


1. Introduction

The earliest investigations of atomic scattering processes proposed two commonly used
expansions for the. wave function. The first was the closed coupling method based oﬁ an
atomic states and using Jacobian coordinates (see Fig.1) for the description of two frag-
ments movement!. The advantage of this method is the correct behaviour of the wave func-
tion of a truncated system in the asymptotic region. However, it leads to the Schr('idingér

; equation with potential containing the integral term which significantly complicates the
numerical integration of this problem2. The alternative approach was connected with the
use of adiabatic molecuiar states for the expansion an& an internuclear separation vector
for the relative motion (so-called PSS method)3. This approach allows one to get rid of
the integral term in the reduced equation but meets with other serious difficulties con-
cerning with improper behaviour of the wave function in the asymptotic region due to
the non-physical strong coupling of the channels at the infinity. That partialy explains
that the major part of works using this approach treats only two level approximations
taking into account only the ground states of atoms. The compromise was found in the
so-called hyperspherical approach4'5 where the hyperradius is used as a parameter for the
radial equation. This parametrization continuously transforms the coordinate system of
reactants into the coordinate system of products of the reaction. But this progress was
achieved by the loss of some physical clarity - the asymptotic states are defined on the
curved manifold of a fifth-dimensional sphere. The aim of this paper is to investigate the
properties of a finite.component Schrédinger equation with velocity-dependent potential in
asymptotic region with special emphasis on the self-consistent formulation of asymptotic
boundary conditions for the truncated scattering problem. We hope that this work will

‘stimulate the use of PSS or related methods in application to the slow atomic collisions.

The matrix Schrédinger equation under investigation in this paper is determined by

the Hamiltonian (k = 1)

H="2“1A7AR+2§(R-)VR+'H(R), . IO

where Q(R) = {Q.,Qy,Q;} and H(R) are real n x n matrices of effective potentials
and M is the reduced mass of the system. The effective potentials are subject to the
conditions providing self-adjointness of the differential operator. It means that Q(R) is
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antisymmetric and HT (R) = H(R) ~ 2Vx @ (R), where HT means transposed matrix.
When R — oo, @(R) Becomes constant and H is symmetric. The asymptotic matrix H
can be diagonalized by some orthogonal transformation and we assume hereafter that it
was already done. .We assume also that nondiagonal part of potential @ does not vanish at
the infinity. Thus for the scattering processes with a fixed energy e the asymptotic solution
is not concentrated in certain component of the wave function as it normally takes place
in standard theﬁtial sqaftering but distributes between different components. More over,
as it vﬁll be shown later we cannot even hope to achieve the separation of the channels in
the asymptotic region by aﬁy similarity transformation of the wave function components.

We meet this situation in the standard multichannel generalization of the PSS method
(also called multichannel adiabatic approach)(i_8 and in its modification named improved
adiabatic approachg. v

We need to make some remarks on the notation. We distinguish here the meenings
of the i-th component of the wave function and the i-th incoming or outgoing channel
understanding under the channel of the reaction the subspace of asymptotic wave functions

+ikR corresponding to a solution with a fixed

which are simple monochromatic waves ¢ce
energy of the interaction. )

It will be useful to illustrate all the problems encountered in this paper by a simple
example. To do that we introduce the three-body closed coupling expansion using an inter-

nuclear position vector R (Fig.1) for the description of the external motion of fragments:
R I‘) z‘pm I‘a ¢u R)'*'Z‘Ptb I‘b ¢b( ) (2)

here r is a position vector of a light particle with respect to the center of mass of the
nuclei and rg, rj are position vectors of the light-particle with respect to the nuclei a and
b. Functions g, and ip;;, are atomic functions. Inserting the finite sum of this expansion
into the three-body Schrédinger equation we come to a system of differential equations of
variable R without the integral interaction term but having additional velocity-dependent
potential @ that doesn’t vanish at-the infinity due to the correlation term VgV, (or
VrVy,) in the kinetic energy operator which (for the dissociation limit-(ac) + b) can be
expressed: . :
1 1 -1

T=—-——-Ap — —A;

v
oM 2m o M eru7 (3)

where M~1 = M7 + M;l 1= M1+ M and M,, My, M, are masses of particles.

So we can write out the operator Qin a form
5ie)
Q (‘Pmle raI‘PJn)

b
3 ) = (S"xble[ Vi o),

and

— 1
Qia,jb = (‘Pinlz_mvrbl‘ij) =0, when R — co.

As we have assumed above, the matrix H is diagonal at the infinity, its diagonal elements
h;; determine energy thresholds of the reaction. This definition is justified in a view that we
can associate with every spectral point of H marked in the energy region some asymptotic

wave function with k — 0.

2. Conservation law for the particle flux

To define properly parameters of the scattering process (such as the §-matrix of the
reaction) we should know how many particles are brought into or out of the interaction.
region by a wave function of a channel. It is reasonable to balance ingoing and outcomining
waves comparing them with the unit flux coming through some large sphere. So we need
to determine the operator of particle flux density.

Let us regard the time-dependent Schrodinger equa.tion and its conjugate

.oy

1E={ ZMAR+29( )VR+H(R)}¢(R),

_'ia;b; = {—m—AR-*-ZQ(R)VR-}-'H(R)} *(R).

" Multiplying the first equation on *, the second on % and extracting one from another we

get the evolution equation for the density of particles
9 2 . *
it =y HY — pHy =
=Vr [—m(x«” Vi — pVad') + (¥ 0% — pQy° )]

If we integrate equation over soine volume V bounded by closed surface § we will receive

the conservation law for the particle density in a bounded domain for the dynamical system



described by the Hamiltonian (1):

g ¢ — —
5 [ iR = =i fas o Vay - pvme) + 8- w0 @

The expression under the integral sign determines the operator of particle flux. It is
worthful to note that this expression differs from the usual definition by the additional Q-
potential term. First of all it connects with space translational properties of the Hamilto-
nian (1). Existence of velocity-dependent potential in the asymptotic Hamiltonian implies
some modifications in definition of such dynamical parameters of the system like velocity
or mass of the physical object.

We can show that in the case of expansion (2) with the full set of atomic states this
definition coinsides wi"ch the generally known expression as only we transfer our coordinate
system to conventional Jacobian coordinates which are orthogonal in a six-dimensional
space of the three-particle relative movement. Let us regard the operator of density for the
particle flux in a (ac) + b subdivision of the three-particle system. In terms of expansion

" (2) and cooridate system (R, r,) the operator has the following form (see Eq. (3)):

. 1 * - * 1 * *

¢ |37 (4" VR = $VRH") — S (Vb = 9V (50)
Translating the origin of the vector R from the nuclei to the center of mass of the (ac)

atom we define the proper dynamics of two compoun’d particles and the expression for the

operator of flux will become:

I

. 1 * * ; 1 * *
|3 (Vb — $) = g 8Vt = 90 (50

where

M, + M,
Vr = VR,, Vie = Vi, —7Vg,

Ro=R-—7rr,, 7

and where M7 = Mb_1 + (M, + Mc)_1 defines the correct reduced mass for the atom-
particle movement. The last term in (5b) appears due to the slope of the surfice Sp_.onst
in the six-dimensional space (see Fig.2) with respect to orthogonal coordinates (Rg,rs)
and if the boundary surface will be adjusted to Sp,.const the last term will be eliminated.

The validity of these discussions can be checked by the direct insertion of the correct
asymptotic wave function ¥ (Ra,rs) = @ia (ra) ekiRe — [goia (ra) eirk""] e’k represent-

ing some asymptotic atomic state pq, into expresions (5a) and (5b). It is clearly seen that

the last term of Eq. (5b) is equal to zero while in the first expression the last term adds
non-zero correction (connected with the so-called translational factor ei™Xite).

Formally the scattering problem can be formulated in terms of a Hamiltonian of free
motion,

Ho(f’):%l—f’2+2i§(oo)f’+7-t(oo),‘ L (8)

which provides necessary observables for the theory, such as the velocity of the “complex”

particle (compare it with the flux density operator from Eq. (4)),

" and the effective mass of the particle,

M =Py,

which varies depending on the channel number and on the velocity of the particle in the
channel. One can compare the effective mass of two different ché.nn_els in example (2)
corresponding to two different limits of dissociation of the molecule, it coincides with the
reduced mass of systems (ac) + b and (bc) + a respectively. 7
After the “free” Hamiltonian is defined we can use the standard M¢ller- operators,
Q&) = slim etHtetHot
t—Foo

and the S-matrix operator expressed in terms of Mgller operators,
5= [9(—)]‘ Q)

for the formal scattering theory description11’12.
In what follows we assume that (1) is invariant under three-dimensional rotations. (For
the expansion (2) it means that a truncated basis set is rotationally invariant.) So applying

the partial wave expansion to the wave function of the problem we get the system of the

‘radial Schrédinger equations:

2
{—5}‘2(—3{7 +2Q(R)d—d§+H(R)}z,b(R)=_s¢(R).' | ()

This system of coupled equations can connect the channels with different orbital momen-

tum of relative. motion of fragments, so it will be convenient to omit from consideration all



the details concerned with orbital momentum. All the more that the phase shift correc-
tions can be easily included afterwards. For brevity of notations we will make use of the

units: h=e=2M = 1.

3. Description of asymptotic channels

We need to investigate the asymptotic behaviour of a common solution of the Eq. (7)
when R — oco. To do that we will look for the wave functions of exponential type ¥ (R) ~

exp (ikR). This leads us to the determinant equation
|k? + 2ikQ + H — €]| = 0, (8)

where Q = Q(oo) and H = H(oo). The diagonal element h;; of matrix H determines
threshold above which an ¢-th channel will be open and the internal energy of this scattering
channel can be written as ¢; = ¢ — h;;.

When ¢; = 0 Eq. (8) has a solution k; = 0, and respective asymptotic solution of
Eq. (7) is concentrated in the component “i”. However, when ¢; increases the asymptotic

incoming wave stretches along the components of the wave function (k; > 0),

{¢(')}J(R)~ce R ~ (9a)

where a vector € = {c¢;} is a non-zero solution of equation

[k} +2ik:Q + (H —¢)] € = 0. (9b)
An outgoing wave has a similiar form
{8505 (R) = dje™ ™R, (100)
with d; satisfying the transposed equation
[k — 2ikiQ + (H —¢)] d = [k} + 2ikiQ + (H —¢)] T d =0, (108)

Unless matrix Q is zero, vectors € and d are not collinear and incoming and outgoing
waves cannot be transformed into one component of Eq. (7) by some local similarity

transformation.

In what follows we assume c; is real and ¢; # 0 for a channel “i”. This restriction is
reasonable in a view that we need to connect all eigenvalues of the problem (9b) with the
channel numbers (asymptotic potentials derived from physical problems usually provide a
dominant value for ¢; and the connection is evident). For an open channel, when k; is real,
vector d can be taken as a complex-conjugate to the vector €. Dividing vector € into real

and imaginary parts:

S6) _ (&), wi)=
v Re{c}, W
Ilc(‘)lIQ

where in accordance with Eq. (4) (plus sign means transpose and conjugate)

kil ()” m{c}, . (11)

llellg = |killel® — e (12)
we get the necessary asymptotic solutions of open channels,
FH(R) = (V9 & ikwD) 28, | (13)

The wave function normalyzed by this way has a unit flux of particle transfer through a
sphere bounded the interaction region.
We can describe an asymptotic solution of the channel “:” via the i-th component of

the wave function
G ()~ L L0 4 0 (i) _ 14
'¢’ ( ) (){ +w w; dR}"»Z’ ( )7 ) 1,...,n. . ( )

Inserting the asymptotic solutions (14) for the wave function components into the i-th

equation of (7) we get
1-2 Y giul | ¥+ (e —ui) $i =0,
3

where the first derivative term disappeared due to the self-adjointness of the operator (one

can check it directly using equation (9b)).

‘Pi (l.a) eik,‘Ra —

[(,o,- (ra) eir(k"“)] eR B where T = M./ (M, + M,) and k} = 2¢; M, satisfies the stationary

When expansion (2) has a full basis set, an outgoing wave ¥ (R,r,) =

equation g
1 d? 1 (R d
L v ) Lo (- v =
aMdRE . 2M, (R ) arl U9
R T SR
= oa a0



The wave number k; and the wave function ¢; = p; (r,) e"(kife) compose a nonzero solution

L]
of the respective determinant equation

[k,? + 2ik; (ﬁ—RV,G) +(H — 5)] é: = 0.
If a finit basis set contains the wave function ¢; or the function can be linearly expressed by
this set, then truncated scattering equation should have a solution with correct asymptotic
behaviour. It is easyly seen that this function depends on the colliding energy thus it
is rather possible to introduce such a set of basis functions that includes all necessary
functions. Anyhow we can hope that it can be done approximately (for example with the
use of pseudostates). So when the number n of basis functions increases the quantities of
kg") and Mi(") = kg")/ﬁgn) (vgn) = |IE("")||2Q) converge respectively to correct values of k;
and M,.
Let us fix the incident channel i of the reaction. A respective solution of the mul-
tichannel stationary Schrédinger equation (7) with m open channels has an asymptotic
form "
$O(R) g7 - 554", (15)
j=1
and elements S;; define the S-matrix of the scatiering problem. Or course, it is necessary
to show that this new definition of S-matrix coincides with the one given in the previous
section. But we lay aside a rigorous consideration of this problem.
For numerical calculations it is more convenient to work with real functions and real

boundary conditions. We can transfer our asymptotic solutions to get a real form:

J)El) = % (J;(‘."”) - d—)('._)) = vV sin k;R + k;w) cos kiR,

(Zgz) = % (d;g"”) + (ZS_)) =¥ cos kR — k;W(i) sin k; R.
For these “standing wave” functions a common solution can be expressed in a form:
! m
(& 1 2
PRI o) w9
i=1

where K is the so-called reactance matrix:
K=i(I+8)'(I-5), S={I+iK)(I-iK)},

that has a real symmetric form11:12,

4. Boundary conditions

Let us consider the n component system of radial equations with m open channels.
The asymptotic solutions (15) define boundary conditions in the infinity. For practical .
use i1t will be better to impose boundary conditions somewhere at a finite point R,. For
this purpose we will assume that potentials Q@ and H can be represented by asymptotic

expansions

M
K(R) =7 (H(R) + W (B)) =€+ 3 AOR,

=1

1
2
M
Q(R)=>_ BYR,
=0

where £is a diagonal matrix whose elements are the threshold energies of the different
channels. Matrices AY are symmetric and BY) are antisymmetric.
We can continue the solution (13) from the infinity to a finite point R, using the

asymptotic expansion

(ZEZ*:) (R) — eiik,‘ERiﬁ.'

N
N+ é,,R“"} . (17)

n=1
Inserting (17) into equation (7) yields us a sequence of equations providing solutions for

unknown quantities in (17)

[k? + 2ik;iBg + € ~ €] €& = 0; (18a)
[k? + 2ik; Bo + € — €] €& + [2kifi + 2iB;i Bo + 2ik; By + A1) €1 = 0; (183)

and
_ (%0, [2ik; By + A1] &)
(o, [2k; + iBo] To)

So for a given accuracy € we can find a value R, of R such that expansion (17) differs in

Bi = (19)

absolute value from the exact solution by an amount smaller than ¢ for all R > R,,.
Now let us suppose that all the necessary solutions (and their derivatives) are obtained
at a given point R,. We denote by #(*) (R) the n x T matrix composed of open channel

solutions which we assume to have a maximal rank m.’



We look for the boundary conditions of the form
¥'(R) + G¥ (R) = b9,

which selects from the common asymptotic solution functions having an asymptotic be-

haviour as in (15). To do that we can consider the equations
P! = ¢'(‘) _ @’(+)S(i),
¥ = ¢;(7) — ()56,
-1
and try to get rid of unknown parameters_S;; using the left pseudoinverse [¢I>(+)] of

¥ -1
the matrix ®(t) (R), satisfying the condition: [¢I>(+)] &(t) = I, where I is the identity
matrix. Extracting §) from the second equation and inserting it into the first one we

obtain the necessary expressions for the matrix G:
G g™ [,1,(+)] -
"and for the right-hand side term:
B9 = @) 4 ).

For the case of the finite-difference approximation to Eq. (7) it would be better to

modify the boundary condition to the form without derivatives:
U¥ (R1) + WY (Ry) = &5,
where R; and R; are two neighbouring nodes in the difference grid. Matrices U and W
can be obtained in a sirhilar way. . -
5. The number of asymptoticaly bounded solutions

The complexity of the problem can be illustrated by the two component equation. So

let asymptotic potentials be determined by the following matrices:

0 a4\ {0 o\,
o-(5e) m=()
the determinant equation (8) can be expanded:

(k? —€) (k% — e +1) — 4g’k? = 0.

10

The solutions of it describing a wave number k as a function of energy ¢, for different
values of ¢ are shown on Figures 3-5 (solid line is the real part of the function k(g) or
k%(e) and the dashed line is the imaginary part of it). The asymptotic wave function is
determined by the wéve number k as ¥ (R) = e**%, so when k has an imaginary part, the
solution decays or. increases exponentially and it corresponds to a closed channel.

For small values of ¢ (¢ = 0.2 on Fig.3) we have seen quite ordinary picture — two
closed channels in the lower part of the spectrum which becomes open when the energy
€ increases and comes across the respective thresholds h; = 0 and h; = 1. The only
remarkable peculiarity is appearing here for closed channels just b¢10w the energies of
approximately ¢ = —1.5. The asymptotic solution besides an expounentially changing
amplitude lias also an oscillation due to the nonzero real part of the wave number k. But
it does not spoil the qualitative picture of the scattering system behaviour. On Fig.4 the
spectral picture for the critical value of paramneter ¢ = 0.5 is shown. At this point the
determinant equation becomes degenerated: k* = 0, when ¢ reaches the first threshold
(e = 0). And at last, Fig.5 shows the qualitative behaviour of the systein for ¢ > 0.5. Here
we can see two open channels right below the first threshold! They appear at some energy
(in the case of ¢ = 1 shown on the Figure it is about ¢ = —0.6) with a nonzero oscilation
and then one of them gradually decreases to the zero and disappears at the threshold
energy ¢ = 0 transforming into the closed channel, while the other developes formally as a
usual open channel.

One can ask if a small nonzero Q-potential perturbs the exponential behaviour e!*#
(k = i|k}) of the solution for closed channels adding some oscillatory part, why we cannot
expect the similar effect for pure oscillatory solutions of open channels eLil*R The exis-
tence of an imaginary part in the wave number leads to exponential changes in amplitude of
the wave function and thus this channel should be regarded as closed. Fortunately, the per-
turbation of the standard multicannel asymptotic potential H by the velocity-dependent
potential Qd /dR does not reduce the number of open channels.

To prove this assert we can regard the determinant equation (8) as an equation of two
real variables k and ¢. If we will solve it regarding € as an unknown for every fixed &, it
will be the standard eigenvalue problem for the Hermitian matrix k% 4 2ikQ + H. The

solutions of it are some curves on a real (k,¢)-plane (Fig.6) symmetric with respect to the

11



k-axis. The number of open channels for a fix value of ¢ is determined as the number of
crossings of these curves :vhile k varies from zero to +oo (or —oo). It is easyly seen that
for large values of k these curves behaves as &; ~ k2 + k;; so the number of crossings is
not less then the number of negative eigenvalues of the matrix Hf — e. That proves that
the number of asymptotically bounded solutions — opAen channels — is not less than the
number of thresholds below the energy ¢. However, the previous two-component example
'shows that this number of open’ channels can be greater, if the Q potential is sufficiently
large.

" To completé the investigation we prove some results on necessary conditions providing
the coincidence of the number of thresholds below the fixed energy ¢ and the number of
‘open channels. Till the end of this section we assume for simplicity that the wave number
k > 0. The proper behaviour of the solutions of the determinant equation obey the rule:
e (ky) > e(ka), if ki > kg, for any positive k; and k;. S6 the branches of determinant
‘curves should monotonically increase when k goes‘from zero to infinity. Otherwise there
exist some value of & for which vertical line of k > 0 crosses some ¢urve two or more times.
We shall apply this speculations to the point of threshold where k = 0.

The curves are the solutions of parametrical eigenvalue equation with Hermitian matrix
A: \
{[A@)~Ewny®)=m
(v,9) =1,

where A (k) = k2 ,+ 2ikQ 4 H. Differentiating it twice we get

A'(k)y)
’ k — (y’
¢ ( ) (y3 y) )
" (k) (%A%)—Z@b4*dﬂﬁ—d'wﬁ—ﬁqﬂ
€ = ,
(y’y)
or for k = 0:
e =0,
e = g,
2
fd=2{1-4% %
l A
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Fig.1 Three sets of Jacobian coordinates of a three-body system.
Ta

Sp=const
SRa=const

R,

Fig.2 Surfices Spocopst and Sp,—const in the six-dimensional space with respect to

orthogonal coordinates (R, r,).

The second derivative of € should be non-negative. So we get the necessary condition:

2
i

%j
1—-4 >0
§ hjj - 6 .,

if only the number of thresholds below the interaction energy ¢ coincides with the number

of open channels of the scattering system. It gives a very hard restriction on multiple
thresholds (in a case of asymptotic level degeneracy): all ¢;; connecting different compo-
nents of multiple level should be equal to zero. '
If we substitute for A’ (k) its value 2 (k 4 iQ), then insert it into the expression for ¢':
_ @2[k+iQly)
(v,9)

and compare it with Eq. (4), we obtain very important relation: the energy of the system

e' (k)

)

as the function of k increases within some interval of values as soon as the respective
channel wave function €exp tkR has a positive balance of particle transfer through some

surfice bounded the interaction region right in accordance with Eq. (4). It can be shown

13
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Fig.3-5 Solutions of the determinant equation in a case of two-component radial
Schrodinger equation with non-zero asymptotic potential Q for three different values of
parameter ¢ = 0.2,0.5,1. Dashed curve is the imaginary part of a wave number k (left)

and its square k2 (right) respectively.
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Fig.6 Solutions of the determinant equation (8) as curves on a real (k,€)-plane.

that for the case of ¢ = 1 (Fig.5), one of the open channels corresponding to the positive
value of k and placed just below the first threshold (the lower one) has a convergent to the

origin flux of particles.

6. Conclusions

Results considered in this paper show that the scattering system with velocity-depen-
dent asymptotic potential has some peculiarities in behaviour comparing to the standard
multichaunel model. That allows us to hope that they can attract theorists attention to
more deep investigation of that kind of systems. In parﬁcular, it vwill be very interesting to
find some other ph&sica.l models beyond the example (2) of i.his paper which represents in
some sense artificial situation due to the truncation of the infinite set of radial Schrédinger
equations for the three-body scattering problem.

From the other hand the expansion (2) can be used as the base for tle numerical inves-
tigation for the three-body low energy scattering processes (including exchange processes).
This approach allows to get rid of integral terms in reduced equations. The existence of
correlation of basic channels does not complicate the problem very nmch and can be over-

conied numerically very easy. And what is especially attractive that it closely relates to



"the most elaborated standard closed coupling method1»2 and achievements of which with

slight changes can be ap.plied to the considered approach.
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" E492.356
MHOFOKaHanbHOE PacCeAHHE C BCUMNTOTUNECKUM mreﬂuuanou ) : .
32BACALIM OT CKOPOCTH ! L A :

. Mecnenyro‘rcn peweHua cHcTemb! panuanbnblx ypaaneuuu ulpenunrepa

-4, 2Q(R)—— +H(R)w(n)-.¢(a) S N
©o2M AR : : .

C laBHCHLI.lMMM or CKOpOCTH noreHuManaMu Teopur mAOﬁHle CHCTEM. ynuamenwo OTnH'la- '

- eTCA OT CTaHAAPTHOW TEOPUU C NOKaNbHbLIMYU nOTeHuUManamu. Tak, ecnu wnew c’nepaou HDOMJ“ Ny

soaHoi Qd/dR noteHumana He MCue3aeT Ha GECKOHEYHOCTH, TOTAA MHOMECTBO XapaKTepUCTH-

‘. 4ECKUX "uMCen OBWEero aCHMNTOTMYECKOrO PEeWeHUA MOXET COAEPMATh KOMNMEKCHbIE Yucna
"* €' HEHYNEBbIMU  BEWECTBEHHOA M MHWMON 4aCTsio OAHOBpemetHo, Bonee rbro WHENO OTiPbI- |
. ThIX 'KBHENOB (Mb1 CBA3bIBZEM nBa orpanmmnuxmemeﬂun, COOTBETCTBYIOWMX BEWECTBEH -
- HOMY_ 'NOMNOXMTENLHOMY BOMHOBOMY 4ncny -k l[' (R} exp (+ rkj R) c oanum OTKpbI-

TbIM Kananom) MOXET nDEBOCXOAMTb yueno’ NOpOoros, nNeXauwMrx HWXe IHEprun paCC?“hHH

. Moa’ NoporoM Msi, NoApasymeBsaem COOTBETCTBylowee COGCTBEHHOE 3Hayenne hy -Tepma

ACUMNTOTHYECKOTO noreuuuana 4] NaOﬁOpOT NOK33aHo, YTO YUCNO OTKPbLITHIX KaHARJE He

" MOMeET GbiTh MeHbLIE yem yucno noporos, ynoanemopmou.mx ycnoswio h” <'¢. BoinucbiBaoT-

CA rpaHnyHbie yCnoBuA anA MHOFOKaHansHoro pa.uuanbnoro YpaBHE'IMH Lllpenunrepa Ha Secxo-

: Hemocmuanexoropou KOHEeYHOH rouKeR e YL

PaBora BbinonHena B ﬂnﬁoparopuu BLIUMCIIMTENLHON TeXHUKM W aBTomaruzaunn OVAW.

- Coobmenne OGbeanHeHHOro MICTRTY TS SICPHWX HecaeIosanmii, Ny6ua 1992
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"> The Multi-Channel Scaltenng wrth Veloclty Dependem Asymptotlc Potentxals f s vl

_solutions corresponding to a real positive wave - ‘number k: ¢
“open channel) can exceed the number of thresholds lying bel‘!)w the scattering energy. Under

Korobov V.1. " ."E4.92-356 -
Asymptotlc soluuons for the system of radlal Schrodlnger equatrons

1
2M de

(- == 20(3)— + }((R)lv(R) rlﬁ(R),

wrth velocuy-dependent potenhals are |nvestlgated. The theory of that klnd of systems surpri-’
. . singly differs fromthe standard local potentlal theory. So, if the first derivative term Qd/dR
" of the potential doesn’t vanish at the infinity, the set of charactenstlc numbers of the common

asyﬁlptotlc solution. could, contain complex numbers with nonzero rea! and -imaginary parts ;
simultaneously, More over, the number of open channels {we relata two bounded asymptotic
)(R) =exp(+xliR} with one

threshold we imply the respective ergenvalue h” of the H term of the asymptotic potential. Vi- .
ce versa, it is shown that the number of open channels could not be less than the number of
thresholds satisfying the condition: & . Boundary . conditiuns for the multichanne! radial .

" Schrodlnger equation at the lnflnlty and some fmlte pomt Ry are proposed

The rnvestrgatron has been performed at the Laboratory of Computmg Technlques and
Automatron JlNR : ;

" Communication of"thg Joint Institute for Nuclear Roriéarch. Dubnﬁ,l”i :




