


oo . 1. Introduction

" The present consideration is initiated by the interesting paper+/1/ that has
recently been’ pubhahed in this Journal. Its authors have dealt with the removal
~of divergences from the vacuum charge density of a hydrogen (H)-like atom.
These dlvergences arise from the electrons that fill the Dirac sea (DS) states.
Regretfully, no concrete figures ‘concerning level shifts were obtained in /1/.
" Here we consider the nonrelativistic (NR) one-electron atoms with the self-
interaction (SI ). The latter is taken into account in the framework of the theory
developed by A.O.Barut and his collea.guea ]2/. We lumt ourselves to the NR
version of this theory. Its applicability is _]ustlﬁed by the small velocmes of
atomic electrons and by the fact that the original NR Bethe calculations /3/ of
‘the Lamb shift are almost exactly reproduced by the more refined relativistic
ones /4/. There is no DS levels in this case and no divergences appear. The
plani of our exposition is as follows. In §2 the main facts and Eqs. concerning SI
are presented.The positions of the lowest energy levels and the corresponding
wave functions (WF) are evaluated in §3. The short dlscu.smon of the results
obta.lned is gwen in §4.

. 2. Main Facts Concernmg the Self-Iuteractlon

" In the relativistic case, the following Lagrangian describes the interaction of
the electroma.gnetlc field with electrons /5/: »

L(z) = )GV ~ eA(z) - m)¥(z) - ;F* @Bl (21)
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By varying L(z) wrt ¥ a.nd A we get the followmg coupled system of equations:

(V- m)¥ = eAi E-y = eﬁ”y“‘l’
gz
When conmdenng the electron motion in the external field one should add it to

the ra.d.la.tlon ﬁeld Then:

A = A,,,‘I“,\ V=q* ¥(z) = ¥H(z)7o, ‘

(v - m)¥ = e(A + Aext)¥, o (22)

A :
DA# = —c¥7"¥, z:“ =0. (2.3)



Barut et al./ 2/ proposed to find A from (2.3), substitute it into (2.2) and to
golve thus obtained highly nonlinear equation. The WF ¥ satisfying (2.2) may
be developed into the Coulomb eigenfunctions ¥, of the Hamiltonian without SI.
The complete set of these states consists of scattering states (E > mc?), bound
states (—mc? < E < mc®) and DS states (B < —mc?). The latter ones should
be completely filled /6/(in order to prevent the particle penetration into DS
states and their subsequent transition to the infinite negative energy states).
DS states give divergent contribution to the charge and current densities. It
wag the main goal of ref./1/ to remove these divergences. Usually /7/ SI effects
are taken into account in the framework of the perturbation theory (PT). The
divergent integrals arising in it are handled by the suitable cut-off procedure.
An alternative approach to take into account SI interaction without using the
PT has been suggested by A.O.Barut and his colleagues /2/. The present

treatment may be viewed as a practical realization of their ideas. To escape

the infinite contribution of DS states we consider the NR electron with SI The
corresponding Lagrangian is given by /8/

L=L.+LsL. = ¥*(ihf - e®)¥ - 2 (V + ATV - 2A)Y,
Li=(E*~H%/8r,  E=-V&-Af, H= rotA.

By \%a.ryirgg itover ¥, %, A we g.rﬁve at the foHoWing cotpled sy;stem of eqﬁa.tiongs:

. O A2 ie o | |
(tﬁa - ed)¥ + E;Z(V - EA) ¥ =0, \ (2.4)
1ee 1ee  4x s
AP~ -c-z-Q = —41’/}, AA ~ EZ—A = ——C-J. (2.5)

~ The Lorentz gauge condition div A + ®/c = 0 was used in deriving (2.5). NR
charge and current densities entering into (2.5) are

p=el ¥ 12,3 =.;""_h(w'vw -V p) - iA | ¥ 2.
! 2m me

We limit ourselves to the static potentials &, A. In this case the time dependence
may be separated from ¥ : ¥ = exp(iEt/A)U(r). Then

A2 ie .4
-—-2-'-;"-(V - EA) U +'3§U = EU, (2.6)
Ab=-41p, AA=-23  diva=o
, p ‘

Consider now a particular case when A = 0, while the scalar potential ® is
spherically symmetric : L
2
LN +edU = EU,
2m .

- AP = —47p, p=e|¥]?.

- from (2.8):

- . We realize that disregarding solutions with A #0 Wg lose the major part of
‘physically interesting effects (Lamb shift, etc.). However, the solution found here

(as far as we know ) is the first nonperturbative one. Further, we limit ourselves
to the states with zero angular momentum, i.é., to the s states (U = R(r))

® BR 24, | o

We are interested in sfﬁaying‘the SI influence on the electron in the field of the

- fixed Coulomb center. For this we should add its energy into the ;}ua of Eq.(2.7). -

* This gives - -~ -
. B, PR 24R, 28
P Shiund — _—R QR:ER. 2.9
o 2m(dr2+rdr) Fte® (2:9)

_ Following the idea suggested by A.O.Barut and his_collea.gges/ 2/ wefind &

Y

e [y [CaRenn @i

) a.nd éﬁb‘s’f_itdté it into (2."‘9v).A‘s a result we obtain the »nonli‘nezzi.'r Hﬁ:f;rgéjlifo'ck
type equation (2.9) with & given by (2.10). It is convenient to express the
_ radial coordinate r and energy E in the dimensionless va.ria.bles: z=12 r/gﬁf €=,

KW E/Z*met.

" ‘Here aq = #%/me? is Bohr's radius. In these units the energies and éigénfulic-

tions of the H -like atoms without SI are the same for any Z. Pa.rﬁctﬂa.rly{ fo
the treated s states they are

& =12, R = QP RQ - n g 2af)exp(-af). (21)

These functions are orthonormal:

‘/:o dz R (z) Ry (z)2* = bnnr.

. , 3. Numerical Results -
The solutions of the nonlinear Eq.(2.9) were obtained as follows. The starting

“point is-the eigenfunction (2.11) corresponding to the particular (ns) state of
the H -like atom without SI. We substitute RS into ¢ and solve Eq(2.9) with

such a & . Let &) and BY be the solutions of (2.9). We repeat this procedure
by subatituting RY into & and solving again Eq.(2.9). This process stops when
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two successive iterations give practically the same energy and WF. Three lowest
absolute values of the energy levels are collected in the Table .

o

Table . The lowest energy levels of H -like atoms with SI

Figa.4-6 show Vg for different Z and different eigenfunctions. The deviation of
Vesr from unity measures the power of SL

n\Z | 2 3 6 8 10 82

1 | 0.232 | 0.354 | 0.400 | 0.424 | 0.439 [ 0.492 | 0.500
2 | 0.057 | 0.089 | 0.101 | 0.107 | 0.110 | 0.123 | 0.125
3_|0.026 | 0.039 | 0.044 ] 0.047 | 0.048 | 0.05475 | 0.055

In the last column of this table v we present the energxés of the H -hke atoms
without SI (| € |= 1/2n3). One may wonder why this Table does not contain
- the energy levels of the hydrogen atom(Z = 1). The reason is that SI in this
case turns out to be so strong that it pushes out hydrogen bound states into
the continuum. This is also confirmed by the naive application of the: PT. In
fact, averaging the SI term over the unperturbed ground state WF (given by
Eq(2.11) with n = 1 in it ) we obtain for the energy shift Ae¢) =5/4Z . Adding
it to the nonperturbative energy of the same state (¢§ = —1/2) we find that the
- total energy falls for Z =1 into the continuum. It does not follow from this
Table that deviations of E,. from E" are smaller for la.rge values of Z. With
. the account of factor Z2 in the deﬁmtmn of en they are in fact larger. The
WF corresponding to the energy levels of the Table are shown in Frga 1-3. The
point-like curves are related to the WF without SI. For states with n = 2 and
3 there are shown WF only with the lowest values of Z (the WF with Iugher z
~cannot be discriminated on these Figs.). To make the effective potential energy
more visualable - we present $ in the form

Vog=1 —%(/ dr' R (r')r"? + r/' dr’' R?(r")r').
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Fig.1.' The wave function.sl‘of 12 states : .
with gelf interaction (full and broken curves )  Fig.2. The same as in Fig.1,but
and without it (point-like curve). for 2s states.
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Fig.4. The effective potentm.l energy

Fig.3. The same as in Fig.1;
- _ for 1s sta.tes

but for 3s states.
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Fig.6. The same a8 in F1g4
but for 3s states. :

Fig.5. The same as in Fig.4,
but for 2s states. -

4. Discussion and Conclusion

It follows from the previous section that SI should destroy an atom as a.
bound system. But such an atom exists in Nature with its energies not very
far from those of the H atom without SL However, one cannot simply dis-
card SI terms as they are responsible for such well established effects as Lamb
shift, anomalous magnetic moment of the electron, radiative corrections to the
Coulomb sca.ttenng, etc.(see, e.g., /7/). Usua.lly, it is believed (Cf. /2,4,5,7/)



that a static SI considered here does not lead to the observable effects ( it renor-
malizes the atomic levels and does not contribute to the radiative corrections
mentioned above). If we adopt this viewpoint, then the Table gives the values of
these renormalizations. Usually, they are evaluated by means of PT which is not
free from divergences. The special subtraction and cut-off procedures are used
to get rid off them. We have succeeded in obtaining the finite renorma.hza.uons
of atomic levels without using PT. '
“To the end, using ideas of A.Q.Barut and his colleagues we have eva.Iua.ted
nonperturbative renormalizations of atomic levels and wave functions of the
hydrogen-like atoms with self-interaction. This raises one’s hope that more
realistic observable effects (Lamb shift, etc) can be obtained without usmg
" perturbation theory. ._ '
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