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Introduction 

Low-energy collision problem of Coulomb three-body system with comparable masses 

plays an important role in description of muonic atom diffusion during µCF cycle. Because 

of the smallness of a mesic atom with respect to the electron structure of molecules in a 

hygrogen isotope mixture it is possible to neglect the electron screening effects in the first 

order of approximation and to consider the scattering of mesic atoms on bare nuclei. In 

this case the following reactions are available: 

a) elastic scattering 

aµ + b -+ aµ + b, (la) 

b) isotope exchange 

aµ + b -+ bµ + a, (lb) 

c) spin-flip 

aµ (il) + a -+ aµ (H) + a, 

where a and b denote hydrogen isotope nuclei p, d and t. It is clear now that the stage 

starting from the formation of a mesic atom and ending in the·mesic molecule formation, 

where the above-mentiond collisions occur, demands a precise theoretical investigation1. 

The scope of this study is restricted to the consideration of reactions involving atoms in 

their ground· states. 

From the numerical point of view, the most difficult and challenging problem in mesic 

atomic scattering is an isotope exchange reaction. The muon-nucleus mass ratio is signifi-
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cantly greater than that of an ordinary atom, so the standard adiabatic two-level approx­

imation cannot provide sufficient accuracy of a three-body wave function. On the other 

hand, the great magnitude of isotope splitting in energy levels of mesic atoms involved 

into the reaction makes direct numerical methods rather complicate due to a difference in 

energy scales (see Fig.l) for upper (colliding energy ~0.04eV) and lower(~ 50-=- 200eV) 

channels (isotopic energy splitting for mesic molecules pµ, dµ and tµ is shown in Table 

1). The period of oscillation for these two open channels differs by the several orders of 

magnitude one from another. 

Table 1. Isotopic energy splitting 

~Eiso(eV) 

Eaµ -Epµ 134.709 
Etµ -Epµ 182.751 
Etµ -Eaµ 48.042 

This paper presents the multi-level adiabatic calculation of the muon transfer rates. 

We consider the convergence of the computed figures with respect to the number of states 

that ensured us that the high accuracy results are achieved. It is perfectly seen that the 

contribution of the continuous spectrum into the charge transfer rate are of significant 

amount to be neglected. The convergence analysis allows us to demand that these new 

calculated results are most accurate up to date. The described method was successfully 

applied to compose the Atlas of elastic and inelastic cross sections of asymmetric mesic 

atomic processes2. It can be regarded as a further extension of our multi-level adiabatic 

approach given in Ref. 3 and Ref. 4 to the asymmetrical case of mesic atomic collisions. 

For very low incident energies (0.001-0.0leV) the cross section of charge transfer pro­

cess becomes sensitive to the influence of the molecular structure. To achieve the demanded 
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accuracy in this case we have to take into consideration the electron screening and other 

molecular effects. These corrections were carried out and are now available in Ref. 5. 

1. Multichannel adiabatic expansion 

After separating of the center-of-mass motion, the nonrelativistic Hamiltonian of a 

three-particle system can be written in Jacobian coordinates (e = 1i, = m, = 1) 

1 1 1 1 1 
H =---~R- --~r- ---+-, 

2Mab 2mab ra rb R 

M;;,,1 = M;;l + Mb-1, (2) 

-1 -1 (M + M )-1 mab = mµ + a b , 

where R is the position vector of nucleus a relative to nucleus b with the masses Ma and 

Mb, r is the position vector of the muon with mass mµ relative to the center of mass of 

the nuclei, r 0 and rb are the relative muon nucleus distances. 

The multichannel adiabatic approach is based on an expansion·of the three-body wave 

function W (r, R) in terms of the states of the discrete and continuous spectra of the two­

center problem6: 

{ 1 1 1} --
2
~r - - - - </>; (r; R) = E; (R) </>; (r; R), 

ra rb 

{ 1 1 1} 
--~r---- </>c(r;R,k)= (k2/2)</>c(r;R,k), 

2 r 0 rb 

(3a) 

where variables can be separated in spheroidal coordinates: 

e = (ra +rb) /R, T/ = (rb -ra) /R, cp = arctanx/y: 

Functions</>; and <Pc are numbered by respective sets j = { rqm} and c = { qm} of spheroidal 

quantum numbers 

</>; (r) = n~mlcff::~m) (TJ) exp imcp, 

<Pc (r; k) = n(m) (e; k)3im) (TJi k)exp imcp, 
(3b) 

where r and q are equal to the number of nodes of corresponding Coulomb spheroidal radial 

and angular functions 7. It is worthy to note that oddness of a quantum number q defines 

symmetry (with respect to inversion: r-+ -r) of solutions and after transformation: 

1 
"Pia = y'2 ( <Pr,2k,m + <Pr,2k+l,m) , 

1 
1Pib = y'2 (</>r,Zk,m - <Pr,Zk+l,m), 

3 



in the limit of R -+ oo the wave functions become respectively the states of ( a, e) and ( b, e) 

atoms in parabolic coorclinates7. In another limit case of R-+ 0 the wave functions can 

be described by the states of the helium ion He;t, with the spherical quantum numbers: 

N = r + q + m, l = q + m and m. 

To describe the rotational movement of nuclei we make use of Wigner D-functions 

which define a wave function with a certain total angular momentum J, its projection Af 

onto z-axis and spatial parity..\ (P>.: w (r, R) = ..\w (-r, -R)), 

wf} (R, r) = L t/J;'m {-yr; R) R-1X;1m (R) Vffm ( <I>, 0, 0) + 
j'm 

+ L 1 dkt/Jc1m (,r; R, k) R-1Xc1m (R; k)Vf}m (IP, 0,0), 
c'm k 

(4) 

where IP and 0 are polar angles of R and Vfj m (<I>, 0, rp) are symmetrized D-functions 

(see Ref. 6 or Ref. 8). The two-center problem (3) is formulated in terms of electronic 

movement around nuclei of infinite mass. The scaling factor I converts the solutions of 

{3) to muonic measures. So the value ,a =(Ma+ mµ) / (Mamµ) provides a muonic wave 

function which for R -+ oo transfers simply to a state of aµ atom. The use of ,a leads to 

the correst energy threshold in an aµ + b channel. 

Substitution of the expansion (4) into the Schrodinger three-body equation and aver­

aging over the light particle motion (r) and angular coordinates (<I>, 0) gives the system of 

coupled radial equations for the amplitudes X; describing the relative motion of the nuclei: 

d
2 

[ J(J+l)] dR2 X;(R)+ 2Mc- R2 X;(R)-~U;;(R)X;(R) 
J 

-I:1 dkU;;(R,k)X;(R,k)=O, 
j k 

(5) 

where M = Mab/maµ = Mab (Ma+ mµ) / (mµMa) is the reduced mass of the system and 

c is an incident energy of colliding particles in the body-frame coordinates. The matrix 

elements U;; (R) are effective potentials of the problem, 

d [dQ;; ] U;; (R) = 2Q;; (R) dR + dR (R) + H;; (R) , 

which obey the symmetry conditions 

Q;; = -Q;;, H;; = H;;, 
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The effective potentials were calculated and tabulated in works9,lO within the range of 

R = 0.1 + 100 for the discrete and continuous spectra respectively. For R ~ 1 and R » 1 

analytical expressions of potentials are available11 ,6. 

2. Formulation of the scattering problem 

The disadvantages of the two-level adiabatic PSS method (keeping only two ground 

states of expansion ( 4)) are well known (see, for example, Ref. 12). It gives incorrect 

isotope splitting between energy thresholds of channels aµ + b and bµ + a, what follows 

t:rom the fact that the adiabatic wave function in the limit of bµ+a dissociation is the same 

as for the aµ atom. Several attempts were made to overcome this difficulty in a framework 

of two-level approximation. We point out on two most recent investigations dealing with 

muonic atom scattering problem13,14. 

Another serious objection is an improper mass of compound particles involved into 

reaction. Indeed, the reduced mass M = Mab/maµ of the reaction (m;;J = M;1 +m;1
) is 

the same for both channels aµ + b and bµ + a and differs from their genuine values 

Ma = [Mb (Ma+ mµ) /(Ma+ Mb+ mµ)] /maµ 

and 

Mb= [M; (Mb+ mµ) /(Ma+ Mb+ mµ)] /mbµ-

This fault rises from the strong coupling- of the states by the velocity-dependent potential 

Q (R) d /dR which doesn't vanish at the infinity. That can be easily seen with the use of 

the asymptotic expansion of aµ + b channel solution 

W (R,r) = L "Pia (ra)Xa (R), Mb R. 
ra=r+ Ma+Mb 

After inserting it into the Schrodinger equation 

{ 
__ 1 b.. __ 1 1 } 

2Mab R 2maµ b.., - Ma Va V ra + V (R, ra, rb) W = e;W, 

we get 

Q(a) (oo) = (t/Jial~bv'ral"P;a}-
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The roots of this effect are based on the translation of the Jacoby vector Ra of the system 

(aµ) - b which correctly.describes the relative motion of two compound particles, and 

in terms of which the scattering problem is formulated into the internuclear vector R = 
Ra+ Para (see Fig.2). In this case an asymptotic solution transforms 

q,(±} (Ra, ra) ~ exp (±ikRa)VJia (ra) = exp (±ikR)ij;! (ra), 

where 

if'/:. (ra) = exp(=fipakra)VJia (ra), 

and Pa = mµ/ (mµ + Ma) is a translational parameter. Bates and McCarroll have sug­

gested simply to include this translational factor into the trial function of the expansion 15 

in order to avoid this spurious mass transformation. But it leads to an energy dependent 

correction to the effective potentials. 

Instead of that, the successive usage of the multichannel approach provides solutions 

. of the scattering problem which converge to the genuine solution of the original three-body 

problem. Indeed, the scattering states i[J;a, i[J;b of both atc'ims can be approximated with 

any given accuracy by the complete basis set of adiabatic states (3), so any sufficiently 

large finite basis set provides an equation which has correct (within the given accuracy) 

thresholds and masses of compound particles. 

Let us introduce'here the functions 

wl;\R, r) = w!;\Ru, ru) = e±k;Ru R-11Piu (ru) D'flm (if!, 0, 0) = 

= :Ex;t> (R) R-1
1/!jp (rp) Dfj-m ( if!, 0, 0), 

jp 

where o-, p = { a, b} are indexes of dissociation channels and 

±liu) (R) (•'• ,,..,J>, I ( • k )·'· ,n]). } ±ik;R xjp = 'l'jpVMm' exp =fZPu ;ru 'l'iuVMm e 

are components of the radial wave function. In what follows we assume that the wave 

numbers kj for open channels are real and positive. In terms of this functions we can 

define asymptotic boundary condition for the scattering problem 

m 

q,(i) (R r) ~ v:-112w(-) (R r) - ~ S .. v-:- 1!2 q,(+) (R r) 
' I I ' L.-J SJ J ] , , (6) 

j=l 
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where Vj = hk;/m; are velocities of incident and scattered particles of different channels, 

m is the number of open channels and quantities S;j define the S-matrix of the reaction. 

The asymptotic states of adiabatic expansion contain the states of isolated atom described 

in parabolic quantum numbers and having the mixture of rotational states with respect to 

the nucleus-atom orbital momentum. That is why we don't use the constant phase shifts 

of partial waves in expressions of asymptotic functions. From the other side, they can be 

easily included directly into the S-matrix of the reaction after calculations. 

The wave functions q,(±) expressed in terms of expansion (4) provide the multicompo­

nent asymptotical boundary condition for the radial Schrodinger equation (5) 

and 

x(i) (R) ~ L v-;1/2 { cli)e-ikiR,5;; - d(i)eikiRSij}' 

j 

c(j) _ii)*_(·'· ,,..,J>. \eip1kJr;., .. vJ>. ) 
l - l - 'l'l vMm' 'l'J J,fm 

(7) 

that reduces the initial scattering problem to the solution of the infinite system of second 

order differential equations with linear boundary conditions at R = 0 (where X; (0) = 0) 

and in the infinity. Thus, so far we made no any approximation assumption, then Eq. (5) 

with Eq. (7) provides the exact solution of the problem. 

Truncation of the system of equations ( 5) to some finite N-component set gives slightly 

different values of the wave number k\Nl and vectors c(i,N) and d(i,N) if we demand that 

asymptotic solution should satisfy the truncated asymptotic equation 

-- + 2Q(N) (oo)- + H(N) (oo) - 2Mc: x±li) (R) = 0. { 
d

2 
d } 

dR2 dR 

The asymptotic solution has a form x+li) (R) ~ d(i) exp ik;R, thus, inserting it into the 

last equation we can obtain these quantities as non-zero solutions of the following algebraic 

equation 

[kf + 2ik;Q(N) (oo) + H(N) (oo) - 21\fr] d(i) = 0, (8) 

where we have one parameter free to determine a solution uniquely. We can define 

d(i) = (·'"DJ>. \e'fip,k,r,.,1,.DJ>. ) 
, 'I'• Mm 'l'i Mm· (9) 

The only undefined values now are the velocity coefficients in Eq. ( 6) which have the mean­

ing of the factors making the flows of particles of incoming and outgoing waves balanced. 
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To calculate the number of particles incoming and outgoing the region of interaction we 

make use of the density operator of particle flux16 

vt) =-ii dS [-(x*v'aX - Xv'aX*) + (x*Qx - XQX*)], 

where S is the spherical surfice of constant radius R bounded the interaction region. For 

the stationary asymptotic solutions x+li} (R) ~ d(i,N) exp (ik;R) we get 

viN} = 11x+li)11~ = lk;lld(i,N)ll2 - i ( d(i,N), Qd(i,N)) I· 
This sequence of definitions allows us to build new boundary conditions for the truncated 

system of radial Schrodinger equations: 

x(i,N)(R) ~ t HN)rl/2 {c(j,N)e-ikjR,5;j-d(j,N)eikjRs~N)}, 

j=l 

(10) 

which are from the one side self-consistent (by means of the truncated asymptotic solution) 

and from the other side closely related to the one of the original three-body problem. The 

completeness of the adiabatic basis allows us to assert that these quantities describing the 

asymptotic wave function of the truncated system conyerge to their correct values as the 

number of states of expansion ( 4) will be increased. 

Some problems will arise with involving into consideration of continuous spectrum 

due to inasymptotic behaviour of continuous spectrum states. We could refer our readers 

to Ref. 17 where a detailed and complete discussion of how to overcome this problem is 

presented. 

For numerical calculations it is more convenient to use real functions with real boundary 

conditions. To achieve that we can perform asymptotic solutions in a form of "standing 

waves" 
xU> = __!_ (x+liJ _ x-li)) 

' 2i ' 

x\2J = ~ ( x+li} + x-li)) . 

For these functions a common asymptotic solution can be expressed in terms of the reac­

tance matrix K: 
m 

X(i) ~ x(l) - "K- .x(:l) 
'I. L...J 'I.] J ' 

(11) 
j=l 
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11·_, ' ,\ 
'1 

i') 
rl 

and it is well known that matrix K is real and symmetric18. The S-matrix can be expressed 

S =(I+ iK)(I - iK)-1
, 

where the identity matrix I is used. 

For the case of the muon transfer from the ground states (the reaction (lb)) we have 

two open channels and the partial cross sections u;6 are calculated by the formulas 

J 71" J 2 
<1ab = k2 (2J + 1) ISabl , 

a 

where ka is the wave number of the incident channel (aµ) + b and the total cross section 

is simply a sum of all partial cross sections 

3. Results 

- " J <1ab - ~O"ab· 

J 

The method we have expounded above was applied to the calculation of the cross 

sections of the reaction ( 1 b) and the rates of muon transfer from a lighter to a heavier 

nucleus in a liquid hydrogen mixture. In the calculations we made use of the set of physical 

constants that is collected in Table 2. 

The following model of interaction was taken into consideration (see Fig.3): the com­

plete set of potentials connecting the states of the first three shells of the discrete spectrum, 

then potentials connecting the states of the first shell with the fourth shell of the discrete 

spectrum and with the set of shells of continuous spectrum. These shells consist of the 

states of two-body problem as follows: 

discrete spectrum: 

1-st shell: lsu - 2pu (when R-+ 0) or ls (when R-+ oo); 

2-nd shell: 2su-3pu, 3du-4fu, 2p1r-3d1r (when R-+ 0) or 2s, 2po, 2p1 (when R-+ oo); 

3-d shell: 3su-4pu, 4du-5f u, 5gu-6hu, 3p1r-4d1r, 4f1r-5g1r, 3d8-4f 8 (when R-+ 0) 

or 3s,3po,3p1,3do,3d1,3d2 (when R-+ oo) ... 

continuous spectrum: 

1-st shell: su - pu,p1r - d1r (when R-+ O); 
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2-nd shell: du - Ju, f'rr - g1r (when R-+ 0); 

• 
3-d shell: gu - hu, h1r - i1r (when R-+ 0) ... 

The other potentials can be neglected in a view of the adiabatic smallness of their influence 

on the final result. 

To get rid of the integral part of the radial Schrodinger equation (5) we have discretized 

the continuous spectrum parameter k-+ ka = 0.1 (0.1) 3.0 (0.5) 10 (44 points for every state 

(Im)) and have used the Simpson quadrature rule for an approximation of the last term 

in Eq. (5). The method of the numerical integration of a finite component radial equation 

with the boundary conditions (10) is described in Ref. 19. 

Table 3 shows the convergence of the method for the special case of S-wave scattering 

of atom dµ on t for different values of incident energy. We deliberately regard the case of 

the S-wave scattering because it yields the major contribution into the total cross section 

within the range of thermal energies in µCF. Practical calculation also depends on some 

other parameters like a step h of the difference scheme of the numerical integration or a 

point Ras which divides the space into an interaction domain and an asymptotic region 

or Re (see Ref. 17) defining the origin of asymptotic corrections of continuous spectrum 

and so on. We have carefully investigated these potential sources of numerical errors and 

come to conclusion that our results with four significant figures presented in Table 3 do not 

depend on variations of Ras and Re and the error of numerical integration of the system 

which includes four shells of discrete and five shells of continuous spectra is about 10-4
_ 

So this investigation shows that our results presented in the paper are the most accurate 

up to the date and we estimate the error bounds of about 2% for dµ + t -+ tµ + d reaction 

and ~ 3% for pµ + d-+ dµ + p and pµ + t -+ tµ + p. 

Tables 4 and 5 summarize results of our calculations presenting the cross sections of 

the considered reactions and the transfer rate in the liquid hydrogen mixture. To calculate 

the transfer rate of the muon we make use of the formula 

.X = UabvNo, 
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where No = 4.25 x 1022 cm-3 is the liquid hydrogen density and v is the velocity of the 

incident atom (in the center-of-mass coordinates) 

v= 
2e: (eV) 

[M(al')bc2
] (eV)' 

(Ma +mJL)Mb 
M(a1t)b =Ma+ Mb +mJL' 

where c = 2.9979 x 1010 (cm/s), m.c2 = 0.511003 x 106 (eV). 

4. Conclusions and perspectives 

As we mention in introduction, the obtained results should be corrected within the . 
range of low energies by taking into account the molecular structure of hydrogen isotope 

molecules H2, D2 and so on. This work involves rather different calculational technique 

to be included here and was carried out clsewhere5. This last reference contains also 

detailed comparison of our results with the different previous calculations. We would like to 

point out that the major part of these calculations has been used in the adiabatic two-level 

approximation or some of its modifications. The earliest multi-level investigations of these 

reactions could be found in Ref. 4 and Ref. 20. We think that these accurate "results will 

give new impulse to the development of the theory describing time-dependent diffusion 

processes of mesic atoms in hydrogen isotope mixture. 

The other reaction having a great effect on mesic atom diffusion is the charge transfer 

process from the excited states: 

(aµ.)n + b -t (bµ)n + a, n 2 2. 

It is not sufficient for this problem to keep only pure Coulombic interaction which leads to 

degeneracy of energy levels in atomic states and to ~ 1 / e: threshold behaviour of charge 

transfer cross section. We also need to take into account the vacuum polarization and 

hyperfine structure corrections for getting relevant results. This perspective work is in 

progress now. 
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Fig.I Elastic and inelastic channel wave function~ in the reaction pµ + t -+ tµ + p. 
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Fig.2 Different definitions of the three-body Jacoby coordinates. 
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Table 2. Masses (in me), Rydberg energy (in eV) and ground state energies of mesic 

atoms (in eV) 

mp= 1836.1515 
md = 3670.481 
mt = 5496.918 
mµ = 206.7686 

Ry = 13.6058041 

Eaµ(eV) 

Epµ = 2528.517 
Edµ = 2663.226 
Etµ = 2711.268 

Table 3. Convergence of the charge transfer cross section O'dt (10-20cm2
) for S-wave 

dµ + t -+ tµ + d scattering and different incident energies (in brackets the number of 

channels is shown) 

number of shells 

discrete continuous 0.0leV 0.04eV 0.leV 
spectrum spectrum 

1 [2] - 1.209 0.596 0.369 
2 [6] - 3.215 1.583 0.980 
3 [12] - 3.440 1.694 1.047 
4 [20] - 3.498 1.722 1.065 

4 [20] 1 [+88] 3.998 1.965 1.217 
4 [20] 2 [+176] 4.129 2.029 1.257 
4 [20] 3 [+264] 4.375 2.148 1.329 
4 [20] 4 [+352] 4.381 2.154 1.333 
4 [20] 5 [+440] 4.376 2.150 1.329 

Table 4. A summary of cross secti?n results O'ab (10-20cm2
) for the low energy scat­

tering of hydrogen isotope mesic atoms 

c(eV) pµ+d-+ dµ+p pµ +t-+ tµ + p dµ + t-+ tµ + d 

0.001 723.8 347.0 13.94 

0.01 226.7 109.1 4.490 

0.04 111.6 54.10 2.380 

0.1 69.45 33.97 1.693 

0.4 33.78 17.16 1.376 

1.0 21.51 11.64 1.646 

10.0 9.467 6.842 6.817 

50.0 6.374 4.649 5.256 
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Fig.3 The scheme of effective potentials taken into account in adiabatic calculations. 

Table 5. A summary of results for low energy isotope exchange rates of hydrogen 

isotope mesic atoms A= UabvNo (109s-1
) 

c:(eV) pµ + d-+ dµ + p pµ +t-+ tµ + p dµ +t-+ tµ + d 

0.001 15.9 7.17 0.233 
0.01 15.8 7.13 0.238 
0.04 15.5 7.07 0.252 
0.1 15.3 7.02 0.283 
0.4 14.9 7.09 0.460 
1.0 15.0 7.61 0.871 
10.0 20.9 14.1 11.4 
50.0 31.4 21.5 19.7 
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kopo6os .B.111., Menem11K B.C.,. nottoMapes n.111 •. 

CKopOCTb nepe3apAAKl1 MIOOHa s'cTOflKHOBeH11A·x 

. Me3oaTOMOB ~3pTOnos BOAOPOAa Ha ,;ronb1x" AApax. 

MttoroKattanbHblH aA11a6aTwtecK11i1 nOAXOA 

.E4-92-358 

411cneHHaA .cxeMa peweHl1A npo6neMbl MeAneHHblX CTOflKHOBeH11H 

B paMKax aA11a6aTWtecKoro noAXOAa 3aAa'111 Tpex Ten np11MeHAeTCA 

AflA Bbl'll1CneHl1A CKOpocTeH nepesapAAKl1 MIOOHa B CTo'l1KHOBeHl1AX 

aTOMOB 1130TOnos BOAOPOAa Ha rOflblX AApax. noKa3blsaeTCA, 'ITO MHO~ · 

roKaHanbHblH aA11a6aT11<1ecKl1H nOAXOA n03BOnAeT AOCTH'lb BblCOKOH 

T0'IHOcrn (~ 3%)· s sb1<111cneH11Ax ce<1ett11i1 npoueccos nepe3apAAK11, 

KOTOpaA ABflAeTCA Ha11ny<1wei1 B HaCTOALUee speMA •. MeTOA np11MeHl1M 

B Wl1p0KOM Al1ana30He 3Hepn1i1 (0.001 - 50 38). npeACTaBflRtoLUHX 

11HTepec AflA attan113a 3KCnepl1Ml¼HOB MIOOHH9ro KaTan113a, 

Pa6oTa BblnOnHeHa . B na6opaTOpl111 Bbl'111Cfll1TenbHOH TeXH11Kl1 ·~ 

asT0Marn3au1111 Olt1Alt1. 

Coo6mem1e 06oe1nme1rnoro u11crnryrn 11;it:p11b1x ucc.1e;ioea1rnii. ll,y611a 1992 

Korobov V.I., Melezhik V.S., Pcinomarev L.I. 
Mu~n Transfer Rates in Collisions of Hydrogen Isotope · 

Mesic Atoms on "Bare" Nuclei. 

·. Multichannel Adiabatic Approach 

E4-92-358 

A numerical scheme for solving the problem of slow collisions in 

the three-body adiabatic approach is applied for calculation of muon 

transfer. rates in collisions of hydrogen 'isotope atoms on .bare nuclei. 

It is demonstrated that the multichannel adiabatic approach allows one 

to reach high ·accuracy results C ~ 3%) estimating the cross sections of · 

ch'arge transfer processes which are the best· ones up to date. The me­

thod is appliable in a wide range of·energies (0.001 - 50 eV) which is 

of interest for analysis of muon catalysed fusion experiments. 

' .The investigation has been performed at the Laboratory .of Compu­

ting Techniques and.Automation, JIN R. 

. . 
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