


I"INTRODUCTION‘ S
' The' multlpolar form (MF) of: quantum electrodynamlcs of bo— o
und charges ‘has been" suggested by Power' and Zienau 1/ and.was .
'developed in Subsequent papers, see,'e g.,/z‘
the interaction term may:be:expanded in a ser1es ‘of electric
-‘and magnetlc multlpoles (moments) of atoms or. molecules. The
form can be obtained from the Coulomb gauge electrodynamlcs by
expressing its total Hamiltonian:in terms of ‘new electron and
“photon operators.kThey are: connected with the Coulomb. gauge
operators by means of unltary transformatlon see below Sect. 2.

I generalize here the form of. the* transformatlon g1ven ‘by: At—5~5".

~kins and" Woolley/2 3/ see’ also/““ .. Usually MF is deflned
;for the: nonre1at1v1st1c QED but it can be also defined for

the re1at1v1st1c case- (1nteract1ng Dirac- and photon f1e1ds) 7/
The multipolar electron’ operators have the 1mportant property
of being " gauge—lnvarlant in"a Speclflc -sense, see Sect.2. ThlS
property:is-used:here as the requ1rement defining MF.,;,_p“

. MF. has ca1cu1atlona1 advantages and is widely used, ma1nly
in the. electric. d1p01e approx1matlon when the 1nteract10n 15*‘_,
reduced to the well-known te ‘edE. Examples. are the mu1t1pho-~
‘ton . processes, ‘see, e. “By> and ch:12 in/11/; the ‘quantum: .-
theory of molecules/5 s the laser theory/11 12/' other col—l'
lective effects in: systems of N2 2 atoms or molecules, e.g.,
VSuperradlance, see/13 14/ quantum electronlcs 15,16 ‘;For»‘ﬁ

“in this form =

many: appllcatlons it is 1mportant that ‘MF does not contain’ ex—“""

p11c1t1y 1nteratom1c Coulomb 1nteract10ns, see’ “below Sect. 6

" “But this’ advantageous formalism has deficiencies which are:
discussed ‘and overcome: here. The first one -is“that ‘a d1vergent
term is present in the multipolar Hamlltonlan. It is'an opera= .
,‘tor and this presents a real trouble. C-number d1vergent terms -
arise already-when one‘is deallng with'free field Ham11ton1an;;5
and do not represent a-serious problem. This operator term is’
"written usually in ‘the form . fdaxlpl(x)F and is denoted here

by gL’ see Sect.2. Another trouble is that perturbatlon calcu= S

lations with- the multipolar 1nteract10n reveal new: add1t10na1
divergencies as ‘compared to ‘those which. ar1se in the Lorentz_
or Coulomb gauges. The reldtion between these two troubles is
discussed in Sect.2. I suggest in Sect.3 a regularization of -

the above—mentloned unltary transformatlon ThlS regularlza—
tion removes all additional d1vergenc1es of MF.. Stress that it
is not the’ Ham11ton1an which is regularlzed but- the transfor—

‘matlon ‘operator. It is shown in Sect.4 that the regularlzed :MF

has the same ultraV1olet d1vergenC1es as the Coulomb, gauge - ..
electrodynamics. :

" Electric d1pole (long-wave length) approx1mat10n needs some
add1t10na1 care in the regularized MF. It is demonstrated: in,

“Sect.5 that our regularlzatlon must be suff1c1ent1y soft; 1n

order the electric dipole 1nteract10n has the same. form qu as
in the usual MF. Under the same restrlctlon it will be shown
in Sect.6 that the regular1zed MF along with the usual MF has
no interatomic Coulomb interactions.

2. MULTIPOLAR HAMILTONIAN AND ITS DIVERGENCIES)

2.1, Cons1der the nonrelat1V1st1c sp1n1ess charge (elect—
ron) bounded by a potential V(d) and interacting with the:qu~
antlzed electromagnetlc field. In the Coulomb gauge . its Hamll—
tonian 1s

A

H - éa'[p'_é?x(?;)]2+ V(q) + Hp,, divh-o0 " "»-_.:';(1),
My = 3 (@xEPG) RO @)

One can verify that H is invariant .under the following gauge
transformation: ' Co -

-

AG) - A(x) + yx(x), B—»p"+e{7’x(?1)-i S ®

Some comments concerning this transformatlon must be made.

a) It is the transformation of " (electron and field) opera-
tors, as is adopted in relativistic Splnor electrodynamlcs.;;
Sometlmes, one uses the waye function transformatlon ’
¢(q,"J - ¢(q.”.)expxey(Q) instead of P - p+-evx.ﬁn

b) ¥ and 4 values in eq.(3) must belong to a bounded 31mp1y
connected space region_ W, not to all space.

The: reason 1is that - A +V X must conserve "A transversa-—
lity, and therefore, one must have Ax(x) =0. If the equation
holds’ everywhere and  the harmonlc function ¥ vanishes at infi-.
nity, then ¥(%) 2 0. One assumes that W contains the’ region .
where our electron is’ localized. Owing to this pecullarlty the
transformation was.called quasigradient’ (qua31gauge) 1n/ / A -
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example of such a transformatlon was dlscussed 1n Sect 4.4
of that paper.

. 2.2. The Hamlltonlan (I) has the def1c1ency that its atomic
part Hp=p 2/9m + V(q) is not invariant under (3). Therefore,
‘Hy can be named the nonphysical operator.

us 1ntroduce instead of the canonical variables 4q, p A(x),

(x) other operators q’, p’,... such that the new atomic Ha-
m11ton1an H{(p’,q4’) will be quasigauge-invariant. If the old
variables O and new ones O’ are connected by the transformation
0’=8"10S, then the new operators will have canonical commu-
- tation relatlons One ‘can therefore assume that it is the new
operator B’ which describes the observable electron momentum
Let us consider ,

: —)—) indPind )
S =8(q,A) = exp[ -ie f dfA(e)]. (4)
o '

" The 1ntegra1 1n eq.(4) is taken along a line connectlng the
points T and 4, being the centre of the potent1a1 V@). For
details see’2,3 8/and Sect.3 below.

i The transformatlon 0°=810s with such S is the usual
‘transﬁormatlon ‘leading to the multlpolar Ham11ton1an, see,
e.g.,/2,3

As S depends on q and A only, we have q —q and Zf:_z
. U31ng -
eARe~A_ B +[A,B]+%—[A,~[A,B]]+... . o )
one obtains
p=871ps - b ~ eyl A, o 6)
B/ (=B, (M+e % a s> @€-%), mn=-1,23. (7)
;dm 1m Yt““n "n nm ? ’
. To calcnlate (7) I used
g s o s,
[A(E); By n(R)] ==i85nE ~X), » |
L IR I B R T ST ‘
S (€ -x) =8 b-x) -2 w7 8
nm'\* 7. ) ( x) i 82 ax l x| ) (8)

~ Now 1et us show that B
tlon (3):

D’ ~p. +eax(Q)/8q —e-—-— -1, s at (A, (2)+ax(e)/a? N

is 1nvar1ant under the transforma-

;ép’f—e__r ata - oL - o N
: 1 S

To remedy thlS, let

)

Here, we used the “‘equation
q - 2 - —v ' . , S :
[, a-vx(f) = x(Q)-x(r)->~‘ L - (0)

Using eqs.(6) and (7) one can write the Hamlltonlan ‘H, see

eq. (l) in terms of the. new operators, 1. e.'substltutlng

B+eV[dfA for p, etc. /s/.

H- L3 oe@Q T V(D) +H, ver's & B/ (£) + P, : any
—2—&2‘9" Q)]+ Q+Vph r<“n~n™n L-* ke

Here Hpy is the same functional of Ei and H H as HpﬁE H)
see. eq.(2); .
2 o -+ - g, ' : L :,,
G(q) = A(q) -y [ dlA. (12)
N N :

The operator ( can be represented in terms of the magnetic fi-
e1d/3 7/. The last term P, in eq.(l1) originates from

-—{E 2x)da%when eq. (7) is used

2

S
= — % dZ
?L 5 ;i foag, [

- o
,,(z-z'). | sy
The atomic part 1s now Hj= (p? /2m +V&D and is qua31gauge—'
invariant because p is, see eq.(9).
2.3. The term PL will be calculated in the next section for
the case when the 1ntegra1 in (4) is taken over the stralght
line connectlng T and 4. The result can be’ represented as

-

e -
£ g - ke,
™ lg -r l{)

i.e., the most divergent part of P is proportional to lq—r|
So P, is the operator of the same type as the potential - energy
V(@) but it is quadratlcally divergent.

Power and Zienau dealt with this dlvergency in the fol—
1ow1ng manner. Despite the fact that P, has the same nature as
V(q) and is larger than V(4) , they included P, in H'int leavlng
V(@)in Hj: H=H, +}{h'+Hint° Then, they consi ered ‘the most di-
vergent part of the radiative correcthp AE to the energy E;
of the atomic level m resultlng from edE in the second order of
perturbatlon theory. It turned out that the part was, cancelled
by the contr}bvtlon to E resulting from ?L in the first order.
Woolley (see’” sect. VIB) noted that Power and Zienau have
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done the calculations in the ~dipole approximation Whlch is not

legitimate .in this case. He used efb(df E )1nstead of eq

and singled out from AE , the most d1vergent part equal- to

(—1)<mlP jm>, and therefore, cancelled by ﬂ_ as before.

" 8o in this 1llog1ca1 ,way the most d1vergent part - of the ra-

diative correctlon to the level energy is compensated by the.

divergent potent1a1 like term P of the multipolar Hamiltoni-. i»

an. All these divergencies are quadratlc as compared to the :

most linear d1vergency of the Coulomb gauge nonrelativistic

electrodynamics/17/, - -
One may infer that it is the transformatlon operator §, gi-~

ven by eq.(4), which is the cause of this additional MF .diver-

gencies. Indeed, I shall show in the next section that a re-

gularization of S removes them. For this purpose, it is suf-

ficient to consider the above simple case of nonrelat1v1st1c

Hamiltonian (1) or (11) because all other cases, including the

relativistic one, contain the. same divergent integral P , see

e.g. / /, Sect.2.

- 3. REGULARIZED MULTIPOLAR TRANSFORMATION

'©3.1. The integral in eq. (4) for S is taken over a fixed
11ne connecting the points T and 4. The line_can be represen-
ted, e.g. , by the following vector function f(a) of a para-
meter ¢ ' :
7‘;"—;:",.-"—’ > :
4 =T +4a(q‘,~ r) +via)s, O<acl, (14)
Here the’ contlnuous functlon v(a) must vanish at a=0 and a= 1.

o
Then, =Y at a=0 and —q at a-1 To define the line a vector
S is; introduced in addition to T and d, see fig.1.

Figure 1. The lioe of inte-
. gration is dashed.

It can be shown that Q(a) is a second order algebralc :
curve if v(a)—cﬂl ~a) . The most simple case is the, stralght
line when 8§ =0. DL ; :

I suggest the follow1ng generallzatlon .an averaglng over .

a set of lines is taken instead of ch0051ng one 11ne The fol-
lowing set is taken: v(a) is a fixed function and § runs thro-
ugh all three-dimensional vector space, u(s)” belng a measure

of the.particular value 3. So the regularlzed multlpolar trans-

formation 1is

Sp= exp[—_ie fdasu(g) f;qdé’g(i")].

(15)
The new electron momentum operator is now -
, -1 > - AL PP
B’ =S, B8y, =B —eV [a®su(s) [ aLA.
It remains to be invariant under (3) if
3 - S (16)
fa°su(s) = 1. e,

Now for multipolar Hamlltoylan one obtains.eq.{l1) inf wh1ch
9. must be replaced by fd su(s)fq (and analogously in eqs.
(fZ) and. (]3)) In particular, the regularlzed P 1s now .

P —-—rd Su() [0l )z I, at, fd?nsﬁm(? -0, an

1

3.2. To calculate EL we replace”3ﬁn’in eq.(f?) by

San @ 1) = (2 21 @®k (5 ~ Kkt / k%) expik@ 1) =
[k 3 @)
A=1,2

- (am~° M) expik @ 07,

where elk) and < (k) are two unit vectors, such. that (¢ k)

_(ezk) (ﬁl*% = Changing the order of rptegrat;oonwe‘get
2 ‘A - SR
3 2 .
Pl=-é-(92-”-)-§ fa k§|emBm(k)| : L 18)
o i &(q ﬂ e cinooe D
B (k)= ra® su(s){ d[’ _expikf = {0 ae’ fd su(s) x :(19);
x[q +1/(a)S ]euma)ks. ;



Eq.(14) was used along with
-'—' [(a - ;) +V’(a)—s']da
Now 1ntroduce the Four1er transform of u

’#(u) = rd su(s)expnm (20)

This means that Sg depends'only
and

Let u(s) depend only on is|.
on 4 and T directions. Then, u(u), also depends only on |u]

1 9~ K~
— e =—-i—=p’(vk).
vl ulvk) iu (vk) 2n

3 >
fd sp(s)sexpivks =
: m
AHere and below p(vk) stands for p(jvik).

Now we note that expression (21) wh1ch enters into eq.(19)

does not contribute to ?L because (¢"k) = 0. We have
ﬁfmam(ﬁ) LG f;dae’“k(“ Db

."Using 2,\6’\ Q dn ~ kK /k2 one obtains

e * -‘(--> 21}, da S G | (22)

¢ — [ <y dkdeOSqu‘)[x
L 22t 0

ﬁeré ;ssa -t . If we choose u(s) =83(§) or_ﬁ:=1, see eqs. (20)
~and (16), then.%zbecomes the nonregularized S with the stra-
ight line of integration. In this case

'e2 2 +1 o, sm-]z‘—kxt
P = 5 [k%dk [ (1 -t M2 1?
L o2@n -1 ; Lot
. 2
Yakx (23)
2r 2][Sinr ]2-. 202 ]xL kdk-—”—.. :
o kx (2m*® o 13
Only the most divergent part: of P, is retained here. This

result has been used for the discussion:in Subsect.2.3.
< Now let us show
1tab1e # and v(a) in eq. (é?) Let

8

that P can be made finite by choosing su- '

ot e

(k) =exp(=bu(a)k), b>0, oo oo (28)

1

aﬁ, 0O<acxg %?, B . L
via) = { , n=1,2,3,... (25)
1 ,
A-a)" , L cacn,
2 ‘
Then, one may evaluate |[da...] in eq.(22):
1 >a_, : 1 - :
lﬁ)daexpiakxu(v(a)k)\ < foda[u(v(a)k)l =
1
Ve 4 1 1 L1 agis ool
r daexp(~ba" k) + [ daexp(-b(1-a)" k) = -3‘—; f "e"dz, L=2" bk.
1/2 (bk) (26)
1/[1

The change of variables z=bka was made. The last integral
in eq.(26) tends to (n-1)! as bk » = . We see’that the. ‘integral
(22) converges surely at large k if n > 2. There exist other
examples of p(vk) which make P, finite. :

3.3. Regularized multipolar Hamiltonian with the chosen wo-
and v(a) now does not contain a divergent operator term. Being
finite F can be now interpreted as an "intramolecular poten-
tial energy", see Ref.4 p.238 and Ref.9; p.2639. The approach
by Power, Zienau and Woolley discussed in Subsect.2.3. becomes
quite legitimate: as. B is finite and proport10na1 to 62 it .
can be considered as a small perturbation: term. But 31mu1tane-
ously the approach proves the finiteness of the radiation cor-
rections to the level energies wh1ch are due to the interacti-
on term

3 q -- - .
e [d su(s) ﬁ dﬂEL(f). (27)
Then, a natural question arises: are all radiative correctlons,
finite in the regularized MF7 It will be shown in the next
section that ultrav1olet dlvergencles in the regularlzed case¢
are exactly those as’'in the Coulomb gauge. T

3.4. Another’ poss1b1e generallzatlon of the transformatlon
S is to perform ‘an averaglng over a set of points r, replaclng‘

fq". by (d rm(r)f .., see Sect.3.3. in 7/; It can. be shown,‘

“that thlS averaglng by 1tse1f cannot make P f1n1te.

4. ULTRAVIOLET DIVERGENCIES IN THE REGULARIZED
MULTIPOLAR FORM

L

Besldes (27) another 1nteract10n term in th regularized i~

multlpolar Hamiltonian is ‘9



e E@) + @D %éz(ax (28)

G(@) = &(@) - V5’ sucs) Pl @D . (29)

Let us show that the part of the interaction (28) which
contains ﬁ’jﬂ.. gives finite radiative corrections as well as
(27). For this purpose insert in % [...(see eq.(29)) the stan-
dard expansion q L

ikl

. B
Ad) =(2n).3/2fd3k(2k)-1/22)\?)‘(k)[ak)\e' val,e,

(30)

and use (14). Fufther:galculations are similar to those{’given
in Subsect.3.2. for ?AB (in particular eqs. (20) and (¢ )=0
are used). The result can be represented as follows:

Vo la®sp) rlalAd) -

> -
ikr iakx ~

- 2m P ra ke 5, Ao la e ) dae ™™ iua)k) +

1 > >

-ik 1 -igkx ~ N
rape e ) -
- -8/ 3 -1/é WA ikr 1 iakx ~
+(2m) 7 TfaTKR(2k) T Sak(erx)age I, adae * F(vk)+

kr .1 iaks ~ |

-ikr -iakx -~

+ a+ e1 [ adae u(vk) 1.
kA 0

(31

\A“ﬁeréV§séa-?.~We see that (31) contains, the transversal
.part ~¢" along with the longitudinal one ~k. Compare the obta-
ined expansion of V. f.. in ag, afy with the égygnsion (30).
The former contains two form factors [dajiexpiakx and
fadz pexpiakx . The first one can be made less than any inverse
power of k when k-~ by a suitable choice of n(vk) , see Sub-
sect.3.2, above, eq.(26). The same can;be proved for the se-
cond form factor. Therefore, the part V[ of the potential
=A-V/[icannot lead to divergencies in thé radiative correc-
tiOQ§;'Iheir divergence is due entirely to the term A in
=A-V /[, and therefore, is exactly the same as in the Cou~
lomb  gauge. . : : : . ~ : S
. 10

5. ELECTRIC DIPOLE APPROXIMATION o
IN THE REGULARIZED MULTIPOLAR FORM

In the usual MF the interaction'termﬁef;dﬁﬁ’Ktutns“intqﬁ
e(a—T)Ei Cif Ep(d) can,be»replaced‘by'E’(r)i(remindgthat r
is the centre of the potential V(g) bounéihg the electron).
The replacement can be justified for the matrix-eleménts of

the type <E,&nﬁeffd§§£(lﬂn>if atomic states n and“m are lo-

. . . . 1 A . - LI &
calized in the region of %ﬁf'?é values whose dimension is of

small, so that 'ka'<<l. In the MF one must impose the additional
restriction: the line of integgggjon must not go beyond the
region a, see fig.2, because kif~r| <<1 may be not true for

the order ¢f the atomic radius 2 and if photon momentum k is

.

€-r|>a. . T . . , : Sl il S

In the regularized MF one must require that ‘p(s) should:#=
syppress such lines as shown in fig.2, i.e., suppress large
i8{. For this purpose the parameter b in eq.(24) must not. ex-:
ceed a. Note that p(u) = exp(=bu) " corresponds to f(s) = .
=b[72(b2+ s®)} ! ‘Under this additional requirement one has

It

erd3sﬂ(s)ffd},’§£(?) e(@-DE; (N fasu(s) = .7~

T k =e(ﬂ—

because of:eq.(16).: ... .. .. .. . . R R R R
So the regularized MF has the usual main interaction term:u
e([;[.-?)ﬁ‘,'_L for low-energy photons 'if the regularization is® suf-
ficiently 'soft: 0<b<a, I should stress that for hard photons.,
the interaction (28) is important. In particular it mustibe
taken into account when calculating radiative corrections. )

w

6. INTERATOMIC COULOMB INTERACTIONS

It is known that in the usual MF there are no Coulomb in-
teractions betwe?n electrons of different atoms or molecules,
See, e.g., ??8'9 .. Let us show that this istrue also iniregujf
larized MF provided ‘the regularization is sufficiently soft. .
The proof will be given for the simplest case of several neu-
tral atoms, each atom having one electron. In the (Coulomb ga~-..i+
uge the related Hamiltonian is .. | - it U e Lo

N S .

H= 3 L
Jj=12m

8n

" > 5 .9 s i ' R
[p) —eA@p] ™+ 2V, @ 1)) + 3= 3 o3 Hpn-. (32)

A

PEE ; ll‘




.+ Figure 2. The line of inte-
gration is dashed.

Here ﬁ is the centre of the j-th atom. The related regula-
rized transformation to the multipolar form is realized by

5> 2 >

Sp= exp[ -ie 2 fd s u(s ) f dE A(Zj)]

- > -> - -
.= . . s = . «)S: .
!?J,_rjﬁcaj(qJ r])+V(aJ) j

One may use the same averag1ng funct1on u for different
. atoms. In analogy with Sect.2 I write (32) in terms of the new
operators pJ-—S'pJ , etc., instead of the old ones. One
obtalns e g T ;

.a,‘r‘ 1 . . o . qj\"' 5 5 .
H- 3 oo -ed (a7 ~eX,Md SJ“(Sj)ffj B () + (34)

_ LS o2 N R |

+H£\h +Eij (P_L)i] +EijV1j(qi-l‘j) + —8—”— El] IQi"le ’

> o - - - q >3 > ’
61(91_) = Al -, rr-jdeJA(ei),’» o ‘ - (35)

-

(P ) ———fdas (s, 1438 (s )z r ar; I d!n (“i—e?- ~(36)

The terms (P )” were discussed previously. Consider the term

(RL)U with 1 #] Using (8) I represent it -as P —(ﬂl ij »

where . .

Pu, f“?rd,,;si“(si) fd% |
12

o 94 q.i > (3) —» —», E
fp(s})fri rrj dg; aeg & (e - 09, (37)

(B )y =g—d'suGs ) fd s{u(s P r R rr apr O -.e._e.|..l

j 68 62’ e bl ,

‘Let the function. u(s) be supported in the volume whose d1—
mension is of the order of the atom radius a. Suppose that -
distances .between atoms are larger than ‘a. Then, the ‘argument '
of B(S(? —f ) in (37) cannot be zero and P;j=0 _for i # .7
" To calculate (P“ h, I use the equation of the type (IO)

‘Then
q. - a - -
Sof ot farr e S g )=
m,n ri m ,] n m ael
4, — - - - - - |'...1 g A | . )
R e L P o e Lt e A e R R < )Y

The ‘r.h.s. of eq. (39) does not depend on s; and s7 and one
can use (16) and obtain that (P ),; is equal to the r.h.s. of
eq.(39) mult1p11ed by e2/8m The last term in (39) ann1h1lates‘
with the corresponding term 82/8n|qlk—qjl in the Hamiltonian,
see eq:.(34). The sum Y 4 ‘of ‘the second and third terms in
(39) annihilates the sum '3, #Jvu(ql r ), see eq. (34), if the
potentials: V,, are Coulomb? 'V, (q; - )._—e /4m|q; el (one“
must .suppose: that the nuclear charges ‘are equal to unlty, '
i.e., that atom as a whole is neutral). So all Coulomb: 1nter—'
actions’ are absent in. the. multlpolar Hamiltonian- (34): 'In the
mu1t1polar formalism an atom can change the state of another
atom only by means of photon exchanges
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?‘Note added in. proof

An example of regularlzed potentlal ?7 may be of ‘interest.
Let vh)—(m®) at a<6,14a)4(LﬂV6) 2at 1-8<ax1l and '
v(a) = 1, when & <a <1-§. Let n(vk):. be represented- by eq. (24).

‘Then 1n the limit .6~ &P can be represented by eq (22), where

-2
[kx

l:fdda---l’ —eXp(—2bk)[smkx/2] ;Tcx kxcose

The result of integration fdamﬁ in eq. (22) contains integ-
ral sine function Si(kx) in addition to usual trigonometric
functions, but all the subsequent integrals % ... 'can be fo-
und in tables of Laplace transforms The exact result is

A 5 e v
. 2e X 1 - -

]1m P -—~[ ]a_[-ctg _},xglg—r|. ‘
Csaot o (2m? (2b)2 2 2 L S .

‘_fThlsyreduces to e2x2/(2n)26b3 , when x << b, and to EL{ o= nb
e+ 1], when x > b « o . .o (2b)
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