plate, the phase of waves, transmitted through the 

neighbouring elements of· the grating will differ by rr, (a 

so-called "rr-grating". 

By repeating the calculation in an analogous manner we 
obtain: 

_ 2 L(X) i [ (/ k
2 

+2k . 2 ) 
- - e re -re • w s s X + 

lTr 

re y-w t] 
s s 

l/1 (x,y,t) ( 28) 

s=-oo 2s-1 

The difference from (24) consists in disappearance ·of 

the central line with the initial wave number k and in 

increasing intensity of ·satel.lite lines by a factor of four· . 

At T::l2.5x10-
7
s, which is an order of magnitude larger 

than in experiments with cold neutrons [4], in order to 
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achieve the necessary energy resolution, 6c, the following 

requirement should be satisfied: 

6c « h(ws -ws)"' 
2rrh 

T 

-8 
"' 10 eV. 

Such a resolution appears quite within the 

possibilities of the UCN gravitational spectrometry [9]. It 

seems attractive to apply to UCN the spin-echo method as well 

as the method of interference filters [10-12] having a 

resolution of the-order of 10-9ev. 

In the latter case, the instrument could have comprised 

two such filters with a chopper positioned between them. One 

of the filters would serve as the monochromator and the other 

as the·analyzer. One should have the opportunity to vary the' 

neutron energy in front of the filter-analyser. This can be 

easily accomplished by one of, the known methods: the Doppler 

shift or inhomogeneous ·magnetic field method (for which· 

polarized neutrons must be available), or.the method of UCN 

acceleration (deceleratio~) due to 'gravity. In the latter 

case the neutron beam should be sent vertically downwards 

(upwards). Then the energy analysis consists in the 

measurement of neutron .transmission through the second filter 

in dependence on the height of the ne_utron rise in the 

gravitational field. It is clear that on neutron's traveling 

the distance of 1 cm its energy changes by 10-9ev. 

The main conclusions are the following. In accordance 

with the quasi-energy conservation law and in result of the 

periodical mode of neutron transmission a nonstationary state 

with a discrete energy spectrum is generated. In the 

configuration space the transmitted wave exhibits complex 

beats good for theoretical description. Nonstationary effects 

can be verified directly in the experiment by measuring 

energy changes which are of_purely quantum character. 

The authors wish to express their gratitude to. 

R.Gahler, M.V.Kazarnovsky, A.M.Kamchatnov, V.E.Makarenko and 

V.P.Smilga for their help and fruitful discussions. 

We are much indebted to the late prof.Ya.A.Smorodinsky. 

10 

References 

1. Moshinsky M.//Phys.Rev.,88 (1952).P.625. 
2. Gerasimov· A. s.·, Kazarnovsky M. V. JETP, 71( 1976), 1700. 
(in Russian) 
3. Gahler R.,Golub R.//Z.Phys.8,1984.Vol.56,P.5 
4. Felber J.,Gahler R.,Golub R.//Physica 8.1988.Vol.151. 

P.135, 
5. Landau L.D.,Lifshitz E .. M. Quantum mechanics. 

(Moscow:Nauka) 
6. Landau L.D.,Lifshitz E.M.Electrodynamics of _continuous 

media. (Moscow:Nauka) 
7. Landau L.D.,Lifshitz E.M.The theory of field. 

(Moscow:Nauka) 
8 .. Zel'dovich Ya.B.JETP,v.51(1966),1492. 
9.Scheckenhofer,H, .Steyerl,A.,//Nucl.Inst.Meth.179,1981,p.393 
10.Seryegin A.A.JETP,73(1977),1634,(in russian) 
11. Steinhauser K.-A,Steyerl A.,Scheckenhofer H. 

//Phys.Rev.Lett.(1980~ 1 Vol.44,P.1306. 
12. Steyerl A.,Drexel W.,Malik·S.S.,Gudsmiedl E.// 

Physica 8.1988,Vol.151.P.36-43. 

·, 

Received by Publishing Department 
on November 12, 1992. 

11 


