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Summary

The coriolis antipairing effect is inves-
tigated for the rare earth nuclei. For this
a new two-parameter expression for the
pairing strength is introduced which is
adjusted to the even-odd mass—-differences.
Good agreement with the experimental results
concerning the linear part of the moment
of inertia as a function of the square of
the angular velocity can be reached if pro-
jection onto exact particle number is taken
into account. The latter causes an essen-
tial stabilizytion of the pair-correlations.
'The critical angular velocity for the tran-
sition from the ‘superfluid to the normal
state’is: defined and calculated. It is
substantlally increased by projection onto
exact particle’ number whereas it remains
almost unchanged by projection onto exact
angular momentum. The critical angular velo-
city at which ‘the neutron pairing vanishes
is systematically larger than the angular
velocity at which back-bending is observed.
From this it is concluded that back-ben-
ding cannot be caused by a rapid transi-
tion from the suprafluld to the normal
state.

1. Introduction

The first observatlon of the 1rregu1ar
spacing of the yrast-levels in even-even
rare earth nuclei/!/ has stimulated a number-
of experimental and theoretical investiga--
tions of this interesting phenomenon called
back-bending. (bb). As discussed in the re-
views /2-5/on the subject the- most 11ke1y
explanations for bb are:

~ The rapid transition from the supra-
fluid to the normal ‘state caused by the"r
Coriolis Antipairing Effect/6/(CAP)

- The decoupling of two neutrons from
the rotating core and- the’ allgnment of their
angular  momenta’ with that of the core/h’ T
(Rotational Alignment” Effec ] :

As shortly sketched: 5the‘folloW1ng it”
is not yet clear whichiof ‘the two effects‘
is the dominating mechanism’ caus1ng bb.

In refs./8-10/the yrast-levels of  “16%;;
and!®- 10y are well“reproduced ‘by"” caicula—*”
tlons based on the” CAP The authors con—’ £

for the* phase tran51t10q plcture. Oon+ the
other hand,;-in refsg.w> '+ a good descrlp—
tion of the" yrast-levels of all" even -even
rare earth nuélei is-achieved with'the ‘help’
of a- semlphenomenologlcal particle-plus- ‘%’
rotor model'! However' the model contains some
parameters which are neither fixed by in-
dependent experiments nor calculated.



The experimentally observed pattern of
occurence or missing of bb in adjacent

odd mass and even-even nuclei can be under-
stood in the framework of RAL. This fact

is considered in refs.’® as a kind of
experimental indication that bb is caused
by RAL. However in ref. it is argued
that it is also possible to interpret the
mentioned pattern in terms of CAP.

One can investigate the relative im-
portance of CAP and RAL by means of models
which take into account both effects. This
is done in the investigations of few-level
models iof refs./!%1%  The authors find
out that in most cases bb is due to the
decoupling of two particles (RAL) but do
not exclude a phase transition for some
outsides/® It is arqued in xref./¥ that
these models do not take into account the
change of the moment of inertia of the

core via the CAP and, therefore, disfavour

the possibility of a transition to the

nonsuprafluid state. In ref /¥ the Hartree

Fock-Bogoljubov approach ig used. According
to this calculation bb in"’“ E is due to
the decoupling of two neutrons.-

In ref./13 the transition from the supra

fluid to the normal state is estimated to
take place at a higher angular momentum
than the decoupling of two neutrons (RAL).
Consequently the RAL, which is estimated
to appear just at the angular momentum
where bb is observed, is supposed to cause:
bb. In ref./1/- the CAP as origin of bb in
15464 - is ruled out analysing the spectrum
by means of a model of crossing bands.

In the. present work a- systematlc analy—-‘
sis of CAP is. carried out--for the even-:: =
even nucle1 in the rare earth. -region. .Com-~
parlng with previous 1nvest1gat10ns of
CAP in refs./'-22  the influence of conser-
vation of. particle -number and angular: mo- -
mentum is studied. By means of a_ systematlc
comparlson with the expérimental data- on
the spacing of the yrast levels it is inves-
tigated whether the calculatlons based on,‘
the CAP do- reproduce bb ‘in a’ quantltatlve
way or ‘whether" there are 51gn1f1cant de—"
viations from the observed pattern( The re—
sults of thlS comparlson are con51dered as’
an evidence 1n disfavour" of the 1nterpreta-
tlon of bb in terms of CAP.:

Although the present work’ malnly con—‘
cerns the 1nterpretat10n of bb- it 'should -
“be méntioned that the results are of more’
general interest. For an 1nterpretatlon of
nuclear structure at high angular momentum
it is important to know at which angular
frequency the ‘transition. from' the supra- .
fluid to the ‘normal state takes place. The
present work provides a new estimate of
this quantity based on a partlcle number
conserv1ng descrlptlon of the pair- correla—
tlons.. .

The expre551ons ‘for the energy of the"_
yrast are derived in sectlons 2 and 3.° ‘Sec-
tion 4 is devoted to ‘the choice’ of" the
deformed ‘single- partlcle potentlal and the”
determination™ of the pa1r1ng strength The
results of- the” calculatlons for the reglon
of “low* angular momentum are’ dlscussed in
sectlon 5 “In- sectlon 6 the crltlcal fre— -
quency of the break -down" of pa1r1ng 1s 1n—'
troddiced. This “definition turns out to be
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useful for the discussion of “the transi—
tion from the suprafluid to the normal
state at high angular momentum (section 7).

2. The Rotational Energy Calculated

by Means of a Particle Number Conserving

Description of Pairing (Q-Projection)

As usual in 11terature‘“7zwh we define
CAP as a. unlform weakening of the pair-cor-
relatlons in the rotating nucleus. The
strength of pairing is fixed, like in ref/m{
by means of the gap- parameter A the value
of which is obtained by minimizing the
total energy E (A for a given angular
momentum 1. The express1on for E,(A) is de-
rived assuming that all nonadlabatlc ef-

fects (but CAP) can be neglected. As regards

the most important ones /22 / the influence of
rotation on the deformatlon of the nucleus
is not expected to be very essential for

the well deformed nuclei of rare earth re-
gion (see refs/2224/ ) and the discussion
of section 5). However, it is not clear

from the beginning whether the influence

of rotation on the single (-quasi-) particle
degrees of freedom is important or not.
Rather, this effect is excluded in order to
investigate what follows from the assump-
tion that only CAP is responsible for bb

and whether these results are compatlble .
with the experlmental flndlnqs._Thls kind

of 1nd1rect argument was chosen ‘because 1t
is relatlvely simple to carry. out calcula-
tlons taklng into account only CAP whereas
the inclusion of the 51ngle partlcle degrees
of freedom demands a much 1arger computa-’;

tional effort. Moreover, in section 7 it
will be shown that .a part of the results
remains valud even in the case that the ,
neglected RAL is expected to be significant.

" As only the influence of rotation on the
gap parameter A is considered, E for '
a given value of A corresponds ‘to the’ ener-
gy of adiabatic rotation. Restricting to .
the ground state bands of even-even nuclei
E, reads

A

. 2 " .
EI(A)=E&A)+-—J———,I=VIU+1), - (2.1)
290y ,
The expressions for the ground state -
energy E, and the moment of inertia J are
calculated using BCS-functions projected
onto particle number N (C -projection) .
It is assumed that the pair-correlations
are sufficiently well described by the Ha-
miltonian of monopole pairing (see, e.g.,
ref. 725/ ) : o - -

H=H —CP P. '—Ee c P ~§;0p . (2 2)

where ¢; is the energy of the 51ng1e par-
ticle level i in a deformed axialsymmetric
shell model potential. The‘operator;ct ge-

nerates one particle on the level i, p?
a pair on the time reversed states. ol
ie.; Pl=c%ci. The symboli.0 means that the

1 1
sum runs only‘over states with a .positive

projection of the angular- -momentum on the

‘symmetry- axis. In order to simplify the.

notation;" ‘the Hamiltonian- and the derlvedi

’express1ons are only written for one kind

of particles. The generalization-in the
case of protons and neutrons (1n the fol-



lowing denoted by Z and N, respectively)

- 1is obvious..The ground state wave function

is approximated by means of the BCS-vacuum

denoted by |A,A> from which the component

with the exact particle number N is projec-
ted out, i.e., ~ o '

~1/2 ' o
|A,N>=T(O QNIA)\>., n0=<A,A|QN|A,A>. (2.3)

The realization of the pfojection operator
Qy is described in the appendix. The BCS-

function has the well known structure (see, .

e.g., ref./25/ )
€. — A

u 1 i :

= 5411———~————4(2.4)
. Vi Vie; =22+ 4
The chemical potential A is fixed for

a given value of A by the condition

[N )

[A, 2> =1 (u, + v. P} 0>,
i> 1 1 1

23 v3(4) =N. (2.5)
i>

The ground state energy as a function of A
is obtained as the expectation value of H
with respect to the state ]A,N>:

E ,(4) =<ANJH_ |A,N>~G<AN|P"P|AN>. (2.6)

The explicite expression is given in the
appendix. The moment of inertia is obtained
by means of the cranking model (see e.g.
ref. /25/ ). According to this model one cal-
culates the energy of the system in a frame
of reference rotating with the angular. ve-
locity @ around the x-axis. The correspond-
ing Hamiltonian has the form ) '

H,=H-w] ,J = 12, j;‘jc-;cj, 7 (2.7)

where j* denotes thé matrix element of the
: 1} . . :
x —component of the single-particle angular
momentum operator. In order to obtain the -
adiabatic rotational energy as a function .
of A the term wl, . is taken into account in
second order perturbation theory starting -
from |A,N>. The moment of inertia equals -2
times the coefficient of the term quadra-
tic in . : : '
The operator ], 9enerates from|A,N> only
states of the type S o o

—% -+ e
|A, N, ij>=,‘)1”. c, chN_ziA,)\, ij>, nij=<A,-)_\’IJ]QN_2|A,A,IJ>, j.(2 .8)

where |A.\ij> denotes the BCS-vacuum with
levels i.j blocked. In the appendix is
shown that H iS_diagonal-within,the ortho-
normal set tIAN>,|A,N,ij>}. This is only true
for the special set of "projected two-
quasiparticle sfates"&(2.8)Lgenerated,by,Jr
The Hamiltonian is not diagonal for sta-
tes of the type "two-quasiparticles on
time reversed states”. However, these. states
contribute only to higher orders of_pertur—
bation theory. By treating A as.a. free pa-
rameter these cOntributionsuare'takengintQ
account in an average but nonperturbative -
way. The fact, that H is diagonal, is also
connected with the choice of the simple
pairing interaction between ‘the particles.
In the case of a more realistic interaction
this property gets lost/26/. .- ~ '
Using second order perturbation theory
one' obtains for the moment of ‘inertia -
|<ANijl T, |8, N> |2 | |
Ja) =23 , » B =<ANLijH|A, N, ij>. (2.9)
ij E. -E, 1 ,
9

RN
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The explicite expressions for E]and

<A,N,ij|J 1A N> are given in the appendix.
From the explicite form of the matrix-ele-
ment follows '

SN2, .0x 20 U x %
(ujvi—ujvy ([l flh]l)

4(a) =4 %

PN s _F
i>] Fij E,

The total ground state energy and the mo-
ment of inertia are the sums of the cor-
‘responding contributions from protons and
neutrons. As is discussed in more detail

in the appendix, the ¢-projection operator
is approximated by a sum of 8 terms. In

order to find the minimum of the total ener-

gy with respect to the gap-parameters Ay
and Ay the expressions L, A,), ExAQr 94,(A )
and 4 (Ay)are calculated at 8 points of Ay
or Ay W1th1n an interval from 0 to 1.8 MeV.
The value of E;(A, A ) between the ‘mesh-
points is obtained by interpolation with
4th order polynomials. This method turned
out to be sufficiently accurate and fast.

3. Conservation of Angular Momentum
( PI—PrOJectlon) E
/3,9/

In refs. it is dlscussed that 1f

the internal structure of the nucleus ra- .. - °

pidly changes with uincreasing angular .
momentum the quasiclassical cranking model
may become a bad approximation. One way

to take the conservation of angular momen-
tum into account is to project out the
components with the angular momentum
I(P1~project10n) from the basic wave func-.
tions (2.3) and (2.8). In refs/27 ”V it is

10

”) (2.10)

shown an approximate. evaluatlon of- the pro—
jectlon operator Py leads to the same ex— -
pression for the rotatlonal energy as ob-'
tained in the cranklng model. Only the
ground state energy E, is ‘renormalized:
<AN|J|AN> T
'goéEofj w — ’t‘ (3;1)
PY
where the Peierls- Yoccoz moment of 1nert1a
§py can be written in good approx1matlon 29
as

<ANJI,(H=EgJ, |A,N> ' '
PY 2 2 — - . (3.2)
2<A,NJJ2 | A, N> . .
Using the matrix-elements of the appendix
one obta1ns : :

<A,N|Jx(~ °>J |/\ N> =

'-(3.3)

. (
~;22 (uwf—u,vﬂzﬂi l+|] I%( K—H)A,

The expre551ons ‘are to be understood as
suins of the- contrlbutlons from the protons
and the neutrons. In refs./30:31/% is shown'

.that a more accurate account of the conser-

vation of angular momentum leads to correc=
tions to the moment of inertia. However,
the -magnitude -of, those contrlbutlons seems
to be not yet clear .(compare. refs. /2731 )
Thus,: the " cranklng expression for:ithe mo= .-
ment. of inertia: has .been_kept unchanged.f.l

" “Anaccurate. evaluatlon of the. Pj-operaz"
tor leads alsoto corrections in. the ‘rotar’
tlonal energy, dependlng on’ hlgher powers ~f
of the angular momentum than:17%..The rele= -
vance .of “these terms to; the. subject of! thlS
work should ‘be. 1nvestlgated because" they

rik
3t



are- connected with restoring’a’ violated-
symmetry. It is rather complicated to carry
out the P; -projection within the whole
basis (2. 3), (2.8), but one can hope to
estimate the corrections. by means of the
simple projection approach that neglects
the admixture (2.8) . The same method is
used in ref. For the evaluation of the
overlap integrals an approximation propo-

sed in ref. /32 is used. Then the enerqgy '
equals ,

2<A N[ J7 A, N> de sm“"Bd' ® eXp(—2-<ANU |A,N>sin 2 ,8)
E=E +
I=~o*

gPY f dBsin B dO O(p) exp (- -—</_\ N ]A N>sin’ ,8)

where d (B) denotes the reduced Wigner ¢-
functlon. In second order of 1/<A, NIJJA,N>
this expression becomes the renormalized
ground state energy (3.1) and a rotational
energy, quadratic in I, but with the moment
of inertia Jpyinstead of § .The occurence
~of ¢, in the rotational energy is due to

the g;ct that ‘the contrlbutlons (2 8) are-
not taken into account

4. Choice of Parameters

The basic input parameters needed for
the calculations are the energies and mat-
rix-elements ifi in the .deformed shell |
model potentlal and the strength of the.
pairing interaction. As deformed potential
well the Nilsson-model in the version of
ref./33/ ig adopted. Only quadrupole defor-
-mations are permitted. The values of the
corresponding deformation parameter -are
the experimental ones taken from the com—

12

|
I
I

pilations /3435 If. no experimental values-

for ¢ are given the deformation.is. estima-

ted. extrapolatlng linearly within a:chain.
of 1sotones. The- values -used are- 1nd1cated
in fig. 2..In the expressions (2.10),. (3%3)

"the contributions from matrix-elements.. bet-

ween different osc1llator shells(AN—+2) are’
taken into account.
The strength of the pairing 1nteract10n

- G is parametrized with the help of the ave-

raged-gap-method proposed in ref/3%. The
averaged gap A determines G via the avera-
ged level density p . It is convenient to
approzimate E ba means. of the asymptotlc
expression given in ref. :

2
1(1+2 )ra

(2%, (5.1

w, Z,N hmo . ( )
where haoy is the oscillator constant of
the Nllsson-model The values az=233.10 " +
+0.108¢® - and ay=119-107+0008¢ are ob-
tained from a comparison of -expression (5. 4)
with the values of the averaged level den- -
sity calculated directly from the Nilsson-..
model by means of the Strutinsky- averaglng—f
procedure

The averaged gap is, determlned from the
values of the expressions Pgz,P y(see ref./36/
expr. (2.92), (2.93); PZ,IN are denoted
there by A,;,A, calculated from the expe-
rimental b1nd1ng energles of 4 adjacent
nuclides.

*The author is indebted to Dr. V.V.Pash-
kevich for kindly supplylng the computer
code.
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In the rdre earth region the P, and

Py ~values within a chain of -isotopes dec-
rease with increasing mass number ‘A (See -
fig. 1). In order to take into account this
effect a Z,N .-dependence of'the‘averaged gap
is introduced = - = ' -

~ A AZN 2 AvE R
. v(Z, N) 2 :
AZ,N = T—u,'-ﬂ[( - ) —( ) JI,(S.Z)
\'4
L A Z=N Yz=N
where
Av(Z, N) 27, 9N 1/3 == AT 0.4A2
- = (‘ —) -1, Z,N=
VI N A A+ 200
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Fig. 1. The pairing gap and the P-values
for the rare earth region. The experimental
binding energies are taken from ref.A%. ...
The values of ref./#/ are preferred if -
larger accuracy is indicated. The number :
of~strings.indiqates‘how4many values of the
binding energy in the expression for P cor-
respond to extrapolations of nuclear mas- -
ses (see ref. /45/ ). In the first part of
the figure - A, = 13.9 MeV whereas in the .
second. part : Ag = 13.1 MeV. is chosen.

In these exppessionsvzéu means the..velocity

of particles .at - the Fermi-surface. in the .
case, N=,Z , Av." is the 9eyiation_fromrthis1
value for, given Z or N 36/ Z,N .. are. the..num-.
bers of nucleons on the line. of B-stabili-.
ty/3"/The, idea.behind the expressions (5.2).
is ‘that the 'strength .of pair-correlations -
should"be'related;to;w@?LAniexpressionudée
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pending only linearly on Av/vy_y fails to
reproduce the fact that both P, and P, de-
crease with increasing mass number. Thus,’
a quadratic dependence has been assumed'.
The correction term(AﬂZTﬂ/vbw) is subtrac-
ted because the Z,N -dependence of A cor-
responding to the line of B-stability is
ilready 1ncorporated in the leading term

Az

Comparing directly the calculated and
experimental values of Py andl)zwe found -
the parameters =120 and, respectively,

=13.9 MeV and A_= 13.1 MeV for the
beginning and the end of the rare earth
region. The theoretical values of P, and P,
are obtained from the ground state energies
Ey calculated with the deformation e cor-
responding to the nuclid ZN.The expression

for -the ground state energy of odd nuclei

can be easily obtained from the expression
for the "two-quasiparticle energy" (A7) by
removing the second blocked level ;. The
values of Ay found for the rare earth re-
gion agree reasonably well with the value .
of 12 MeV /34,36/ for the whole periodic -
table. The calculated and experimental va-
lues of P, , Py are shown. in fig. 1l..It.is
interesting to compare the calculations
with and without Q -projection. The most
striking feature is the increase of the gap
A if the particle number is conserved.

This effect leads to an increase of the
difference between P and A because the 'P-
values are not very much influences by Q-
projection. Therefore it. is not correct to
determine the pairing strength by comparing
the experimental values of P directly with
A, as usually done in BCS-approximation.

16

Rather, one must relate the experimental:
and theoretlcal values of P. The values of
the parameters obtained in this way are
also sultable for the BCS approx1matlon.ﬁf

5. Discussion of the Region of Low
Angular Momentum ) :

The results of the calculations are pré-
sented in fig. 2 as graphs of. the moment
of inertia as a function of the ‘square of
the angular velocity w. Only Q= projectlon
is taken into account. The discussion of-
P, -projection is postponed to sectlon 7.
The points of the functlong(wz)are obtained
in the following (direct) way: For,glven R
the angular velocity « .equals to-1/4 .=
whereg equals to expr. (2.10) taken at the
minimum of E; with respect to Ay and Ay. .°
In order to determine the functlon 'J(w?)
from the experimental. spacing of the yrast
levels the exprs. (13) and (144) in- ref. /3
are used. The example in fig. 3 demonstra-
tes that the points of §(w?) obtained by
means of this method from ‘the calculated
values of E; agree rather well. with those
obtained 1n ‘the dlrect way. In the case of
less pronounced bb. the. agreement is still:
better.

Let us first con51der the region of low
angular velocity where J approximately li-
nearly depends on »2.The comparison of

theoretical and experimental'results in this

region permits one to get an impression to
what extend the predlctlons for high angular
momenta can be trusted. It can be seen in

fig. 2 that the calculated moments of iner-

- | 7




19 .

|
. . A B :
[ A7) O : - R TE
. . ) , O I~ L R
0900 il v H OO 8O H
‘ : , .S 30N>
O U8 © o 5y o5y
0, mv._e W W ﬂ_ N e} h.. .;, . Lol
w.m g e g B Sw_HOowoco
o . Po0g. 890 d
+ £~ 0 M o TR RTT R
Sau el N RN TR TV RSP I
H P 0 m ~ 0 0B YHYH 0.0
N Rt B w3 —~'.3 0 0 A, .
. . s a3 Hy e
S Qg o N 537 0wy .Q
SE8EaS CSENMPOEOT™
SES S N T =Rt S P I
HHAN D@ © . N0 e om0 )
rwowhcv P~ TLouswoE
i ) H D OUVYEO
O4YyPO>™No — o oYy
- m“s.a m ) S O M UMY My
VI IS Ao I - ~ 0.8 S.08"
D PHEHOP AT ~
GanSED "R Sl B EP
-y g P EQAUMA
2282 wn - 8. 0m . U,
0P 582 ! —HeT 0. 8 5 0D
rnaeie S mwﬁifwﬁﬂ;
o H m.wnadm g _.1dded‘s.a..,,r i3
i P WP JAH N O g X 0 O
SunP A : (@0 _$0U A
3 EEL o EefIIfshs
-85~ § © LU 5y e 4l
Vg A Se @@ 0.8.8 e
P T O 3:Pg~ﬂ.mnumumﬁu
RO CH QO OP OB N
WSO N (o N IR VIR =T I
A Q0 ® O >0 M0G0 0 W MYl
PE SM.Qu WS HHO0QmgH O
, ‘uor3jetodeaixe Aq paure3lqo ST 5 3RY}  —— ,Nﬁwhﬂ,ﬂwmscc
- SuUeSW SSOID 9yl Seagaym Jeg/ " 3O woxy usyey _hdf¢ Amiﬂm.ﬂﬂmﬂwws
ST 3PY3 SUBAW IeIS BYLypg FOI WOIJ USRI ‘ST > ; | e e i m,&.o@
'P93BOTPUT SSTMIBYIO FOU .JI*pTITONU Uyoes 103 QT0e3 | 60003 | wR0e3 T mscoed ,w P
P93eDTPUT ST UOTIIeTNOTED BY3 UT pasn y&m\H;qum AﬁmmAtﬂmvm v
UOTIBWIOISBP IO onTea SUL'/y ,* 3BT UT \\\ N o V|

uaATb ST sjuswrtiedxe HAUTUISOUOD
S90USI9IS9I JO 3ISTT Y 'UOTHOI
ylaes axel ay3z jo TaTonu
@y3z 103 KA3tTooraa xenb
-ue Jo @xenbs ay3z JoO
- .uoT3OUNI ® SB BT .
-I9UT JO 3Juswout .m_muc_.u\.monﬁd..u '

9ulL 'z "bra. _ vM\\\
: e

az0.3

L IR N -
e M. I»..awm )
- . = “- - - ¥

wEG2 003

w
w

AT N,

161003

g

*sor0e3 |
al




in
[~Pro-

reduced pairing strength shows (see sec-
tion 7) it is too large to be connected wit
the uncertainties the strength of pairing
is determined with. In refs./?3V correc- i
tions to expression (2.11) are proposed v i
which allow one to reproduce the experimen-
tal moments of inertia with good accuracy. o 2z
In the present work we do not further con- !
sider the very interesting problem of the S
theoretical prediction of the moment of i
inertia. Rather we concentrate on nonadia- . i
batic effects assuming that the missing -
contribution to the moment of inertia does
not depend on angular momentum. As is easil
seen a constant correction to the moment
of inertia leads only to a corresponding
constant shift of all points of J(0? along
the Sfaxis. The shape of the curve remains
unchanged. Therefore we simply compare the
shifted curves. Some aspects of the possi- e
bility that the correction to the moment of i
inertia depends on angular momentum are , r
discussed in section 7. -
The inclination of the linear part of -
the theoretical curves {(»? is mainly E
determined by the stiffness of the system
with respect to a change of A. It can be
seen in figs. 2 and 4 that the inclination
of the curves with account of ¢ -projection:
is always lower than that of the curves
corresponding to the BCS—~approximation.
This larger stability of pairing is connec-
ted with the fact that particle number con-
servation increases the pair-correlation :
energy by approximately a factor of 2 and oy T o w =
this leads to a larger curvature of. the ' - N N = e
function E, (A) at the equilibrium point. : QAMM;G]‘%?- R R R
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.The calculated value of the inclina-
tion  dY/dw? - is smaller than in experi-
ment. This does not mean any failure of
the Q-projection method, but merely exp-
resses the fact that there are important
nonadiabatic . effects besides CAP. In fig. 4
the contributions arising from the single-
particle degrees of freedom ("4th order
cranking contribution"), quddrupole and
hexadecapole deformation are added to the
value of d¢/dw? obtained in the present
work for the CAP. It is shown in ref./22/

that in the linear region the contributions

from different nonadiabatic effects simply
add. The numbers corresponding to the men-
tioned no?aélabatlc effects are taken
from ref. (The quantlty(:VIM calculated
there equals to 2d4/dw? ). After taking
into account the additional effects the
inclination of the linear part of §(o?
is reproduced with good accuracy for the
- stable deformed nuclei. The agreement bet-
ween calculated and experimental values is
somewhat better than in ref.’3%, presumably
because the Q«projection is carried out
exactly. It should be mentioned the main
contribution to d9/dw? comes from the
single-particle degrees of freedom.

.The good agreement of the theoretical
and experimental values for the inclina- -
tion in the case of well deformed nuclei
is interpreted as an indication that CAP
is quantitatively correct described by the

Q-projected BCS-function.

If the contribution of CAP to the total
value of d§/dw? is calculated in BCS-ap-
proximation, the inclination is obtained’
larger than experimentally observed. In
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this approximation the sole CAP gives al-

ready the experimental value. This coin-
cidence has often been used/8%172/ ag an
argument in favour of a descrlptlon of
nonadiabatic effects in terms of only the
CAP and the change of»deformatlon.

For the nuclei at the borders of the
deformed region the theoretical value of -

“the inclination with .Q -projection is smal-

ler than the experimental one. This indica
tes a limination of the method of ref.
Most likely the deformation degrees of
freedom are not properly dealt with.

6. The Critical Angular.Velocity‘

In order to discuss the region of high
angular momentum in- a quantitative way it
is useful to define a critical angular velo—
city wg, where the transition from the
suprafluid to the normal state takes place.

‘The quantity @ is introduced by means.

of a simplified version of the analysis-

of bb in terms of crossing bands as sugges-
ted in refs./16:39/, ' It is assumed that the
transition can be described by the crossing
of a paired band with the moment. of inertia
5} -corresponding to the ground. state, and
an unpaired band with the moment ‘of inertia
4, which equals, to the value after the
break-down of pairing. The unpalred band.
begins at. &m_h,(HI—M)+E (A=0), i.e:, at
the total pair correlatlon energy in the
ground state. A constant 1nteract10n v
between the bands is assumed. Then the ener-
gy of the yrast 11ne reads '
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L
0 ,

24, 29, " T02g, 2

Following refs. /3538  the phase transition is

1s characterlzed by the branch out

I

e2 '2 .
(BE, + o (6.2)
29, 252

in the complex e?-plane. The critical an-
gular momentum Ii, where the transition

takes place is defined as the real part of

eCl‘

” ' 25E0 o ‘ ) ‘ ‘ )
12 - ————449,. . T (6.3)
‘ 32 —Sl 142

The imaginary part of e2, ~ determines the
degree of abruptness of the transition, which
is not important for the discussion to be
followed. The moment of inertia at the tran-
sition point equals the value

dE. -1 : +
'fl*cr=%(—'—>‘f_f =l(f]1+51)1 h9, 0.851 32.(6.4)

| (,f[l+ 949)2 o2

where for the ratio of the geometric and
arithmetic ‘means a typical value for the
rare earth region is taken. The crltlcal

,angular velocity 1s given by

RS 25E (f] + 9,2 2R
(l)irz 021‘ = . 0 == 1.2'_0—. (6.5)
3cr 52_ 3l ﬂ'132 52- Sl

The critical angular velocity can directely
be determined from.the function (w2 by-
means of the following prescriptions; For

a smooth transition o is defined as
the angular velocity. at which §(«?) equals.
the value- §_ given by expr. (6.4), where
for 4, the value. of J(w?) at the end of
the linear region is taken (1nstead of the
moment of inertia in the ground state). In
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this way one can reduce the uncertainties
due to the fact that expr. (6.1l) which is
appropriate for the very transition region
does not give a good descrlptlon of the 1i-
near part of §(e?).If ¢(w?) shows a pronoun-
ced bb, it is better to determine W,

from the approximate relatlon

mcr =%‘Z_((ul +?‘)2)’ (6 6)
where ), are the turning points of the

S -shaped function J(«?) . Eq. (6.6) can
easily be obtained considering that oy
approximately equals to I.,/9y is the ratio
V/6Eg is small (pronounced bb).

The critical angular velocity is displayed
in fig. 5. An estimate of the.possible er-
rors shows that the uncertainty of w2
is less than :0.01 Mev? in the case of
a steep increase of J(o?) around Icr where-
as it may increase up to :0.03 Mev? in the
case of a very smooth behaviour of §(w?).
This is a sufficient ‘accuracy for the dis-
cussion of bb in the next section..

7. Discussion of the Transition Region

It is shown in fig. 5 that the square
of the critical angular velocity at which-
the proton palrlng vanishes lies between
0.2 and 0.3 MeVZ The systematic decrease.
of w2 within a chain of isotopes is
a consequence of the proposed dependence .
of the pairing strength on.Z and N.The
irregularities in the isotopes of Er -and
Yb are connected with fluctuations of the
level density due to the crossing of le-
vels.
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'5. The square of the critical angular velocity for the rare

earth nuclei. The line A;=12 MeV denotes a calculation with

reduced pairing strength and

0%

Fig.

N-projection.

. For almost all nuclei the neutron-pai-"
r1ng vanishes at a smaller angular veloc1ty
than the proton-pairing. The value of 2
equals about 0.12 MeV? in the whole rare:
earth reglon. The dips of a) at N=98

and N =102, 104 are- connected with local
mlnlnf ?f ‘the level. density (see also
ref. - The break-down of. neutron-
pairing 1s accompanled by bb for most of.
the - nuclei for which the-effect is observed
experimentally. (see fig. 2). However the
value of »? which corresponds: to the func-
tions §(w?) obtained from the experimental
spacings of the yrast levels equals about.
0.07 MeV? in the whole rare earth region.
Hence, bb is observed at a systematically
lower angular velocity than the value ‘at
which the break- down of pa1r1ng 1s predlc—
ted. :

This result possesses a serious: problem
for the interpretation of bb in terms of -
CAP. We shall even go one step further
suggesting that the angular velocity at
which bb is observed is not large enough ‘to
cause the transition to the nonsuprafluid
state. This®means that CAP should not be".
responsible for bb. As this. important con—
clusion is based on the magnitude of o% it
is necessary to consider the relevance of :
the calculated values in more detail.

As was - already discussed in section 5, -
the .BCS-approximation:leads to a 'lower sta-
bility of the suprafluid state than Q?pro4
jection, reflected by the correspondlngly
low value of - L_ 0.07 MeV?2 This is illu-

strated by typical numbers ‘obtained for the

rare earth region: bE =2.2 MeV with Q-pro-
jectlon, SE, = 1. 5 MeV without and ﬂ —ﬂl =

. 27 A 




=40 MeV™! in both cases.-From (6.5). one
obtains the estimates . 2 0.13.MeV? and:
mg-o 09 Mev respectlvely, which-are. some-
what higher than those in fig. 5. The. dif-~
ference-equals 0.04 MeV? close to the va-—
lue in fig. 5. The: larger pair. correlation
energy in the number conserving approach is
obvious: Q-projection corresponds to an '’
improvement of the wave function of the
paired band and therefore, leads to a dec-.
rease of the energy. The. unpaired band
remaines unchanged by Q-projection. :
We have investigated the stability Ofm
with respect to-a variation of the parame—r
ter of the pairing strength. A reduction
of Ay, to 12 MeV yields a value of w§r=
=0:11 MeV? (see fig.:5). The guantities PZ
and Py ~are reduced by about the same amount
"as Ay. Although there are some uncertainties
as to what extend effects other than pai-
ring d01nefluencethe P-values, it seems
that the: uncertainties in determining the
pairing strength should not be much larger
than the investigated variation of A,. A re-
duction of the pairing strength‘whlch is
strong enough to push- mi, :down to the
value at which bb is observed would be in-
compatible with the experimental values of
P; and Py. Similarly the discrepancy bet-.
ween the calculated and experimental values
of J(w? atw=0 cannot be' explained by the
uncertainties of the’pairing-strength be-
cause the investigated reductlon of AD
increases §(0) only by 10%. :
* The curvature of the functlonlEJAo) at
its minimum and the depth 8Ey of the minimum
are closely related. 'The " inclination .
of the linear ‘part of §(w?) is pro-
portional to the curvature/18/ as was
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discussed ‘in the. previous - sectlon the ex—
perimental value of this ‘quantity is- repro—
duced with a good accuracy:. This can ‘be-. ~
considered as an independent-indication
that our’ calculatlons prov1de “a good es- -
timate of 8Ej. - 5

As.was mentioned in sect. 5 the moment
of inertia in the ground state g, is ob-
tained smaller than observed. However, “the -
typical value Jy=60-Mev~! . for the mo- 7
ment of inertia after the gbreak-down of"
neutron-pairing seems to be of the right -
order because it corresponds to the rigid
body moment for the neutrons. If for
the typical experimental value of 30 MeV™
is taken and S6Ep is kept-:equal tp 2.2 MeV
the critical velocity increases to wii:f
= 0.17 Mev?2 ’ . a

It is poss1ble to av01d the uncertainties
in the calculation of the moment of 1nert1a
by taking the experimental ‘value of 9.+ 9y
from:the S-shaped curves. Use of the typl—
cal experlmental values §,-9,=40 Mev™ ‘ and
m%,s 0.07 Mev? (6.5) permlts orne to cal- -
culate an "experimental" energy sE;=1.5 MeV
where® the second band beglvs. 9Thls value -
is close to those of refs. obtained
from a more sophisticated“phenomenologieal
analysis). The energy of the head of the
band causing bb’isfsignificantlyfsmaller_
than the pair correlation energy for which
2.2 MeV is a typical value. Thus also from
this point of view it is obvious ‘that thef
unpalred band- lies too high to permit
a crossing with the paired band at that
value of the angular momentum where bb 1s»
observed. e : :
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Let us now consider the consequences of
the conservation of~angular:momentum. As -
was discussed ‘in section 3 the  P; -projec-
tion influence the CAP -via the correction
to .the 'ground state energy (see expr. (3.1))
and corrections to the rotatiqgnal energy:
which are. of higher order -in I°. The correc-
tion to Egleads to an increase of A for
given G.In contrast to the Q-projection -
-the quantities Py and Py calculated with -
the correction (3.1) show approximately the
same increase.as. A.(The dispersion of an-
gular momentum is almost the same for odd.
and even nuclei) . This increase of P, and
Py  must be compensated by a reductlon of:
the pairing strength. The value Ag=11.5 MeVv
reproduces in. good approximation the - Py va-
lues without corrections of the ground

. state energy. The strength of proton pairing
is slightly overestimated. As can be seen
from the example ‘in fig. 3, the curves with
and without the correction to . the ground
;state energy almost -coincide. The same re-.
sult has. been obtained for other nuclei not
presented in fig. 3. In order .to investi-
gate the role of- the terms of--higher order:
in I? fig. 3 shows ‘a comparison the func-
tlonsﬂuu% calculated from expr.. (3.4) and .
from the ground state energy (3.1) plus]z/.‘zﬂpY
(i.e., the -quadratic approximation of S
expr.,(3 4)). It is demonstrated that the:
higher order terms do not. 51gn1f1cantly
change .the . value ofmgr The same result
has been found in, more systematlc calcula-
tlons/40 “/ From the discussion.of .the - Py
pro:ectlon it.is concluded, that . the conser—
vation of angular momentum does not;lead.u
to any essential change of mir

30

The above dlscu551ons ‘have provided - -
a certain confldence in value of the.cri-
tical frequency of the break-down of neut-
ron-pairing. Mow the; conclusion.from the
beginning of this. sectlon is empha51zed._5
For the nuclei of the rare earth region
the angular velocity at which bb is. obser-
ved is not enough to ‘cause a tran51tlon of
the neutron system into the nonsuprafluid
state. Therefore the present quantitative
analysis does not confirm the: interpreta-
tion of bb in terms of CAP. (The same sta-
tement is made in ref. 15 ). ’

As -is already extensively discussed the
value of_m2cr becomes considerably largerllf
the conservation of particle number is
taken into account, because the total pair-
correlation energy is substantially increa-
sed. In the case of RAL similar. changes are
not expected because the two-quasiparticle
energies and the relevant: matrlx.elements,-
are not very sensitive to Q—projectlon.‘
This fact is reflected by. the calculated
moments of .inertia.

- RAL is .also. essential for the 1nter—
pretation of the following result of cal-
culations: In the case. of nuclei with
90< N < 94 the moment of inertia after the

breakdown of -neutron-pairing ‘is larger

than both the experimental. and the r1g1d
body value. Inspecting. the individual con—
tribution of each two- qua51part1cle state‘
to expr. (2.10)- it turns out that. the :
large value is due to the terms from the
states with K=1/2 and 3/2 discending. from
the ij3/p; - subshell. It is quite obvious
that -the- contrlbutlons from .these levels.
cannot ‘be treated by perturbatlon theory.,
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They tend to decouple from the- core keepln(
the moment of inertia small/"/. :

" From the point of view of the. alterna—
tive explanations of bb: mentioned in the
introduction the negative conclusion con--
cerning the CAP means & confirmation of -
the. interpretation in terms of RﬁL Howeve:
was as discussed in refs. 15 CAP
and RAL are only two aspects of the more
complex phenomenon of the phase transition
from the suprafluid to. the normal state in
a rotating nucleus. The transition does no
take place for the whole system at once,
rather the.pair correlations vanish first
for levels with high angular. momentum. The
‘angular velocity at which this occurs for
the 33 neutron level, is estimated’'¥
-to0 be just that where bb is observed. As
the neutrons on the depaired levels are-le
stable bound -to the rotating core they ten
to align their angular momenta to the axis
of rotation. . At higher 'angular velocity -
the pair correlations vanish .also for the
levels with smaller angular momentum ‘until
the nucleus is in the nonsuprafluid state.

With regard to this.picture the critica
~angular velocity calculated in -thos: work
represents the upper limit. for the:.existen
of pairing in the rotating nucleus. . - -
Although the results are-obtained by means
of perturbation theory, they are also re-
‘levant in the case of strong RAL. -This:can

be seen from ?he following argument: It is

shown in ref. .that near  the ground
state equilibrium deformation the ‘value -of
the moment of inertia obtained by perturba

~tion theory approximately equals to. an ave

raged value from which ‘the influences of
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shell structure are eliminated. ~Further-:
more ‘it is :shown, that. the value:-of - the
averaged:‘rotational energy is only very:
weakly-influenced ‘by ‘nonadiabatic effects
arising from the. single-particle degrees-
of freedom (for details see-ref./#2/ ).
Therefore, the critical angular Veloc1ty
can be ‘'understood as the limit for the
existence of pairing if shell structure 1s
not included in the rotational. energy. -
Shell structure may cause. a partial depai-
ring.of levels with-high angular momentum '
(”&Q neutron-levels) at w<w_,. Since the-
contributions of single- partlcle degrees

of freedom. to the inclination of. (w?)

at « =0 are larger than : ‘expected for the-
averaged rotational energy; shell struc- .-’
ture only promotes the depairing :of certain
levels. Hence, the critical angular veloci-
ty plotted on fig. 5 really represents an
upper limit for the existence of pairing

in the rotating nucleus. For- nuclei with

N =94 this interpretation is not quite
correct because the obtained moment. of iner-
tia after break-down of palrlng is larger
than expected for the averaged behav1our
(see fig. 2). .

The investigations of CAP in. refs. /843/
yield a considerably . smaller value of. m
than that. obtained in the present work. In
refs./H%/  the rotational energy is calcu-
lated by means of the simple Iﬁ-pro;ectlon
(see section 3) . As was. already dlscussed
P -projection does not. essential influence
CAP. The difference §,-4, obtalned in refs./n4Y
is. 1ndeed not far from our value. There-
fore, the smaller value of(ni,must be con-
nected with a correspondlng smaller Value of
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the pa1r correlation energy‘&ﬂ The smaller
value of J8E, 'is a:consequence of the fact
that in ref. 18/ only 2 meshpoints are taken
in order to approximate.the Q-projection
integral (A8) (In the present work 8 mesh-
points are used). In ref.’* the number
of mesh-points is increased to 4, but at
the same time. the pairing strength is re-
duced keeping A constant. As was already
discussed above such a reduction wh1ch
keeps ol approximately at value of

0.07 MeV* is not compatible with the expe—
rimental value of Py. Furthermore the small
value of 6E, corresponds to an 1nc11nat10n
of the linear part of J(w?) which is signi-
ficantly larger than the experimental va-
-lue if, as necessary, the contributions
from the single-particle degrees of freedom
are added (see sectlon 5)

8. Conclu51ons

A systematic 1nvest1gat10n of the CAP
has been carried out for' the nuclei of the
rare earth region. For the parametrization
of the pairing strength a new two-parameter-
expression is suggested which reproduces
the even—odd mass differences with a-good
accuracy. As already noticed- in-a number -of
previous 1nvest1gatlons it turned :out . 1n .
the calculations that using.a‘realistic
strength of (monopole)_palrlng the moment
of - inertia in-thei:ground state is obtained
smaller than’'observed. Although there are
several suggestions explaining the discre-
pancy ‘it .seems that :the’ problem needs’ to,
be . flnally c1ar1f1ed . :

-
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Considering only the CAP the inclination
of the linear part of the moment of inertia
as function of the square of the angular
velocity is obtained smaller than observed.
However, if the contributions from all
expected nonadiabatic effects are taken
into account a very good agreement of the
theoretical and experimental values of
the inclination is found in the case of
stable deformed nuclei. The most 1mportant
contribution comes from the single particle
degrees of freedom. As the present calcula-
tions provide a good description of nonadia-
batic effects in the spectrum at low angular
momentum they should also yield reliable
predictions concernlng the CAP at high anguf
lar momentum.

The calculations show that the exact'
conservation of angular momentum does not
significantly influence the CAP. However,
the exact conservation of particle number
turned out to be very essential for a quan-
titative description of CAP. In comparison.
with the BCS-approximation the number con-
serving approach yields a considerably
higher value .of the total pair- correlatlon
energy which is decisive for ‘the stiffness
of the system with respect to-a change of
strength of the pair- correlatlons ,

In the rare earth recion the calcula—
tions predict the neutron pairing to break-
down at the square of the ancular velocity
of about 0.12 MeV-. Although there exists
a correlation between the numbers of nuc-
leons for which bb really appears and those
for which a rapid transition accompanled by
bb is theoretlcally predxcted the .sudden
increase of the moment of inertia cau51na
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bb is observed at a square of the angular
velocity of about 0.07 MeV? noticeably
smaller than the angular velocity of the’
break.down of pairing. From this it is
concluded that the exprementally observed
bb does not correspond to a break-down of
neutron pairing. The angular frequency at
which bb is observed is not high enough to
destroy all pair correlations. Bb should
rather be connected with the depairing of
few levels with high angular momentum (i) 3/
neutron levels in rare earth region) and
a simultaneous alignment of the collective
and corresponding particle angular momenta.
"This mechanism represents the first step
of the transition from the suprafluid to th
normal state in the rotating nucleus.
Analogous to the critical field in a su-

perconductor the critical angular velocity

calculated in this work is interpreted as
the upper limit for the existence of the

‘suprafluide phase. Conservation of par-

_ ticle number leads to a considerable in-
crease of the critical angular velocity in
comparison with estimates based on the BSC-
approximation. In the rare earth region the
neutron pairing is predicted to vanish at
a value of angular momentum of about 24h whe
reas the proton pairing is predicted to
vanish between'Mﬂxandﬁoh.

The author thanks Prof. V.G. -‘Soloviev
for his contlnuous promoting 1nterest in
the work. He is indebted to Drs. F. Donau,
R.V.Jolos, I.N. MlkhallOV, L.Minchow,
N.I.Pyatov and H. Schulz for many helpful
discussions and remarks. :
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Appendix : ‘ L
For the evaluation of the matrix-ele-
ments one needs the commutatlon relatlons

QN] QN -7 QNcl QN+1’

and the relations describing the actlon of

+

¢; and c; on the BCS- function

cJ;|A,4\> = c“;ui(A,x,p LA > =y AN B>, |
' (A1)
cﬂA,» = c'u AN, >, e |AA> =_c’fv.[A,x,i>,

where i>0 andh&hodenotes that the level i is
blocked, i.e., left out in the product (2.4) .
All expressions are reduced to’the normall—
zation integrals.

ﬁ <A/\[Q 1A,/\> )1 =<A,0Li|G A /\,i> .T( <A)\ qu JA)\ iy>,

N1l
where<qsxlpmeans a BCS-function with the
levels i,j blocked. The expectation value
of H is given by

. -1
<A7N_|AHSPIA,N> =Ny <A O3 e c;‘cin|A,)\>,

g i - (A2)
<A’N!HSP‘A’N>=2§6iVi,E— ’ .

and

<A,N|P'P|A, N> = fn <A AMQy E ch~ctA )\>
i>,j> S 1]

. = o :
<A,N|P P|A, N>=n0i>§j> Vi Y <A,)\,1|‘QN_2|A,4)>\,J >, (A3)

<A, NjP PIA N>-— E) lvJuj-T(—lJ-*h Ev;‘Z

f <A, N]P+P'A N>_i>,§‘j‘>u vu!v]n Sy
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The last sum represents a renormalization
of the single-particle levels due to the
pairing interaction. As usual, this term -
is neglected.

Orthogonality of the states :|A,N,ij>
can be easily seen frpm the expression

=%
<ANGIAN 5= i)™ <N ile e o ef Gyl Aki '

Carrying out some commutatlons one obtains

<A N,ij|ANi% > = (T( T( ‘ ,) & <A,)\,1]|ci,cj cicj'QN—ZlA"\’lJ’

IRV N
. [Bjj’ .-(ﬂij?li,j,) <A,)\,1]|cj,c].QN_JA,/\,1J > - (A4)
% ey + s
—5 A Lr .'—(?Iijﬂi,j) <A,)\,1jlc}’ciQN_2|A,')\,1 i>1.

From eq. (Al) follows that the creation
operator applied on the blocked BCS-func-
tion on the left hand side either gives
zero .or is changed into a annihilation ope-
rator of the time reversed state. As only
the case i£j is considered this operator.
commutes with all other ones and gives
zero acting on the blocked BCS-function on
" the right-hand side. Thus, orthonormality
is shown. Following the same arguments it
is obvious that <A,N,ij|AN>=0if i £ j
As Hg, is a diagonal single-operator it
can be shown in the same manner as for the
states that nondiagonal matrix-elements va-
nish. The diagonal ‘term reads -

<A,N,ij|H |A,N,ij>=e.+<.+)17.‘<A,A,ij|u 2 _2|A,A,ij>.(AE |

_In ‘the case of the palrlng 1nteractlon new
terms arise from the commutator [P, CJ =c7
However, the operator et gives zero- actlng
-, on the blocked BCS—functlon on the right-
.38
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hand side. The same argument is valid’ for pt
and the BCS-function on the- 1eft hand 51de.
The dlagonal term reads -

<A N,q[P PlA N,ij>= Tf <A t\ IJ‘P PQN 2IA )& IP.(AG)
Hence the "two¥qua51part1cle energy" equals

Eii=e teg +E (N 2) L (A7)
whereEﬂ@Lm means the ground state energy
of a ‘system of N-2 particles with the le-
vels i,j blocked. The corresponding expres-
sion can be easily obtained from egs. (A2)
and (A3) if the levels ij are removed from
the sums and the normalization integrals.
Applying‘eq. (Al) to the matrlx element

<ANR]U IA-N> (T( T()_ </\)&11le |,,r. c,[/\/\/
i ;

one gets ; »

<AN, 1] 1A NS - (‘nij'nof’ »

x X A <AL, i_il(_f‘N'_zc. € i(j ;‘mc.f,c * -i ix' (':» c;» HAA .
i% i >

From the orthogonality of the states A, Vﬂ]

follows .

) PR :
AN AN =) (av—u v )T (A8)
¥ :nO Cohi -ij -
where the convention-i=i.i- 0 is used. As
J, generates from i\.N. only the states!A, NLij>
and N - is diagonal within this set, one
gets

. N ‘7 }'
<N, ( 1)3 1A, \>T ]?F, g-'_A\,‘N,ajl.lr\'{._\_,N>’;2(: i) . (n8)

By means of eqs. (A7) and (A8) one immedia-
tely obtains expr. (3.3) .
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. In order to .evaluate the normallzatlont
1ntegrals the 1ntegral representatlon/“/
‘of QN is applled-' - . »

——fd(]ﬂ i (N - N)l

where N denotes the operator of partlcle

‘humber. A stra1ght forward calculatlon pro-
V1des_ :

T( = ——f d¢el¢N Il (u® +’v e 2l¢) . (A8)

The ' form of the other normallzatlon 1ntegra
is obv1ous.‘In the - .calculations. the integra

is approx1mated by a 1f1n1te sum over equi-
.dlstant mesh—p01nts.

As is shown in ref. /“/ 2" mesh p01nts:
ensure that all admlxtures correspondlng tc
N + AN, 0<AN<2v+! are eliminated. In
practlcal calculations v =3 . turned out to -
be suff1c1ent A further increase of v does

not lead to any s1gn1f1cant change of the
results.
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