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I. INTRODUCTION 
..J 

The multipolar form:(MF) of quantum elec~rodynamics of bo­
und charges has been suggested by Power and Zienau/ 1/ and was 
developed in subsequent papers, see, e.g. ,12- 9 /. 'in this form 
the inte~action term may be expa~ded·in a series of electric 
and magnetic multipoles (moments) of atoms or molecules. The 
form' can be obtained from the Coulomb gauge- electrodynamics by 
expressing its total Hamiltonian in terms of:new electron' and 
photon operators. They are connected with the Coulomb gauge 
operators by means of unitary. transformation, 'see 'below Sect.2. 
I generalize here the form of the transformation given by At­
kins and Woolley/2_, 3/, see also/ 4 -:9 1.· Usually MF is defined · 
for the nonrelativistic QED, but iJ;. can be also defined for·. 
the relativistic case (interacting Dirac and photon fields/_7/. 
The mult,ipolar electron operators have the important property . 
of being gauge-invariant in a specific sense, see Sect.2. This· 
property is used he~e_as the requirement defining MF. · 
. M~ has calculational advantages and is widely used, mainly 

in the electric dipole approximation when the interaction is· · 
reduced to the well-known tern. eqE. Examples. ·are the. multipho..:. 
ton processes, ·see, e.g. ,/10 and ch. 12 in/ 11/;. the quantum 
theory of moleculesls,~l; the laser theory/-11,12/; other col­
lective effects in systems of N;;:; 2 atoms or·molecules, e.g., 
superradiance, see/13,1 4 /; quantum electronicsl1s,1a/.,For 
many_applications it ~s important that.~F does not contafn·ex­
plicitly interatomic Coulomb. interactions, see below Sect. 6. 

· B~t this ''advantageous formalism has deficil'!ncies which are 
discussed and overcome here. ·The first one is that. a divergent 
term is present in the multip-olar Hamiltonian. It is an opera~ 
tor and this presents a real trouble·. C-number divergent. terms 
ari~e alreadywhen one is dealing with free field Hamiltonian 
and do not represe-nt a serious problem. This operator 'term is 

·written usually in the form fd3 xlpL(x)l2 and is denoted here 
by !t_, see Sect.2. Another trouble is that perturbation' calcu­
lat~ons with·the multipolar interaction reveal new additional 
divergencies as compared to those which. arise in the.Lorentz · 
or Coulomb gauges. The _relation.between 'these. two troubles is 
discussed in Sect.2. I suggest in Sect.3 a regularizati~n of 
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the above..:men'tioned unitary transformation·~ This regulariza­
tion removes all additional divergencies of UF. Stress that it 
is not the Hamiltonian which is regularized but the transfor-: 

' mat ion operator. It is shown in Sect. 4 that the regularized :MF 
has the same ultraviolet divergencies as the Coulomb gauge 
electrodynamics. . . . . 

Electric dipole (long-wave length) approximation needs some 
additional c~re in the·· regularized MF. It is demonstrated in 
Sect.S that our regularization must be sufficiently soft in 
order the electric dipole interaction has the same form eqE as 
in the usual MF. Under the same rest~iction it will-be shown 
in.Sect.6 that the regularized MF along with the usual MF has 
no interatomic Coulomb interactions. 

2. MULTIPOLAR HAMILTONIAN AND ITS DIVERGENCIES 

2.1. Consider the nonrelativistic spinless charge (elect­
ron) bounded by a potential V(q) and· interacting with .the· qu­
antized electromag11etic field. In the .Coulomb gauge .its;Hamil­
tonian is 

1 .... ... ... 2 ... 
H = --[p-eli(q)l + V(q) + Hph• 

2m 

1 3 ... 2 ... ... 2 ... 
Hph = 2- fd x[Eil.. (x) + H (x)l. 

... 
divA 0 ; ( 1) 

(2) 

One can verify that H is invariant .under the following gauge 
transformation: -
-t-+ -t-t ....,. _, 

A(x) ... A(x) + vx(x), 
.....,. -+ -+-+ 

P ... P + e V x( q) • (3) 

Some comments concerning 'this transformation must be made. 
a) It is the transformation of· (electron and field) opera:.:. 

tors, as is adopted in relativistic spinor electrodynamics •. · 
Sometimes, one uses the wave function transformation'· · . ' · ·· 

-t -+ -+ • _. ...... ....,. 
1/J(q, •• ._) ... 1/l(q, ••• )expiex(q) ' 1nstead of p ... P+ ev:x~:. ' 

b) X and q values in eq.(3) must belong to a bounded simply 
connected space region W, .,..not_,to all space. 

The reason is that A :-- A.+ V X must conserve A transversa­
lity, and therefore, one must have ~x(x) =0. If the equation 
holds everywhere and,the harmonic 'function x vanishes at infi­
nity, then x(x) =" 0. One' assumes that W contains the region 
where our electron is localized. Owing to this peculiarity the 
transformation was,..call ed .. quasigradient (quasigauge) in/7 ~ ~·;An . · 1 l}ul.t;;:.r ,,·L<ll ,r.'ll.rnry~ "'' 

' -c.~-. J,. " r. ~ .,f"d ' ~ tll!.~.:,!:;::· :'~': :~~Jonunil 1 

f t:"Vi::;~J'H.·!dl EKA \ 
.,...., .. -"f. ...,.,___ .,. 



example of such a transformation was discussed in Sect.4.4 
of that paper. 

2.2. The Hamiltonian (I) has the deficiency that its atomic 
part HA= p2 /2m + V(q) is not invartant und~r (3). Therefore, 
HA can be named the nonphysical operator. To remedy this, let 
us introduce instead of the canonical variables li, p, A (x) , 
;t. ( .... ) ... .... • .l!i.l x other operators q', p',... such that the new atom1c Ha-
miltonian H_A (p', q ') will be quasigauge-invariant. If the old 
variables 0 and new ones O'are connected by the transformation 
0' = s-1 OS, then the new oper'5.tors will have canonical commu­
tation relations. One can therefore assume that it is the new 
operator p' which describes the observable electron momentum. 
Let us consider 

4 ...... q -t-t ... 

S = S(q,A) = exp[ -ie ( d£A(e)]. (4) 
r 

The integral in eq.(4) is taken along a line connecting the 
points r an1 q , ~ being the centre of the potential V((i). For 
details see 2 , 3 , 8 and Secti3 below. 

The transformation 0' = s-1 OS with such S is the usual 
transformation leading to the multipolar Hamiltonian, see, 

/2 3/ e. g.' ' . ........ .... ....,. -+ .... 

AsS depends on q and A only, we have q'=q and A'= A 
Using 

eABe-A= B +[A,B] + ~-[A,[A,BJl+ .•• 
2 

one obtains 
... - 1.... .... .... q ........... 
p' = s- pS = p- e<yfrd£-A(0, 

q 

' ... .... q .l .... .... 
E.lm(x) = E.l (x) + e ( ~ d£ 8 (f-x), m,n = 1,2,3. , m · r n n nm 

To calc~late (7) I used 
... .... .. L .... .... 

[An(O, E.lm(x)] =-IDnmC£ -x), 

.... .... -:-1 .... .... (3) .... ... - ...!__ .i_ 1__ 1 e - x 1 
c:-.L (£ - x) = 8 8 (£- x) - 4' ao iJx 
o nm, nm T7 . '-n m 

(5) 

(6) 

(7) 

(8) 

.Now let us show that p' is invariant under the transforma­
tion (3): 

. . - . a q .... . .... -· -
p' ... p +eiJx(q)/iJq -e"'"- f ~ncte~[An(e)+iJxC£)/iJfn]= 

m m . . m nqm r 
a . .......-

,:.:, p - e --- fq de A = p' ~ 
m iJqm r m 

(9) 
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Here, we used the equation 
q-t-t...... .... .... 

(r di'-Vx(f) = x(q) - x(r). 

Using eqs.(6) and (7) one 
eq.(l), in terms of the new ... .... ....... ... I I P'+e.\i'(dfA for p, etc. 6 • 

(10) 

can write the Hamiltonian H, see 
operators, i.e. substituting 

H = 2~ (p'- ea(q) lz+ V(q) + H;h +'e frq!.ncten'E_(n(f) + P.l ~ (II) 

.... -+: -i' -to -+ . ' 
Here Hph is the same functional of E..L and H '=H as Hph(E.l,H), 
see, eq. (2); 

a<~) 
.... .... ... q ....... 
A(q) -v qfr d£A., (12) 

.... 
The operator d can be represented in terms of the magnetic 
eld/ 3

,
7
/. The last term P.l in eq.(II) originates from 

.!...p~ 2 (X')ct3xwhen eq. (7) is used 
2 L 

2 .l -> .... 

fi-

p 
j_ 

:_!. rqcte rqcte' 8 <£-£'). 
2 , r m r n m,n ' ( 13) 

m,n 
.... 2 .... 

The atomic part is now HA.= (p') /2m +V(q) and is quasigauge-
invariant because~- is, see eq.(9),. 

2.3. The term PL will be calculated in the next se~tion for 
the case when the integral in (4) is taken over the straight 
line connecting r and q. The result can be represented as 

e2 .... .... oo 

4lq -r I r kdk T7 0 , 

. .... .... 
i.e., the most divergent part of P.l is proportional to lq-rl 
so .... P.l is the operator of the same type as the potential energy 
V(q) but it is quad/atically divergent. :. . 

Power and Zienau 1l dealt with this divergency in the fol­
lowing manner. Despite the fact that PL has the same nature as 
V(q) and is larger than V(q) , they included P.l in H'int leaving 
V((i)in H_A: H= HA_ + H~h +Hint. Then, they considered the most di'-

vergent part of the radiative correctio~ L1Em to the energy Em 
of the atomic level m resulting from eqE in the second order of 
perturbation theory. It turned out that the part wascan~elled 
by the contr}b~tion to Em resulting from P.l in the first order. 
Woolley (see 5

, sect. VIB) noted that Power and Zienau have 
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done the calculations in the dipole approximation'which is not 
legitimate in this ca~e. He used e foq (df.El.) instead of eqEl. 
a~d singled out from ~m the .. most divergent part equal· to 
(-1).<m1Pj_ lm>, and therefore, cancelled by!]_ as before. 

So in thi~ illogical,way the most divergent part of the ra­
diative correction to 'the level energy is compensated by the 
divergent potential-like term Pl. of the multipolar Hamiltoni­
an. All these divergencies are quadratic as compared to the 
most linear divergency of the Coulomb gauge nonrelativistic 
eTectrodynamics I 17 I. · ...; : . 

One may infer that it is the transformation operatorS, gi­
ven by eq.(4), which is the cause of this additional MF diver­
gencies. Indeed, I shall show in the next section that a re­
gularization of S removes them. For this purpose, it is suf­
ficient to consider the above simple case of nonrelativistic 
Hamiltonian (I) or (II) because all other cases,· including the 
relativistic one, contain the same divergent integral Pl., see 
e.g.l7 1, Sect.2. 

' 3. REGULARIZED MULTIPOLAR TRANSFORMATION 

. ~3i I. The integral in eq. (4) for S is taken over a fixed 
line connecting the points r and q. The line~can be represen­
ted, e.g •. , by the following vector function f(a) of a para-
meter a '" . · 

.... 
, I-t '; -t -t ...... 

f ::r +a(q-r) +v(a)s, O::::a:::;:1. (14) 

Here the c'ontinuous function v(a) must vanish at a =0 and a= 1. 
Then, t;.. r at a= 0 and l =<i at a= 1 • To define the line a vector ... 
sis introduced in addition to? and a. see fig.!. 

I 
r· .. 

// 

J ::·-~lq-"f\ 

- ........... 

' '\ 
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_Figure I. The line of inte­
gration is dashed. 
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It can be shown that 
curve if t'(a) = a(1 -a) • 
line when s = 0 • 

f(a) is a second order algebraic 
The most simple ~~ie·i~-·the'sti~ight 

I suggest the following generalization:.an averaging .over 
a set of lines is taken instead of choosing one lirie. The fol:_ 
lowing set is taken: v(a) is a fixed function and s runs thro~ 
ugh all three-dimensional vector space, J.L(S) being a ~~asure . 
of the.particular values. So the regularized multipolar trans-

formation is 

3 ... q-+~-+ 

SR = exp[-ie fd StL(S) lr dfA(e)) • ( 15) 

The new electron momentum operator is now 

... -1-> ... ... 3 ... q ...... 
P'=,Sk pSk = P -eVqfd Sf.l.(S) fr df·A. 

It remains to be invariant under (3) if 

3 -
fd SfJ.(S) = 1, (16) 

Now for multipolar Hamiltonian one obtains eq.(l I) in which 
f q... must be replaced by fd 3 s f.l.(S) frq ... (and analogousLy in eqs. 

c{z) and ( 13)). In particular, the regularize.d Pl. is now 

e2 -. ... ..l. ... ... 
P, =-

2 
fct 3sJ.L(s)fd 3 s'J.L(s')~ fqdemrqM~o;nce -£'). 

.._ m,n r r 

3.2. Tb calculate P. we replace s;n in eq. (17) by j_ 
j_ -t ... -3 3 2 -t - ... 

8mn(e-e') =(217) fd kU>mn -kmk/k )expik(C-e) = 

-3 3 A _, A ... _, ~ -+ • 
= (217) ( d k ~ Pm(k)£n(k)expik(e-e~), 

A= 1,2 . 

( 17) 

"'1 ... ...2 ... -.1 _, 
where c (k) and c (k) are two unit vectors, such. that (E k) = 

->2"' ->1->2. • • • = (c k) = (c c 1 = 0 • Chang~ng the order of ~ntegratwn we· get 

e2 

p j_ = 2(217) 3 (18) 
3 A ... 2 

f d k ~ I c mBm ( k) I , 
A . 

-t-+ _, --t -t 

-. 3 - q · _,,. ikr 1 i)!.(q-r)a 3 -
Bm(k) '% fd Sll(S) fr dfmexpikC = e f0dae . - fd ~ll(s) x (19); 

x[qm- r + v'(a)s ]eill(a)i( s m m • 
7 



Eq.(14) was used along with 
-+ --t - --t --t . ' 

d£ = [(q- r) + v'(a)s]da. 

Now introduce the Fourier transform of p. 

-~ 3 -t _,.__. 

p.(u) = fd sp.(s) expius. (2Cl) 

Let ;(i) depend only on !il. This means that SR depends only 
on q and 1 directions. Then, ~(ul/ also depends only on !ui and 

... 
3 ........ 1 a- k-

fct S~-t(s)smexpivks= -.- ~-11(vk) =-i-ll'(vk). 
lV akm . k 

Here and below ~(vk) stands for ~(I vi k ). 
Now we note that expression (21) which enters into 

does not contribute to P.l because (-;A k) =· 0. We have 
--t -t --t --t --t 

A .... ikr ->A .... .... 1 iak(q·r)-
IfmBm(k)=e f •(q-r)J dae ~-t(v(a)k). 
m 0 

Using I)l.f~f~= 8mn -kmkn/k
2 

one obtains 
-+--t -t-+ 

(21) 

eq.(l9) 

- (~)211/ daeiakx 
k 0 

2 
p =-e oc2'·. 

.1.. 2(2;)3- ro k dk fdcos8d¢[x2 ~(vk)\ 2 • (22) 

,-; ' -t --t 

Here x = q 
and ( 16), 
ight line 

- r. If we choose ~-t(s) =o3 (s) or. j; = 1, see eqs. (20) 
then SR becomes the nm;regularized S with the stra­
of integration. in this case 

p 
.l 

+1 . 1 k t . e2x 2 2 2 sm2 x 2 
--- fk dk r dt(1- t ) [-----1 = 
2(2rr) 3 · -1 ..!.. kxt 

2 

V.kx 

= e2x2_Jk2dk r dr~[1-(~)2H sinr 12;; 2e2liL/"kctk...!!... 
(2rr) 2 

0 
kx kx r (2rr)2 0 2 

(23) 

Only the most divergent part ·of PJ. is retained here. This 
res'ult has been used for the discuss1.on in SubsecL2.3. 
. Now ~et us show that P.l can be made finite by choosing su­
l.table ll and v(a) in eq.(22).Let 

8 

~ 

l 

jl(tlk) =exp(-bv(a)k), b > 0, 

v( a) 

1 
n 

a ' 

1 
(1-a )n 

1 
0::: a~ 2• 

1 2 :>::a·.~ 1, 

n=1',2,3, ••• 

Then, one may evaluate lfda .•. j in eq.(22): 

1 ........ ~ 1 -
I f

0 
daexpiakx~-t(v(a)k) I.:;; (0 dal~-t(v(a)k) I= 

(24) 

(25) 

), 

112 1 1 l ·.! n . n ·2n Ln·1 ·z·. ··n 
( daexp(-ba k) + ( daexp(-b(1-a) k) = ---- J z e dz, L=2 .. bk. 
0 112 (bk)n 0 (26) 

1/n 
The change of variables z = bka was made. The last integral 

in eq. (26) tends to (n -1)! as bk .... oc • We see that the integral 
(22) converges surely at large k if n ~ 2. There e;_ist other 
examples of ~(vk) which make P.l finite. 

3.3. Regularized multipolar H.amiltonian with the chosen ll 
and v(a) now does not contain a divergent operator term. Being 
finite P.L can be now interpreted as an "intramolecular poten­
tial energy", see Ref.4 p.238 and ReL9, p.2639. The approach 
by Power, Zienau and Woolley discussed in Subsect.2.3. becomes 
quite legitimate: as lj_ is finite and proportional to e2

,• it .. 
can be considered as a small perturbation- term. But simultane­
ously the approach proves the finiteness of the radiation cor­
rections to the level energies which are due to the interacti­
on term 

3 q ........ .... 
e (d S~-t(s) ( cteE'(E). 

r .l 
(27) 

Then, a natural question arises: are all radiative corrections 
finite in the regularized MF? It will be shown in the n~xt 
section that ultraviolet divergencies in the regularized case 
are exactly those as in the Coulomb gauge; · ~- •; !,: · ·' 

3.4. Another·possible generalization of the transformation 
s is. to perform a~ averaging over a se't of points r , r~pla~irig 
fq··· by Jct 3rm(r) fq ... , see'Sect.3.3. in/7/. It can be' shown 

-thrat this' averag'ingrby itself canr,wt mak~ p..~.·: finite.' 

4. ULTRAVIOLET DIVERGENCIES IN THE lillGULARIZED 
MULTIPOLAR FORM. 

Besides (27) another interaction term in the regularized 
multipolar Hamiltonian is 'g 

i ~ ' 



.......... _, ............... 2 ..... 2-+ 
- ~m [ P, a ( q ) + G' ( q) P , 1 + ;ma ( q) • (28) 

~ ... ... ... .... 3 q ........ "' 
u(q) = A(q)- Vqfd s/l(s) frdeA(£). (29) 

Let us show that the part of the interaction (28) which 
contains Vqf ... gives finite radiative corrections as well as 
(27). For this purpose insert in V f ... (see eq. (29)) the stan-

• q dard expans1on 
"J ........ ~ ..... 

.... .... -3/2 3 -112 .... .:~. .... ;1-e + -ike 
1 A(f) = (2rr) fd k(2k) !.:~, f (k) [akA e·' + ak.\e • (30) 

and use (14). Fuither ~alculations are similar to those, given 
in Subsect.3.2. for f'.\B (in particular eqs. (20) and ({>It{)= 0 
are used). The result can be represented as follows: 

Vqfd 3s~t(s) frqdeAcl) = 

·3/2 -112 -.\ ik; 1 iah ~ 
= (2rr) (d k(2k) 2.:~, f (k) [ak.:~,e (

0 
dae /l(v(a)k) + 

-+--+ ..... -io 

+ -ikr fld ·iakx -( k)] 
+akA e ae /l v 

. ·3/2 3 -112 -+ -.\- ikr' 1 iaki' -
+ ( 2rr) . f d k ( 2k) 2 .\ k (f' • x )[ akA e (

0 
ada e /l ( v k) + 

-io...... ..... ..... 

+ -ikr 1 ·iakx ~ 
+ akA e f ada e /l ( v k ) ] • 

0 

(31) 

Here.\ i,;, q- r . We see that (31) contains .... the transversal 
. part ~ 1 along with the longitudinal one ~k. Compare the obta­

ined expansion of Vqf ••• in akA• at.:~. with the ex_p2-nsion (30). 
The forme!"__,contains two form factors fdajlexpiakx and 
(adaj:Lexp'iakx • The first one can be made less than any inverse 

power of k when k .... "" by a suitable choice of jl(vk) , see Sub­
sect.3.2. above, eq.(26). The same can ... be prov~d for these­
cond form factor. Therefore, the part· Vf of the potential jj ... ... 

u =A- V f cannot lead to divergencies in the radiative correc­
tions~ Their divergence is due entirely to the term A in a .... .... . 
u =A- V J, and therefore, is exactly the same as in the Cou­
lomb gauge._ 
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5. ELECTRIC DIPOLE APPROXIMATION 
IN THE REGULARIZED MULTIPOLAR FORM 

In the usual MF the interaction term_, efl\UE_L ···tur:ns into 
e(q-1) Ej_ if E{{f) can be replaced by E' (r)_ (remind< that r 
is the centre of the potential V(q) bounJ-i'ng the electron). 
The replacement can be justified for the matrix·elem~nts of 
the. type. d{.A,mjef~qdfE_l (e)in>if ato,:nic states~ ar1d~m a:elo:­
·cal1zed 1n the reg1on of i q- i"! values whose d1mens1on 1s of 
the order cf the atomic ra'dius a and if photof!_momentum k is 
small, so that ·k:J: «1. Iri th.e HF one must 'impose the additionaL 
restriction: the line of integration must not go beyond the . . _, __,. 

reg1on a, see f1g. 2, because k! e -r 1 << 1 may be not true for 
!l -r I »a. I 

In the regularized MF one-must require that /l(s) should' 
suppress such lines as shown in fig.2, i.e., suppress large 
! s I. For this purpose the parameter b in eq. (24) must no_t ex­
ceed a. Note that /;(u) = exp(...:.bu)' ~brresponds to ji(s) 
= b[ 17

2(b2+ s2)} ·! 'Under this additionilf requirement one has 

3 q ........ .... .... .... .... .... 3. 
efd s/l(s) frdPE_{(P) = e(q-r)E_l_ (r) fd ~/l·(s) 

) . ~ ;, 

' 
.......... __,. ..... 

e(q- r) E_l_(r )•.·· 
" 

because of)eg.(l6).· 

So the regularized MF has the usual main interaction term 
e(q -r) El. for low-energy photons if the regularization is suf­
ficiently soft: 0 < b <a. I should stress that for hard photons., 
the interaction (28) is ~mport·ant. In part'icular it ~ust•' b~ · 
taken into account when calculating radiative corrections. 

,t 

6. INTERATOMIC COULOMB INTERACTIONS 

It is known that in the usual MF there are no Coulomb in­
teractions1betweln electrons of different atoms or molecules, 
see, e.g~, ,

3
•

8
•

9 
• Let us show that this is .true. also in regu-

larized ~F provided t~e regularization is sufficiently sof~. 
The proof will be given for the simplest case of several neu­
tral atoliis, each atoll)- having one electron. In the ·coulomb ga-.. 
uge the related Hamiltonian is ··" 

N • 2 
1 -• .... .... 2 .... .... e · 1 H 

H = 2 -[pJ -eA(qj)] ;t 2ij Vij (q i-rj) + 8- 2ij 
1
_, _ ... I+_ ph" (32) 

j = 1 2m " ,q i qj .· . 

11 



/ 
/ 

I 

/ 

/ 
/ 

, __ _ 

,/'\_ q . , . v~ 
"r / 

/ 
/ -

~ Figure 2. The line of inte­
gration is dashed. 

Here ~ is the centre of the j-th atom. The related regula­
rized transformation to the multipolar form is realized by 

N' . 3 qj -> ... -> 

SR=exp( -ie ~ (d s. Jl(S.) ( deiA(ej)] 
j = 1 ' J J rj 

(33) 
~-t ~ -t -t 

fvri+a/qi-ri) +v(ai)si. 

One may use the same averaging function Jl for different 
atoms. In analog~ with Sect.2 I write (J2) in terms of the 
operators Pj = s· PjS' etc.' instead of the old ones. One 
obtains ~ 

. 1 -> , -> -> 2 . 3 qj' -> ->, -> 
H= I. 

2
-[p.-effJ(q.)] -el.fd sJJ.l(s.)f df.E (e.)+ 

J m J J J J r. J J 
J 

, . -> -> e2 ... ... -1 
+ Hph + l iJ ( P J.) iJ + l iJ V iJ ( q i - r J) + -- ~ iJ I q i - q J. I , 

8rr 

-+ -+ __. ... 

ct.(q.) ,A(q.) 
0 J J 0 J 

-> qj ->-> -> v.r deJA<eJ). 
J r j 

2 q i q 0 0-> - -> 

(P.L)ij"' ~ (d3 s 1 J.l(s 1)fd3 sjll<sj)lm,nfr. dr{mfr.JdtJ~ Bmn(£ 1-ej). 
0 1 J 

new 

(34) 

(35) 

(36) 

The terms (P.L)Jj were discussed previously~ Consider the term 
(P.t.)ij with if, j. Using (8) I represent it as Pij -(111 )ij, 

where 

p . e2 . 3 0 • 3 qi q j ... .. (3) ... ... 
1J=2fd S.J.l(S

1
)fd S~J.l(S~)f ( de.de~o (f.-fj), 

' 1 J J r i rj 1 J 1 
(37) 
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2 3 a q · Q. - a a .... - .. -1 
(PII) .. =~-fds.J.L(so)fd sJ'J.L(s'J)lm/

1
df1mf·Jdfj-ae .. an'~_lf1 -fjl. 1J g77 1 1 , r. r. . L 0 

1 J 1m Jn , 
Let the function J.L(S) ·be s~pported in the volume whose di­

mension is of the order of the atom radius a. Suppose that 
distances between 'atoms are larger than a. Then, th~ argument 
of a<3>.(11 -fj) in (J7) cannot be zero and P 1j=O~for_i;J. j.' 

To calculate (pll \j I use the equation of the type (10). 
Then 

~ 
m,n 

r q 1 df r qjdf , -_}_ _a_ 1 e"' - t 1 = 
ri m rj n Ol'm ae~ 0 

1
-> -t -1 ... _, -1 -> ... ,-1 !"' _, -1 

=r.-r.l -lq.-r.l -lq.-r.t +.q.-q.j. 
1 J 1· J J 1' 'I J (39) 

The r.h.s. of eq. (39) does not depend on s
1 

and sj and one 
can use (16) an,d obtain that (PII ) 1j is equal to the r.h.s. of 
eq. (39) multiplied by e 2; Srr. The last term in (39) annihilates 
with the corresponding term e 2/8rr jq i .:....qj I_ in the Hamiltonia~, 
see eq.(34). The sum li,i•jof the second and third terms in· 
(39) annihilates the sum l.-'ov.J.(q 1 -rJ·), see eq.(34), if the 

• 1rJ I -;t ... 2 . 1-> ... I potent1als V1J are Coulomb: V1. ( 'ii -r i) =- e /4rr. q i - rj (one 
must .suppose that the nuclear c-harges are equal to unity, · 
i.e., that atom as a whole is neutral). So all Coulomb inter­
actions' are absent in the multipolar Hamil toni an. (34); In the 
multipolar formalism an atom can' change the stat~ of another 
atom only by means of photon exchanges. 
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Note added in proof 
''I 

An_. example of regularized potential_.R may be of interest. 
. . 1/2 . . ~ 

Let v(a) =(a/8) at a<o, v(a) =((1-a)/8) 2at 1-o.<a.$.1 and 
v( a) = 1 , when. 0 <a < 1-8 . Let j.i( vk) be represented by eq. (24). 

·Then in the limit 8-. Q,p can be represented by eq. (22), where . .. . . l. . 

1 · 2 -- 2 k'x- -2 --
1 fo' da ••• j = exp( -2bk)[sinkx/21 [-1 ; kx = kxcos e . 

. 2 

The result of integration fdcos8 in eq. (22) contains integ­
ral sine function Si(kx) in addition to usual trigonometric 
functions, but all the subsequent integrals J;'dk... can be fo­
und in tables of Laplace transforms. The exact result is 

' 2 . 
I . p 2e I[ x 1 1 x 1m = - -- + - arctg-
8.-.o• l. (2rr)2 (2bf x 2b 

,Thisreduces to e2x2/(2rr) 2 6b 3 

·--+ 1/x 1 , when' x ~» b . 
-,._~--..... , 

The term 
( p .l) iJ ' 

where· 

pij 

l 

' 

.. f 

1 -2bl,x=l<i-r\. 

e2 x 2 
' 

when x « b , and to ~ --2--+ 
. 4ir (2b) TTb 

I, 
: <~' . 
"· 

\( !· 

Wl1p0KOB M.fl1. 

PeryllRpl13aU11R MYllbTI1nOllbHor;i QJOpMbl 

KBaHTOBOr;i :meKTpO,!:li1HaMI1K11 

MyllbTI1nOllbHaR !flopMa KBaHToeo,;i 3lleKTPOAI1HaMI1K 
H·a nay3pOM, 311eHay 11 ,!:lp, 0Ha W11pOKO 11C.nOllb3yeTCR ~ 
Bbi'!I1ClleHI1RX, HO 11MeeT He,[IOCTaTOK: ee raMI1llbTOH11aH C 

LUI1r;iCR onepaTOpHbl,;; 'llleH. n?KaJaHo, 'ITO 3Ta paCX0,[\111\ 

ycTpaHeHa. peryllApi1JaU11er;i yH 11TapHoro npeo6paJoeaH11R 

A11T KylloHoeci<ytO Ka11116poeKy e Mylli.TI1nOllbHYIO !flop~ 
· peryllRp1130BaHHaA Ta~I1M o6paJoM MYllbTI1nOllbHaA QJo 
YllbTpaQ111omiToeble··paAI1aul1oHHble pacxoA11MOCT11, 'ITo 11 

e KylloHoecKor;i Ka.h116poeKe .. YcTaHOBlleHo, ~To sJai1MOAe 

QJOTOHaMI1 Oni1CbiBaeTCR 06bi'!HbiM 3ll.eKTp11'1ecK11M ,[111n011 . . "' . 
11 'ITO Me>KaTOMHble KYllOHOBCKI1e B3ai1MO,[ler;iCTBI1R OTCy 
o6bi'!Hor;i MYllbTI1nOllbHor;i QJOpMe. 

Pa6oTa BblnO~HeHa B na6opaTOpl111 TeopeTI1'1ecKor;i QJ11< 

IJpenpHHT 06'beAHHE!HHOro HHCTHTyTa R,[lepHhiX HCCne,[IOE 

Shirokov M.l. 

Regularization of the Multipolar Form 

of Quantum Electrodynamics 

The multipolar form of quantum electrodynamics has t 
Power, Zienau et al. It is widely used in nonrelativistic calcu 

deficiency: its hamiltonian has a divergent operator term. 11 

divergency can be removed by a regularization of the unita 

which converts the Coulomb gauge into the multipolar fom 

multipolar form is proven to have the same ultravi~let radiat 

the Coulomb gauge electrodynamics. It is alsodeinonstrate< 

tion with soft photons is represented by the usual electric di) 
interatomic Coulomb interactio~s persist to be absent. 

The investigation has been performed at the Laborato 
Physics, JINR. 
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