


Introduction

Low-energy collision problem of Coulomb three-body system with comparable masses
plays an important role in description of muonic atom diffusion during pCF cycle. Because
of the smallness of a mesic atom with respect to the electron structure of molecules in a
hygrogen isotope mixture it is possxble to neglect the electron screening effects in the first
order of approximation and to consider the scattering of mesic atoms on bare nuclei. In
this case the following reactions are available:

a) elastic scattering

ap+b—ap+b, (1a)
b) isotope exchange
ap+b—bu+a, . (1b)
c) spin-flip
au (1) +a - au(1l) + a, (10)

where a and b denote hydrogen isotope nuclei p, d and ¢. It is clear now that the stage
starting from the formation of a mesic atom and ending in the mesic molecule formation,
where the above-mentiond collisions occur, demands a precise theoretical investiga.tionl.
The scope of this study is restricted to the consideration of reactions involving atoms in
their ground-states.

From the numerical point of view, the most difficult and challenging problem in mesic

atomic scattering is an isotope exchange reaction. The muon-nucleus mass ratio is signifi-
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cantly greater than that of an ordinary atom, so the standard adiabatic two-level approx-
imation cannot provide sufficient accuracy of a three-body wave function. On the other
hand, the great magnitude of isotope splitting in energy levels of mesic atoms involved
into the reaction makes direct numerical methods rather complicate due to a difference in

energy scales (see Fig.1) for upper (colliding energy ~0.04eV) and lower (~ 50 < 200eV)

channels (isotopic energy splitting for mesic molecules py, du and tu is shown in Table ‘

1). The period of oscillation for these two open channels differs by the several orders of

magnitude one from another.

Table 1. Isotopic energy splitting

AEiso(eV)
Eq, —~ Epy © 134.709
Eiy — Ep, 182.751
By~ Ey, 48.042

This paper presents the multi-level adiabatic calciilation of the muon transfer rates.
We consider the convergence of the computed figures with respect to the number of states
that ensured us that the high accuracy results are achieved. It is perfectly seen that the
contribution of the continuous spectrum into the charge transfer rate are of significant
amount to be neglected. The convergence analysis allows us to demand that these new
calculated results are most accurate up to date. The described method was successfully
applied to compose the Atlas of elastic and inelastic cross sections of asymmetric mesic
atomic processesz. It can be regarded as a further extension of our multi-level adiabatic
approach given in Ref. 3 and Ref. 4 to the asymmetrical case of mesic atomic collisions.

For very low incident energies (0.001-0.01eV) the cross section of charge transfer pro-

cess becomes sensitive to the influence of the molecular structure. To achieve the demanded

accuracy in this case we have to take into consideration the electron screening and other

molecular effects. These corrections were carried out and are now available in Ref. 5.

1. Multichannel adiabatic expansion

After separating of the center-of-mass motion, the nonrelativistic Hamiltonian of a

three-particle system can be written in Jacobian coordinates (e = h = m, = 1)

1 1 1 1 1
= - AR — — Ay ————+ —,
H=—gn s ntr
| MG =M+ My, @

my =mp'+ (Ma+ M)},
where R is the position vector of nucleus a relative to nucleus b with the masses M, and
My, r is the position vector of the muon with mass m, relative to the center of mass of
the nuclei, r, and r are the relative muon nucleus distances.

The multichannel adiabatic approach is based on an expansion‘of the three-body wave
function ¥ (r,R) in terms of the states of the discrete and continuous spectra of the two-
center problemﬁz

1 1 1
{~-2-Ar -—- —} ¢; (r;R) = E; (R) ¢ (r; R),

1 1 h 1 Y (3a)
{—-—A, -= —} ¢e(r; R, k) = (K/2) ¢ (v R, k),
2 Ty

Ta

where variables can be separated in spheroidal coordinates:
E:(Ta-l-rb)/R, 77=(7'b'"7‘n)/R» ‘Pzar(:ta'nz/y:

Functions ¢; and ¢. are numbered by respective sets j = {r¢gm} and ¢ = {gm} of spheroidal
quantum numbers l
¢ (r) = T () E™ (n) expimep,
$e(r; k) = 110V (€ k) E5™ (s k) exp im,

where 7 and ¢ are equal to the number of nodes of corresponding Coulomb spheroidal radial

(3b)

and angular functions”. It is worthy to note that oddness of a quantum number ¢ defines

symmetry (with respect to inversion: r — —r) of solutions and after transformation:

1 1
"nbl'a = E (¢r,2k‘m + ¢r,2k+],m) ) ¢’ib = 'ﬁ (¢r.2k,m - ¢r,2k+1,m) )



in the limit of £ — oo the wave functions become respectively the states of (a,e) and (b, ¢€)
atoms in parabolic coordinates”. In another limit case of R — 0 the wave functions can
be described by the states of the helium ion Hel, with the spherical quantum numbers:
N=7r4+qg+m,l=qg+m and m.

To describe the rotational movement of nuclei we make use of Wigner D-functions
which define a wave function with a certain total angular momentum J, its projection M

onto z-axis and spatial parity A (Py: ¥ (r,R) = A¥(-r,—-R)),

‘I’}]t} (R,r) = Z tt["j’m (7r; )R X m(R) DMm (2,0,0)+

¢ (4)
+Z/dk¢m(vr R, k) R X (R k) DI, (8,0,0),

where ® and O are polar angles of R and D o (2,0, ) are symmetrized D-functions
(see Ref. 6 or Ref. 8). The two-center problem (3) is formulated in terms of electronic
movement around nuclei of infinite mass. The scaling factor v converts the solutions of
. (3) to muonic measures. So the value v, = (M, + m,) /(Mym,) provides a muonic wave
function which for R — oo transfers simply to a state of ayu atom. The use of v, leads to
the correst energy threshold in an ay + b channel. .
Substitution of the expansion (4) into the Schrédinger three-body equation and aver-
aging over the light particle motion (r) and angular coordinates (®,©) gives the system of
coupled radial equations for the amplitudes X; describing the relative motion of the nuclei:

aoxi(r+ [2nte - LDy - LA
)

- dkUs; (R, k) X; (R, k) =0
3 [ ks by,

where M = M,y /ma, = Mgy (Ma + my) [/ (muM,) is the reduced mass of the system and
€ is an incident energy of colliding particles in the body-frame coordinates. The matrix
elements U;; (R) are effective potentials of the problem,

Ui (7) = 204 () 5 + | o () + B ()

which obey the symmetry conditions

Qij = —Qyi,  Hij = Hji,

The effective potentials were calculated and tabulated in works)10 within the range of

R = 0.1 +100 for the discrete and continuous spectra respectively. For R< 1and R > 1

analytical expressions of potentials are availablel 16,

2. Formulation of the scattering problem

The disadvantages of the two-level adiabatic PSS method (keeping only two ground
states of expansion (4)) are well known (see, for example, Ref. 12). It gives incorrect
isotope splitting between energy thresholds of channels ap + b and by + a, what follows
from the fact that the adiabatic wave function in the limit of bu+a dissociation is the same
as for the au atom. Several attempts were made to overcome this difficulty in a framework
of two-level approximation. We point out on two most recent investigations dealing with
muonic atom scattering problem13’14.

Another serious objection is an improper mass of compound particles involved into

reaction. Indeed, the reduced mass M = M,p/mq, of the reaction (m =M1+ m‘l) is

the same for both channels ap + b and by + a and differs from their genuine values
o = [My (Mo +m,) [ (Mo + My +my)] /may

and

My = (Mg (My +my) [ (Mo + My +m)} /mp,.

This fault rises from the strong coupling of the states by the velocity-dependent potential
@ (R)d/dR which doesn’t vanish at the infinity. That can be easily seen with the use of

the asymptotic expansion of au + b channel solution

M,
Y(R,r)= zi:ll’ia (ro)Xa (R), rg=r+ mR
After inserting it into the Schrddinger equation
1
- - ———V v V(R,rq, P =c¥
S R AL QAR

we get

QW (00) = (pa| =2 ""vr.,lz»,a)



The roots of this effect are based on the translation of the Jacoby vector R, of the system
(ap) — b which correctly, describes the relative motion. of two compound particles, and
in terms of which the scattering problem is formulated into the internuclear vector R =

Rq + por, (see Fig.2). In this case an asymptotic solution transforms

g (Ra,ra) ~ exp (£1kRy)1hiq (r4) = exp (FkR)WE (ra),

where
iz (ra) = exp (Fipakra)pia (ra),
and ps = my/(my + M,) is a translational parameter. Bates and McCarroll have sug-
gested simply to include this translational factor into the trial function of the expansion1®
in order to avoid this spurious mass transformation. But it leads to an energy dependent
correction to the effective potentials.
Instead of that, the successive usage of the multichannel approach provides solutions
of the scattering problem which converge to the genuine solution of the original three-body
problem. Indeed, the scattering states Pias Pip of both atoms can be approximated with
any given accuracy by the complete basis set of adiabatic states (3), so any sufficiently

large finite basis set provides an equation which has correct (within the given accuracy)

thresholds and masses of compound particles.

Let us introduce here the functions
v R,r) = o (R, ry) = e*hifo g1 Yio (o) DI, (8,0,0) =
*|ig) —
-ZX ) (B) R, (x,) DI (,0,0),

where a,p = {a,b} are indexes of dissociation channels and

i . .
Iw (R) (d’jp'D;}m,lexp (:':Zpﬂkira)d’io'DXi\m) cEikiR

are components of the radial wave function. In what follows we assume that the wave
numbers k; for open channels are real and positive. In terms of this functions we can

define asymptotic boundary condition for the scattering problem

v (R, r) ~ 0‘1/2\1;( J(R,r) — Zs,u 2y (R, ), (6)
J:l

where v; = hk;/m; are velocities of incident and scattered particles of different channels,
m is the number of open channels and quantities S;; define the S-matrix of the reaction.
The asymptotic states of adiabatic expansion contain the states of isolated atom described
in parabolic quantum numbers and having the mixture of rotational states with respect to
the nucleus-atom orbital momentum. That is why we don’t use the constant phase shifts
of partial waves in expressions of asymptotic functions. From the other side, they can be
easily included directly into the S-matrix of the reaction after calculations.

The wave functions ¥(¥) expressed in terms of expansion (4) provide the multicompo-
nent asymptotical boundary condition for the radial Schrodinger equation (5)

x® (R) ~ Zvj—llz {c(j)e—ikjﬂéij _ d(j)eikj}lsij} , (7)
b
and
o) = d?)" = (Df gl DI

that reduces the initial scattering problem to the solution of the infinite system of second
order differential equations with linear boundary conditions at R = 0 (where X; (0) = 0)
and in the infinity. Thus, so far we made no any approximation assumption, then Eq. (5)
with Eq. (7) provides the exact solution of the problem.

Truncation of the system of equations (5) to some finite N-component set gives slightly
different values of the wave number kEN) and vectors c(*") and d(&M) if we demand that

asymptotic solution should satisfy the truncated asymptotic equation

{20 (o) 7+ HU) (o) 2072 )24 () 0.

The asymptotic solution has a form X+|i) (R) ~ d®) exp ik; R, thus, inserting it into the
last equation we can obtain these quantities as non-zero solutions of the following algebraic

equation

[ + 26k Q™) (c0) + HM (c0) 2Me| d = o, (8)
where we Liave one parameter free to determine a solution uniquely. We can define
&) = (YDl TP D). (9)

The only undefined values now are the velocity coefficients in Eq. (6) which have the niean-

ing of the factors making the flows of particles of incoming and outgoing waves balanced.
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To calculate the number of particles incoming and outgoing the region of interaction we

make use of the density operator of particle flux16

o L ]( dS[— (X VX — XVRX") + (X" QX — XQX*)],
S

where S is the spherical surfice of constant radius R bounded the interaction region. For

the stationary asymptotic solutions Xt (R) ~ dM) exp (ik; R) we get
N ; ; G ;
o™ = xR = [RafldGM)2 i (a0, Qa0 |

This sequence of definitions allows us to build new boundary conditions for the truncated

system of radial Schrédinger equations:

XGNY(R) ~ Zm: [vgN)] ~1/2 {c(j,N)e—iij&_j _ d(j,N)eilchlSl(;V)} : (10)
j=1
which are from the one side self-consistent (by means of the truncated asymptotic solution)
“and from the other side closely related to the one of the original three-body problem. The
completeness of the adiabatic basis aliows us to assert that these quantities describing the
asymptotic wave function of the truncated system converge to their correct values as the
number of states of expansion (4) will be increased.

Some problems will arise with involving into consideration of continuous spectrum
due to inasymptotic behaviour of continuous spectrum states. We could refer our readers
to Ref. 17 where a detailed and complete discussion of how to overcome this problem is
presented.

For numerical calculations it is more convenient to use real functions with real boundary
conditions. To achieve that we can perform asymptotic solutions in a form of “standing
waves” ) . .

KV = = (x+|1> - x—m) ,
X = % (x+|‘) + x“")) )
For these functions a common asymptotic solution can be expressed in terms of the reac-

tance matrix K:

x() ~ X =3 Kix(), (11)

j=1

and it is well known that matrix K is real and symmetricls. The S-matrix can be expressed
S =(+iK)(I-iK)™",

where the identity matrix I is used.
For the case of the muon transfer from the ground states (the reaction (1b)) we have

two open channels and the partial cross sections Uan are calculated by the formulas

e
ol = p(2J+ 1)|SHI?,
a

where k, is the wave number of the incident channel (@) + b and the total cross section

is simply a sum of all partial cross sections

Tgb = Z U:zlb‘
J

3. Results

The method we have expounded above was applied to the calculation of the cross
sections of the reaction (1b) and the rates of muon transfer from a lighter to a heavier
nucleus in a liquid hydrogen mixture. In the calculations we made use of the set of physical/
constants that is collected in Table 2.

The following model of interaction was taken into consideration (see Fig.3): the com-
plete set of potentials connecting the states of the first three sheils of the discrete spectrum,
then potentials connecting the states of the first shell with the fourth shell of the discrete
spectrum and with the set of shells of continuous spectrum. These shells consist of the
states of two-body problem as follows:
discrete spectrum:

1-st shell: 1so0 — 2po (when R — 0) or 1s (when R — oo);
2-nd shell: 2s0 —3po,3do —4fo,2pr —3dw (when R —> 0) or 2s,2pp, 2p1 (when R — oo);
3-d shell: 3s0—4po,4do—5f0, 590 —6ha, 3pr—4dn,4fr—5gn,3d6—4f6 (when R — 0)
or 3s,3py, 3p1, 3do, 3d1,3d2 (when R — o0)...
continuous spectrum:

1-st shell: so — po,pr — dr (when R — 0);



2-nd shell: do — fo, fxr — gr (when R — 0);
L]
3-d shell: go — ho,hw — i (when R — 0)...

The other potentials can be neglected in a view of the adiabatic smallness of their influence

on the final result.

To get rid of the integral part of the radial Schrodinger equation (5) we have discretized
the continuous spectrum parameter k — kq = 0.1(0.1)3.0(0.5) 10 (44 points for every state
(Im)) and have used the Simpson quadrature rule for an approximation of the last term
in Eq. (5). The method of the numerical integration of a finite component radial equation

with the boundary conditions (10) is described in Ref. 19.

Table 3 shows the convergence of the method for the special case of S-wave scattering
of atom du on ¢ for different values of incident energy. We deliberately regard the case of
the S-wave scattering because it yields the major contribution into the total cross section
within the range of thermal energies in gCF. Practical calculation also depends on some
other parameters like a step h of the difference scheme of the numerical integration or a
point R, which divides the space into an interaction domain and an asymptotic region
or R (see Ref. 17) defining the origin of asymptotic corrections of continuous spectrum
and so on. We have carefully investigated these potentiz;J sources of numerical errors and
come to conclusion that our results with four significant {ﬁgures presented in Table 3 do not
depend on variations of Ry, and R, and the error of numerical integration of the system
which includes four shells of discrete and five shells of continuous spectra is about 10~
So this investiga.fion shows that our results presented in the paper are the most accurate
up to the date and we estimate the error bounds of about 2% for du +t — tu +d reaction
and ~ 3% for pp+d — dp +p and pp +t — tu+p. '

Tables 4 and 5 summarize results of our calculations presenting the cross sections of
the considered reactions and the transfer rate in the liquid hydrogen mixture. To calculate

the transfer rate of the muon we make use of the formula

A = o4vNo,

10

-

where No = 4.25 x 1022cm™? is the liquid hydrogen density and v is the velocity of the

incident atom (in the center-of-mass coordinates)

2e 2¢ (eV) (Mg + m,) M
Vo=  f— — —_— — MPa T Tp) Wy
)= Ml V) M = A5 3y 4+ m,

where ¢ = 2.9979 x 10!% (cm/s), m.c? = 0.511003 x 108 (eV).

4. Conclusions and perspectives

As we mention in introduction, the obtained results should be corrected within the
range of low energi‘es by taking into account the molecular structure of hydrogen isotope
molecules H;, Dy and so on. This work involves rather different calculational technique
to be included here and was carried out elsewhere®. This last reference contains also
detailed comparison of our results with the different previous calculations. We would like to
point out that the major part of these calculations has been used  in the adiabatic two-level
approximation or some of its modifications. The earliest multi-level investigations of these
reactions could be found in Ref. 4 and Ref. 20. We think that these accurate Tesults will
give new impulse to the development of the theory describing'time-dependent diffusion
processes of mesic atoms in hydrogen isotope mixture.

The other reaction having a éreat effect on mesic atom diffusion is the chéxrge transfer

process from the excited states:
(alu)n + b - (b:u)n. + a, n 2 2.

It is not sufficient for this problem to keep only pure Coulombic interaction which leads to
degeneracy of energy levels in atomic states and to ~ 1/e threshold behaviour of charge
transfer cross section. We also need to take into account the vacuum polarization and

hyperfine structure corrections for getting relevant results. This perspective work is in

progress now.

11



10.00 5 ; Table 2. Masses (in m.), Rydberg energy (in eV) and ground state energies of mesic
‘I’(R) g :: atoms (in eV)
5.00 3 §:
g 'E Esu(eV)
0.00 J : m, = 1836.1515 E,, = 2528.517
: : mg = 3670.481 Eq4, = 2663.226
E ' my = 5496.918 Ey, =2711.268
-5.00 3 pu+t (0.04eV) g m,; = 206.7686
: ; Ry = 13.6058041
-10.00 = lllll!lll[lllllll|||1—l‘rtnIIIIIWIIIIHIIWIIIIIIHrillllla
0.00 50.00 100.00 150.00 200.00 250.00 300.00
R Table 3. Convergence of the charge transfer cross section g (10~2%cm?) for S-wave
du +t — tu + d scattering and different incident energies (in brackets the number of
channels is shown)
0.50 3
‘I’( R) 1 E number of shells :
. : discrete continuous 0.01eV 0.04eV 0.1eV
] spectrum spectrum :
] l | l | l ‘ \ l | | ‘ } 1(2] - 1209 | 0.596 0.369
-0.00 ~ : 2 [6] - 3.215 1.583 0.980
4 ' ' ' ' ' , ' ' ' ' ; 3[12] - 3.440 1.694 1.047
] : 4 [20} - 3.498 1.722 1.065
] : 4 [20] 1 [+88] 3.998 1.965 1.217
] tu+tp (182.7eV) § 4 [20] 2 [+176] 4.129 2.029 1.257
] ; 4 [20] 3 [+264] 4.375 2.148 1.329
-0.50 ||||lll||[||tllx||l|7—rl||||Il|rl‘ll||n'l|ln|»llll[lllnnni 4[20] 4[+352] 4.381 2.154 1.333
0.00 50.00 100.00 150.00 200.00 250.00 300.00 4 [20] . 5 [+440] 4.376 2.150 1.329
Fig.1 Elastic and inelastic channel wave functions in the reaction pp +1t — tp + p Table 4. A summary of cross sectif)n results o, (10"2°cm2) for the low energy scat-

tering of hydrogen isotope mesic atoms

e(eV) pu+d—dut+p | ppttotp+p dp+t—tp+d
0.001 723.8 347.0 13.94
0.01 226.7 109.1 4.490
0.04 111.6 54.10 2.380
0.1 69.45 33.97 ' 1.693
0.4 33.78 17.16 1.376
1.0 21.51 11.64 1.646
10.0 9.467 6.842 6.817
Fig.2 Different definitions of the three-body Jacoby coordinates. 50.0 6.374 4.649 5.256
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Fig.3 The scheme of effective potentials taken into account in adiabatic calculations.

Table 5. A summary of results for low energy isotope exchange rates of hydrogen

isotope mesic atoms A = 0,30 Np (1093"1)

e(eV) | pu+d—du+p | pp+t—tu+p | dut+totp+d
0.001 15.9 717 0.233

0.01 15.8 7.13 0.238

0.04 15.5 7.07 0.252

0.1 15.3 7.02 0.283

0.4 14.9 7.09 0.460

1.0 15.0 7.61 0.871

10.0 20.9 14.1 114

50.0 314 21.5 19.7
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