


1 Intro ductron

} One of the major outstandrng problems in theoretrca.l elementary partlcle ,
physrcs is the questlon “of the origin of conﬁnement "As long as there is
no satlsfactory SOlllthll to this problem wh1ch ‘allows us to'calculate the
properties of bound ‘states of coloured constituents from first principles;
that is—as has been’ nowadays generally accepted—quantum chromo-
dynamlcs one has to rely on somewhat more or less phenomenologlcal
approaches to bound states._ o '
In this Trather condensed survey we would hke to:have a. qulck ook
at’ some aspects of: the treatment of quark—anthuark bound ‘states from
various pornts of view. Particular emphasis will be-laid’ 6n -thetinter-
relationship of nonrelativistic and (at least semi-) relativistic approaches.

.This brief review is orgamzed as follows: In Section 2 we discuss the =

'51gmﬁcance of the description of hadrons as bound states of (constrtuent)
quarks by nonrelativistic potential models. To this end we der1ve the
relativistic generalization of.the quantum—mechamcal virial theorem and
use it to clarrfy the connection between the nonrelat1v1st1c and (semr-)
relativistic treatment ‘of bound ‘states:t i« o o A

In Section 3 we present a . new ‘approach to the: fermron—antrfermron
bound:state problem “This approach is based-on:the construction of an
eﬂectlve Hamrltoman which 1ncorporates relativistic kinematics as well as
an 1nteract10n potentlal ‘the‘perturbative ‘part of which is derived-from
the quantum ‘field theory descr1b1ng the truly fundamental 1nteract10n
"between the'bound-state constitutents:’ by cost el

We adopt this effective-Hamiltonian method in Sectron 4 for ‘the: de—
scription of hadrons as bound states of constituent quarks. However, we
do not intend to attempt by the given prescrrptron a satisfactory numer-
ical fit of the experimentally observed hadron spectra. Rather, we try to
:check the proposed procedure on a verybasic level, namely, by applica-
- tion to some selected questions; where:we:can-obtain:, the solution to the
resultmg equatlon of motion by analytical’ computatlon We shall- find
‘that our effective-Hamiltonian method is able to reproduce someé general
features of the empirical meson spectrum.

Finally, in Section 5 we comment on the relationship between the
effectlve Hamiltonian method_@nd_thﬂethg_ﬁalp_eter formalism. '
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2 Rellablllty of Nonrelat1v1st1c Potentlal Models ‘;: 4

An amazmg circumstance in- hadron spectroscopy is the descrlptlon of
“hadrons as. bound states of quarks by nonrelativistic [1,2] and (semi-) .

relathlstlc {3, 4) potentlal models at an equally good level. The relatlvrstlc

- version of the quanturn—mechamcal v1r1al theorem [5 6] rnay provrde a tool B

to clar1fy this situation.

~ The static 1nter-quark potentla.l V(1") r é |a:| has to cons1st of atf
'least two parts: At short distances it or1g1nates from one-gluon exchange g

- (Wthll glves an approx1rnately Coulomb llke contrlbutlon),

~ lillrnV(r) ~ —%gi o
r

) ‘where 4s. the approprlate colour factor for mesons At large(drstances

3

it hasto, prov1de for. confinement, V(r) — 00 for ¥ — oo. Lattice gauge. -

. theor1es 1nd1cate that the rise of the potentlal is appro*clrnately lrnear

s ,' The superp081t10n of these two parts is the funnel (or Cornell) potcntlal :

This forrn (Flg 1) represents the prototype of all reahstlc “QCD 1nspu ed’
' =:potent1al rnodels
- ‘Let us try: to. get an 1dea of the order of magmtude of the parameters

'_,er

o, and.a entering:in’ ‘the above: potentla.l Our ‘main; assurnptlon wrll be ,
..that light quarks feel predommantly the lmear part of the potentral L. e.,

‘ »»Veﬁ‘—ar Py B

From the scaling behav1our of the Schrodmger equatlon one obtams ,

~for-the energy levels of the bound state!

2p

E where u is the reduced mass of the two-partlcle Systern and: —€, are
the 7er0s of the . A1ry functron, e = 2.34, 62 =:4.09,...": Thus the mass

ia2 Lo ‘"‘ ?'f ot «_»;7 S e
© Ei= (——) - €y for - Vi=ar oo st «(4)

>, . lFor a brref mtroductxon to the scaled Schrodmger equatlon see, for mstance Rel' [2]
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M,.—M‘= g — a2 3 SRRSO S
— M (2“) (62 61) = 1 75 (2“ | (5)

With the co]r;mtuent quark masses mu = mg= 0 34 GeV one ﬁnds frorn
,,(1300) = and M (1700) Mp for the slope of the hnear t

a'=0.27 GeV2. i entlal
. From the sp1n—sp1n 1nteract10n entermg in the genera.hzed Bre1t—Fer)m1’

Harmltoma.n one obtalns ‘under the above assumptlon for the mass-

Squared dlfference between corr )
States espondlng sp1n-s1ng1et a.nd spm—trlplet

Lrh}

B A
o s

torn My — M, ; and’ MK' - MK one’ gets aine 0.6 for the strong fine
s ructure constant at an energy scale correspondmg to hght hadrons. -
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For a brlef mtroductron to the Brert Fermi Ha.mlltoman see, for mstance, Ref. [2]



’In order to derlve the v1r1a1 theorem [10] we make use of the generator
2(lnA)(ﬁf+zﬁ) N ()]
of the dllatatlons e e
: S 1
‘ e Tl
u DpD /\p

) The v1r1a1 theorem may. be phrased in the way that the expectatlon val-
v, ues of the commutator of:D-and. the Hamlltonlan ‘H of the system un-

~der. consxderatlon, taken- with respect to norma.hzed energy eigenstates. .

HW;) Ehb) (¥|).= 1, vanish: - i . R ,
| Fwwfmwfﬂ ~g'g, S

- since

<¢1DH|¢> E(|Dly) = <¢1HD|¢ i o

- Let us Vassume that the Hamiltonian H for a two- partlcle, system may -

be split into a kinetic part. T and. a potentlal V&), H = T + V(T).
Nonrelat1v1st1cally the kinetic term reads
B ‘ .
B e : 2u :
where u mlmz / (ml +m2) denotes the reduced mass of the bound state

constltuents with:masses m; and ma, ‘respectively.. Under the dilatations

(8) the nonrelat1v1st1c Hamﬂtonldn behaves hke '

o f DHD‘;/\—T+V(/\§:‘) 2
-and - AT
V(/\f)~V(§:‘)+(ln/\):c VV(:c (14),

we :cogl pute the ﬁrst derlvatlve of (1/)|HD|¢) = 0 \
obtam S

S

hm——(a,bl(DHD" H)Dll/))
. x_hm(lpl[ 2T+:c VV(z)]Dlw)
| <¢|[ ST vv(z)]lw)—O

pepiexe @)

respect to ln )\ andi

. Wthh is the nonrelatrvrstlc v1r1al theorem

g Relatrvrstlca.lly the klnetlc term reads v

-,.<¢iT|¢> = iz vwx |¢>..«.- L 2(16)

[N S o

one obta.ms the relatnlstlc v1r1a1 theorem [5 6]

1__,..

\/p +ml \/p +m2

Wthh in the nonrelatrvrstlc case reduces of course, to (16)

~With' the help of the relat1v1stlc virial theorem (19) we find for thev
relatrvrstlc energy elgenvalues :

detrata it s LRI PR TR v, ~ 21' : ST ML I

E=(H)Z(z: VV) F 0¥ < i + T >
F01 the funnel potentlal (3), however,.r V/+ V.= 2ar. Desplte the p1esence
of the Coulomb. term in the potentlal it drops out in-the expression for -
the energy' Nonrelatlwstlcally, the energy. is Blven bv ‘

IS S

st el ¥

(21)

(7 V'(?) + (V(1 ))

T S IR AR 'i‘:f:,» ESRREIRTISTE
In‘contrast to the relatrvrstlc case, due to the f'lCtOI‘ 5 in front of (1 V’) ,
inthe above relation, the cancellation of the Coulomb:part is incomplete
in the nonrelativistic version.' Consequently, to the extend that the third.
term on the rlght -hand s1de of Eq. (20) may be neglected the expectation .
value.of - the nonrelat1v13t1c ‘Hamiltonian :with-a purely linear potential
V =arisof formal resemblance to the expectation value of the relativistic
Harmltoman with the funnel potential (3). The corresponding elgenstates .

are, of course, different. ‘Nevertheless; ‘the above similarity may lead one, c

astray to treat bound. states of. llght constituents nonrel'1t1v1st1("111\ bv 3
employing only a- hnear potentml : e o
- There:are some further, but less I‘lgOI‘OllS hmts whv the deSCrlptloll of

bound.states by the nonrelatwrstlc Schrodmger formalism might not. be
complete nonsense.



Frrst of all accordmg to I(O)i < (02) vahd for any Ahermxtlan opera-
tor O, the relativistic kinetic energy satisfies’ <\/ (3 + m2> < \/(p ) + m?2.

From thlS one finds for the expectat1o value of H

| = ‘(¢ﬁ2+m2)+ (V)< 2/ *2>+m2+ <V>

;f;z'___WH'"? £V = <____fﬁ2>+fm2+v> ‘ -

Consequently, the re1at1vrst1c energy elgenvalue E= (H ) is bounded from ,

- above by

e "25?1" 22 ".’f,:;: : -sf,f,." srtipdt
B< <2#+L VYL (23)
' ,The operator on the rlght—hand 51de of. thrs 1nequa11ty is formally of the
same structure as the nonrelat1v1st1c Schrodmger Hamlltonlan B

i pt. "
HNR m+ . +JVNR )

wrth however, an eﬂ'ectwe mass m ‘ ;\/(Iﬂ) + m2 and the nonrelat1v1st1c
| , POtent1a.l i 'z:’?»: f‘ S A a

/————..2) T
The effective mass m as we11 as the constant in the potent1a1 VNR depend
~on the average momentum {7 2) and will thus vary from level to level. The
expectation value of the kinetic energy.is related by the nonrelativistic
virial theorem (16) to-(r dV(r)) ‘The latter is a:constant only: for :the
exceptlonal case of a logarlthmlc potent1a1 oc-In(r/ro): [11] Only in’ thls
case (p?) is. independent of the level of excitation. BT

- Secondly, ‘ there exists a: certain ‘kind:of: duality. between an: ultra-
relatrvrstxc Hamiltonian with harmonic-oscillator ‘potential and a non-
relativistic Hamiltonian with: hnear potential:[12]: The: ultra-relativistic
Hamiltonian Hyg = 2v/p7 + s+’ s’ converted: into the nonrelativistic
Hamlltoman Hyp-=p2/m+: ar by means of the duality :transformation

P} = ar/2,r = 2|p]|/a, prov1ded the parameters K, @, and m ‘are related.

by k = a?/ (4m) The eigenfunctions in the corresponding wave equations,
Hypé(&) = E¢(#) and Hyry(9) = EV(), resapectlvely, arethen con-
nected by the Fourier transformatron (&) =/dY exf’(z z- fl‘) 1/1(37)

~

/ -‘2) + m2 + V = 2 (p ) + V (25) ’

i
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‘ 3 1 The Effectlve Hamlltoman

3 Relat1v1stlc Descrlptlon of Fermlon—-Antlfermlon .
Bound States e :

B

Our aim is to descr1be bound states of a fermlon—antlferrmon palr by/
an. effective Hamiltonian [13] which incorporates the- relat1v1st1cally cor-
rect kinetic term Ho(p) = \/W as well as the complete relativistic
cotrections to the static potential. Th1s potentla.l should; ‘of course, be

derived from the underlying quantum field theory. In order’ to do this, we L

take advantage of the fact that in scatterlng theory the potentral acting

between two partlcles 1s nothlng else but the Fourier transform of the -
first Born, approximation: TfB ‘to the tran51t10n amphtude for the ela.stlc‘ ,
scattermg of the mvolved partlcles [14 2] FSCTRTES S L

” V(:c) / d3k ”’”TB

where E= p : § denotes the’ relevant omentum transfer, P and q belng _
the rélative' momenta’in initial and ﬁna.l state,’ respect1ve1y. ' &
The proposed procedure con51sts therefore of two mam 'steps [13]

i ey
Tt 5

iR

1 Compute the effective interaction potentlal V(:c) from the underlymg
““quantum’ field theory via the scatterlng amphtude for e1a.st1c two-
partlcle scattermg TR

2. Construct the eﬂ'ectwe Hamlltoman ; ST

i
S
it

i

-

i

i

“l‘ 5

L H= Ho(p)+Ho(—p)+V() L ‘(2"7)

in order to determine the energy elgenvalues and respectlve state vec-
tors of the bound state under consideration £rom the correspondlng
multi-particle Schrodmger equat1on ‘

" The energy in the rest system of the bound state is, of course, nothing else

but’ the mass of the composrte partrcle Obv10us1y, the proposed- method
may be regarded a.s the re1at1v1st1c genera.hzatlon of- the descr1ptlon of

-----

@



3.2: The Scattermg Amplltude

In order to calculate the scatterlng amplltude requrred for ‘the deriva-

tion of the effective 1nteract10n potential, it is sufﬁc1ent to cons1der the

“elastic scattering of the 1nvolved ferrmon—-antlfermlon pa1r in the1r center-

of-mornentum system

f(p)+f(—p) ——>f(t_1_)+f( q)

where I",, 1 ="1;2; represents some D1rac rnatrlx, F = 1 75,7,,,7,,75, Lo

K is the interaction integral kernel; which has'to be determined from the

“underlying quantum field theory. The Fourier transform of just this ker-
nel yields the static interaction potential. As'far:as the spin structure of

the above sCattering amplitude is concerned we shall only be interested .

invectorT'y @ Ty = 7, ® +* —-correspondlng to a (maybe only effective)

, exchange of a. vector boson——and scalar ['Y® I'yi=1®1 —corresponding -
=, which appear

toa (rnaybe only eﬂ'ectlve) exchange of a scalar boson
to be the dominant ones for the quark-anthuark 1nteract10n orlglnatlng
-from quantum chromodynamics. (For a very recent:review on the phe-
'nornenologlcal aspects of the. forces acting within bound states, of quarlxs
see; e.g., Ref. [2].) X y :

‘In order to obta1n the dependence of the’ scatterlng arnphtude on the
rnornenta P and ¢, we insert an explicit representatlon of the Dirac: SpanI‘S
for mstance the Dirac representatlon o

wp)~| P ix > o
vy~ S xS T xes
1 .

where G are the three Pauli matrices, x:is the two-component spinor

corresponding to a given spin, polarization, and we introduced for: the

~ denominators in Dirac spinors the shorthand notation S = y/p? + m24m.

; (28)\} :

”T@m}

-
al

actlon

Up to an overall normalization factor, the general form of the scattering
amplitudes is then given for vectorial spin structure by [13,15] S

-f?@}GEMPwﬂ

G 32:) + (fT v":U 1)(9 d 2)] :

a JELT (p 01 (q Uz)]
it m[“’ 7) ‘_’(PJI)(JJXq o'+)

= (Fxg; m)(pxq 02)]}va- (31)

and for scalar spin structureby: [13,15] CURNCGT -

N

0 Ts~-— ATy ; Xr*;&')
B G e ek M
-1 .
i i Tt <
AR

L i
M[(p Q) l(p-q)(p X 0-+)‘ :
— (P ‘if.‘_"l)(ﬁx.!f.z@)]} Ks win

((“-

01 and 02, 0+ = 01 + 02

“In a nonrelat1v1st1c e\panswn of the above scatterlng alnplltudes up .
to order 1/c? one recovers, ‘of course, the well known Bréit— Fermi inter- -

3 _}k



3.3, The MaSsless Case St

The case of massless—and thus~ ultra—relat1v1st1cally movmg—bound?-'"
state constltuents ie, m; = 0, entails a considerable 51mp11ﬁcatlon of
the scatterlng amphtudes srnce under these crrcumstances the T—matrl\
elements only depend on the unit vectors :

(33)

(34

Exphcrtly, the scatterlng amphtudes read for vectorlal spm structure [13]

Ty ~ [(3+p 91)(1 +p q—2p><q’ .0%)
- B 02+(k 01)(k F) '
(P><q 01)(P><q 02)]KV L. (3

and for scalar spm structure [13]

Ts o~ — ’»2(’» +21p><q )

- (P X q-ol)(P‘X'q‘-’!oa) Kg oo (36)’

. In contrast to the general case given in;, Subsectlon 3.2, this 51mphﬁed
- form of the scattering amphtudes allows for an analytlcal treatment of
the bound states under consideration, Accordmgly, for'the applications
of the developed formahsm in Section 4 we shall assume the constituents
to be massless particles.’ i

3 4 1The Varlatlonal Method

In order to ,get an estlmate for the _energy eigenvalue E we employ a

s1mp1e Variational techmque whére we’ compute the expectatlon value'r

of the Hamlltonan H with respect to some. sultably chose
Id’(/\)) dependmg on a varlatlonal parameter /\ ‘

EQ) = <¢(A)|H|¢(A» @

10

_as well as ﬁ\ydfé’gén-like wa\{e 'funCtlon' e

3

i N

-

and minimize the resulting expression E()) with respect to. X, ..+ . 1.

33 ey "*2

1/)1,,.(:6) ~rt e\:p

2 2 SR \;j.f o
(—:\‘—) ylm T STk O
: s S ,(40)’
Pem(7)~ P, eXp( 2/\2) Yem .

“iHere, Vim (0, qﬁ) are the spherlcal harmomcs for a.ngular momentum E and

Pro]ectlon m. 0 Coslnmnsby gdge el o




4: Appllcatlons Bt ’ TR ,’I» SR SR Tl ‘ .

: VLet us try t0 1 use the formahsm developed in the precedlng sectlon for the

- description of mesons as bound states of a (constltuent) quark—anthuarl\
_pair. It should be clear from the prev1ous dlscusswn that the form of
~ the relevant interaction potentlal is ﬁxed by the mtegral kernels I( V. K (S5
whrch have to be determined from the underlymg theory. '

~'As is well known, for the strong’ mteractlon the potential consists of a

’ short -range and a. long-range part.

~THe short-1 -range ‘part is of perturbatlve orlgln——where since:we “are -

only 1nterested 'in the Born approxrmatlon we'’ only have -to deal:with
lowest order perturbatlon theory ‘In gauge ‘theories' this contribution is
: generated by one-gauge-boson exchange and is consequently of vectorial
spm structure, with correspondlng 1nteractlon kernel

k.
K= Gige |
‘ The parameter K is given, for 1nsta.nce 1n quantum electrodynamlcs from
one-photon- excha.nge by k = Q ) Q 7 e? and in quantum chromodynamlcs
from one-gluon exchange: between. colour—srnglet states by kK = 3 gl
The long-range part is of nonperturbative origin and has to-rise to
lnﬁnlty for large inter-quark d1sta.nces r.inorder to be able to describe
confinement: Vyp(r) — oo for'r —5 6o, From lattice gauge theories
there are hints that. this rise is a linear one and that this. contrlbutron Is
,*Of scalar spin- structure

(42)

‘np(r)—-ar } » D (43)

Under the above assumptions the expectatlon value of the Hamiltonian
(27) is given by [13]

B = /dBP [%(7)|? [Ho,1 () + Hoz(-p)]
= (@n)° [d'pdq 4"(q) T} ¢ (p) S
[ & @ Vap(3) e (e
In the followrng we will 1nvest1gate the questlon whether or not the

above model is able to reproduce some s1mple features of the meson spec-
trum.

Smglet-’.l‘rlplet Mass Dlﬁ'erences

Empmcally, the dllferences of the squared masses of correspondmg spm- '

- singlet and spm tr1plet partuers whrch contain at least one llght quark
'(u d, s) are constant B

Table 1: Difvferen‘c’esof »tllel’square\d _masses of, spin-'singlet and spin‘-trlplet‘partner‘s [16]

© 17|/ Spin-triplet | .. Spin'singlet ..- My = M3y [GeVY .|

0BT e
. 055
) e N K1
. ©0.58
056 ‘

MS o (0 06 :t 0 01) GeVz

The F ourier transform of pxq is the 1elat1ve or brtal angular momentuml'
of the-two bound-: state constituents., Accordingly; all terius WlllCll i Volve.,
this expression-do not contrlbute to ground states; (w1tll (= 0)

Consequently, the bound-state senergy. (44) is. glven by [13]

By = 2/d3 ) p

2 .
o .(2@34 / wr ‘/’(‘” l U]
with N K Poagiont IETIE R IR RS
/dQ,,qu = (3+p q)(1+p . (4‘)

)

The spin e\pectatlon value (a; 02) (lepeuds ou tllc total spm S of tlle ,
two-fermion state 4 - pan

=37 for ’spiil*siuglets,'SE 0‘ NI

(G- = {“H

“for spin triplets, S = 1



Applymg the variational technique of Subsectlon 3.4 to the above ex-.
press1on for the energy y1elds for the mass-squared d1ﬁ'erence we are lool\'-‘
'1ng for [13] e ' : : :

s age )
Moy = Ms—o = 4 §¢

L = ﬁ for Hydrogen-llhe trlal funct1ons '

“ "s:/ o s [ e ¢ Tl . e
- These expressions have to be compared; with the result [2] obtalned in the
nonrelat1v1stlc case on-the grounds of the instantaneous- 11m1t appromma-

t1on to the 1nteract10n kernel (42) L

R M2 M o B%rca o : . ,1(50)'
aObv1ous1y, all pred1ct1ons for the mass- squared d1ﬁ'erences are 1ndepen-
dent of the mass of the partlcles ‘which constitute the bound state. How-
ever, in the nonrelativistic case this mass independence follows froin the
neglect of terms of higher order in: the inverse masses.of the. .components
- [17] and the assumption that- llght constituents. will be mainly affected
by the linear part of the potent1a1 ‘In’ contrast to that, in the ultrarel—
ativistic case this ‘mass' 1ndependence is ‘enforced ‘by the assumption of
vamshmg masses of the bound-state constituents. Since in this case there
is no other d1mens1onal parameter ‘than the slope a of the linear potential,
any: quantlty of dimension mass-squared has"to’ be proport10nal to this
slope. " - :

4.2 Lmear ,Regge: 'I\'aJectorles S :

It is a well- known expenmental fact that hadrons populate linear Regge
traJectorles that is, the square of the mass of a state with orbital angular
. momentum £ is proportional to £:

{1

w1thkthe same slope ,8 ~12 GeV2 for all traJector1es ThlS feature of the
hadron spectrum is mcely 1llustrated in Fig.. 2. S

14

U9

M2(£) ,8Z+const ,li;‘ (51)‘

=
!
i
{
!

Figure 2: Lowest-lying experimental Regge trajectories for non-strange mesons [16]

4 3 Nonrelat1v1st1c Approach to Reg e ’I&'a.]ectorles

We now ask ourselves whether or not it is possible to find i in the framework
of nonrelativistic potential models a potentlal which reproduces the linear
behav1our of Regge trajectories mentloned 'in the precedmg subsectlon
As we will see below, the’ answer is yes.

115



For la.rge angula.r momenta one may expect that the bound states will
‘only feel the conﬁnlng part of the potential’ We thus assume- “that 1t is

justified to ignore the Coulomb part. We start from the scaled Schrédinger .
‘equation and compute with the help of an’approximation procedure the .
eigenvalue € 18, 19] (see also Ref. [10]). For the inter-quark potentlal we

assume a power-law behav1our, V(r) = br". In terms of a dimensionless
. radral coordinate p the sca.led Schrodlnger equatlon then reads G
" -

S A A R

LopAT R

We now msert ‘the reduced radlal wave functlon y(p) into this equatlon
Defining the eﬁ'ectlve potentlal 1n the scaled radial Schrodinger. equatwn

'7 we ﬁnd for the radlal wave ’equatlon
V' = [ 4D, e]y = [W(p) —e]./ R
From the first derivati\;e ; SR
W(p) = -2 F ke (55)

we determine the minimum of W,

Y

J[2e(e+1)] 2%+
o= 24 ]

W'(pm) =0 , : | (50)
and apprommate W, -near this minimum pm by a parabola The second
derlvatlve of W is

i s

W e

116

: Consequently, the Taylor ser1es e\pans10n of: W at pm reads:

W(p) W(pm)+ W"(pm)(p pm)2+0((/’ /’m)) -

| A BG = 0= pm)) > 7 (39)
‘iwhere the constants A-and B are deﬁned accordlng to R
e A Wem) = "‘J‘( + 1) (59

i B E 2"n) = “ < e l 9.

[2c(£+ 1)} 22 + [2€(€+ 1)] n+2

_5é+1> s

VB =, pi { [‘W“ +"<”—1)P"” }
o T N2
= %{ [(;e(c+ 1) +(n - 1 2(’(€+ 1)]} |
,’ . . _ 1/2 — 1 2(’(( + 1) (1 + ) (
G T"*pm l%(“l) (1+ 2)] P [l’("+ 1)("+2)]1/2

ey ey T
I PN B Cr e ) .
20+ [200+ )] 200+ 1) (1+2)
| o [ n ] [C(£+1(n+2)]1/2
S A ek B
Lo [<e+1)<n+2)11/2
= [(e+1)(71A+2)]1/2 i 2

17



g Abb'reviating\E Se~A our" differential eqUation thusﬁtalv(’es the‘form’“

=[Blp=pn) =8y .o N(63)

; Thls is obv1ously a one—d1mensxonal harmomc osclllator The correspond—
ing elgenva.lue is” ' : E

L

':Hence the elgenvalue of the scaled Schrodlnger! equation'is glven by

S le =‘e+A A+2\/_(N+ ) f

(2N +1) , }
e Dm 2R o
L (2N +1) } ?

[2e(en+ 1)] ol (1 oo ) {1 i [e(e 2

Sca.hng back we obtaln for the energy ‘ o i “;

(65)

; (2p)?
and for the mass of the bound state '

M—m1+m2 + E ) o : SR
2 29n 1S a3 s 1.
b )2+ [26(2-}‘-1)] +2 1+2)

2u)
| x {1+

,—m1+m2 + (

n(2N 41)} : } ' (67)
[e(e+ 1)(n + 2)]1/2

We now determlne that value of n which ylelds hnear Regge trajectories.
To this end we consider (67) for large Z The leadmg term is the one
-containing 2. Hence

e e o

In order to get M x V2, n has to satlsfy T_.ﬁ ;_and :is thus fixed to
Consequently, we ﬁnd for large Z , A et

: “ 3 [ } i
M2 16,‘5131 Z+const oo (69)

“eay

L1 s ’
( b >f+n€ Sy (66)

In other words a conﬁnlng potential of the form V(r)f—' br2/ 3 leads to o
the well—known relatxon e R R B

M? = e Jcédnst; :

where

is the so-called Regge slope Addlng a Coulomb—llke part to the potentlal,

;one obtains indeed rather good. predlctlons for the spectrum. We conclude
“that when treated nonrelat1v1st1cally, a. llnea.r potentla.l V(r) =ar does

not:lead to lmear Regge tra]ectorles SR

4. 4 Regge Tra_]ectones in an: Ultra—Relat1v1st1c Treatment of )
Fermlon—Antlfermlon Bound States s

Let us now look at the meson spectrum from the opp051te that is, the

ultra-relativistic, point of view [20]. For simplicity, we only , cons1der spln-

I s1nglet mesons that is, the total spin of the bound- state constituents is
equal to zero, S = 0. In th1s case : the expectatlon va.lue of the vector1al -

scattermg amplltude taken with" respect to (S= O) states reduces to [20] -
L D)so~2Ky L : (72) .

Nevertheless it is not possible to: glve an analytic’ expression for the
resultmg energy spectrum. However with the help of the asymptotic
expans10n of the spherlcal harmomcs ygm(o ®). for large va.lues of 5 [21],

yzm(f) ¢) N \/'\/P(é mr-;ellrf)e+m+rl “
~ cos[(f+2)0—~ '+"W]
Vsinf - :

it can be shown that in the hmlt Z —. 00. the perturbatlve contrlbutlon
to the  energy ‘vanishes proportional to -2 for Gauss1an ‘trial functions or
proportional to £-5/2 for hydrogen-like trial functions [20]. The: ‘reasoning
for this is as follows. Both . our trial functions are of the form. ¢[m(p) =
F(D) Vim(8, 6), differing only by the functlon f(p) of the radial variable.

forké——;oo’“,v, (73)
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The radial integrations.in:the perturbative. contrlbutlon to the energy -

give for Gaussian trlal functlons ‘

; Ly o SR ;

= ot+l’ L__ A 74

[/ dPP f(p)] ([ + %) i v ‘ _( t?
and for Hydrogen like trial functlons R B ‘ B
24[—{-6 I"(.2 + 1)4 T

gr) Crtienon 5 (75

{/dpl’f P)} mTe3) & ( : )

" The angular 1ntegrat10ns cannot be performed analytlcally Wlth the
above asymptotic expansion, however, one may: estimate: the ‘behaviour
of the angular integral for’ large £. 1t is easy to convince oneself by partlalt
mtegratlon that an integral of the form .. L

,/d:tcos\[((—{-i)x-{-a‘ f(z)

1

1softhe orderE‘ R R IE T ST P
/da:cos [((—i— )a:-{-a]f(a:)

= = ﬁr{(—l)‘ cosa f(7r)—- sina‘«f(O)‘ \

()

—/rda:s‘in:[([-i- )$+a] (-"’3)} S (76)

prov1ded the first derivative of the otherw1se arbltrary, €-1ndependent

function f(x) exists. We thus find’ that the angular 1ntegral behaves hl\e.

¢ F(f m 'l‘ 1) F(€2+ m 'l‘ 1) % O (e..z)
T(£+3) _
- Consequently, with the help of Stirling’s formula
(a:) & \[ﬁ‘é%’_,:p"% Tfor-} T - — 00 ,'" f (77)

the announced result follows

e

20 ;

U lim [ g (q)T,, Hp)=0 . (8

““Upon:vanishing of the perturbatlve contrlbutlon, the bound-state en- ..
ergy: E[ correspondmg to large orbital angular momentum lis glven by

Bi=2 [Ep W@ vt a [ bz pn@Fr - (19)

Applymg, as before, the varlatlonal technlque of Subsectlon 3. 4 y1elds for |
the large—€ dependence of the energy [20] (for both types of tr1al functlons)

e : - I‘(€ + 2)
E, 2\/— r(e+ 2)

(80)

. Recallmg agaln St1r11ng s’ formula (77) in ‘order to e\press the above:v'

gamma functlons for large C we obtaln from the ratlo L T
T 1)

1ndeed hnear Regge traJectorles w1th slope B = 8a [20]

E} ~8a€ c—»oo P o (82)

Her ein, the way in which the energy E, depends on a is no great surpiise:
Because of the lack of any. dlrnen51onal parameter other than the' slope:
a of ‘the linear potential, any quantlty of  diinension mass-squared has-
to be proportlonal to ai From (82) the numerlcal value of ‘a 1s about'
a=0.15GeVZ il e ‘ S ~ S e Yo
The result (82) is the same as the one obtalned elther in the \VKB ap-
proximation to a relativistic potential model based on the I\leln—Gordon
equation [22]; or as a lower bound to, the asymptotic. ground-state en-
ergy in‘a mathematlcallv rigorous dlscussmn for.a purely linear potential
[23], or within the path- -integral formalisim when ‘assuing the asymptotxc’
large:area law for the Wilson loop [24] (see also Ref. [2]). .
In summary, we investigated bound states of fermion-antifer nuon palrs '
by our effective- Hamlltonlau method [13], whlch descrlbes tlle Ainteraction-
of the bound—state constltuents by an eﬁ'ectlve potential but mcorporates
relat1v1st1c klnematlcs Treatlng the constltuents ultra—relat1v1st1cally, we
have' shown that the: behav1our of. the bound state masses for large an-
gular momenta is excluswelv determined. by the non- perturbatlve contr1—
bution to the interaction potential [20]. For a linear rise of this part of -
the potentlal with i 1ncrea51ng 1nter—quark drstance one obtalns an (asymp- :

' totlcally) linear dependence of the squared masses on the correspondlng



-orbital angular momentum [20]'. This result is «a,conseoucnce.of:‘thei rel- -

ativistic kinematics incorporated in ‘this approach. In contrast:to that,

" in the nonrelativistic approximation linear Regge trajectones ‘Tequire ' a °

 confining potential rising like the 1nter-quark dlstance to the power 2 as
has been demonstrated in Subsectlon 4.3 LT EEN R T

45 Nonrelat1v1st1c Versus Ultra—Relatxvrstlc Descrlptlon of' ‘

Regge Tra_]ectorles o “ 4

‘In Subsectlon 4 3 we leamed that w1th1n a nonrelat1v1st1c cons1derat10n k

one is able to obtain linear Regge tra_]ectorles for a potentlal wh1ch be—
haves like V(r) ~ 1‘2/ 3. We found that the nonrelat1v1st1c Hamlltoman .

H m1+m2+—+b oo 83
NR = I

where p = mlmg/ (m1 + mg). is the reduced mass of the two partlcle

system leads to linear Regge traJectorles with slope

128 b° e
= . S Lol e 5y 84
ﬂNR 27# s Bk s B ( )

In. contrast to that we showed in Subsectlon 44 that ‘in the ultra-
relativistic case a linear conﬁnmg potentlal gives lmear Regge tra_]ectorles
-with slope :

We sha.ll now demonstrate that, desp1te of.the- apparently different
forms of .the involved: Ha.m1lton1ans the resultmg energy eigenvalues are
almost‘identical, that is, not only in the1r slopes but also in the1r absolute
values [25). e : o

To this end, let us compare the’ b1nd1ng energies € = £ — m; — my for-

nonrelativistic and ultra.relat1v1st1c limit, ENR and EUR, respectively. We
demand equality of the Regge slopes, BNR = Bur, since, if reasonable at
all, they should describe one and the same physics. With the help of our
variational procedure (with Gaussian trial functlons) we then ﬁnd for the
ratlo of these b1nd1ng energles [25) : ‘ e

[F(f+2)F(€+ 11)311/4 . |
.'A“VEUR"? S T(E+2)

— 1 for £—oo . (86)
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As 1nd1cated for £ > oo thls Tatio” approaches umty

_th1s expressmn is always negatlve Any functlon f(a:) w1th f” (x) <.0
:satlsﬁes the concav1ty COIldlthIl ; o TR ;

:therefore a str1ctly monotonlc decreasmg functlon ‘with

and of course bounded from below by umty

ﬂUR 8a-. . . -(85)

From its der1vat1ve with respect to ¢, the behav1our of thls ratio for '
] '[IS ‘controlled by the:expresslon sinara iy

w(e+ ) )+ 3"¢’(e+ -

4 ¢(e+ 2)

where P(z) = I"(a:) /; F(a:) denotes the logarlthmlc derlvatlve of the 5 mma
‘;functlon the so-called “dlgamma functron” [21] Because of the concav1ty

: (89)

?;O ENR/EUR 18
reasmg N4 and'
hence bounded from above by its value for f = 0 Wthh 1s about 1 025

In our case:r:_€+ ' e

1< i < fﬂ( 0)~1025 (o)
, T EUR EUR L ‘ : ;.: , .
Summanzlng, we compared the spectra of energy elgenvalues predlcted
by two.different ways of describing hadrons as bound states of quarks [2]:
the two approaches might ‘be. regarded as: opposite ‘extremes ‘as- far as
the extent of ‘incorporation:of relativisti¢c kinematics ‘is: ‘concernéd; -the

‘respective conﬁmng mter—quark potential; however, is determined by. the
* requirement that both models should - yield- lmear Regge trajectorles in
_the llmlt of large angular momenta By use of a srmple var1at10nal tech-
_nique, we'found that the b1nd1ng energies obta1ned within’ nonrelat1v1st1c
. and ultra-relatxvrstlc treatment agree with an error of less’ than three per-

cent [25]. These findings have also been. conﬁrmed by exphclt numerlcal
computatlon of the mesonlc mass spectrum REFC IR AR e
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5 The Bethe—Salpeter Formalrsm RS '::,- =S

As a ﬁna.l top1c we would hke to clanfy the relatlon between our eﬁ'ectlve—,

Hamiltonian approach to bound states and the Bethe—Salpeter formahsm
‘We shall show below that the eigenvalue equatlon involving our eﬁ'ectrve
Hamiltonian corresponds toa well deﬁned approx1mat10n of the Bethe—
‘Salpeter equation.” ‘ * A S

Within the framework of the Bethe—Salpeter formahsm a bound state
is represented by the Bethe—Salpeter amplitude, which (in momentum

space) is defined as the Fourier transform of the time-ordered product of"

the respective field operators of the particles constltutlng the bound state;
taken between the state vector of the bound state and the vacuum, after
‘factorizing off the motion of the cellter—of—momentum Accordmgly, 1gnor-

‘ing all normalization factors, the BS amphtude for' fermlon—antlfermlonﬁ

bound states reads

()~ X [ t o <0|T(¢(x1)w(x2))|P> L ey

'Lwhere X denotes the center—of—momentum coord1nate, x = xl - .’172 the
Jrelatlve coordlnate P =py + p2 the total momentum and p the relatlve
momentum of the two bound state constltuents -
The BS amphtude \I'(p) satlsﬁes the Bethe—Salpeter equatlon [26] (1n
. ,momentum space) .

o (m—ml) W(p) (ﬂz+m2)~ /d‘*qzx(p,q)wq) (92

‘in wh1ch the interaction between the, partlcles forming the bound state
- enters via the Bethe—Salpeter kernel K (p, q), which is- deﬁned (only per-
'turbatlvely') as the sum of :all BS irreducible - Feynman graphs for. two-
: partlcle into two-particle scatterlng (In the above form of the BS equatlon

the inverse propagators on' the left- hand side have been approxrmated by :

- the1r free counterparts.).

L In pr1nc1p1e ‘the BS equatlon represents the approprlate tool for the
. descnptlon of bound states within quantum field theory In pract1ce how-

‘ever, there are two fundamental drawbacks. O the one hand, the BS ker-
nel cannot be’ Computed beyond. the tight limits of’ perturbatlon theory.
On the other hand, even with the BS kernel at one’s disposal, it is—
except for a few simple cases—not possible to find the general solution

~ of the BS equation.

24

‘functlon- T ol

..Assuming for_\the:kB‘S kernei the static appro‘timati}on e v

Ix (p,q)=K (P, ‘1) (93)

which corresponds to the assumptlon ‘of an 1nstantane0us 1nteract10n be-
tween the bound—state constltuents and deﬁnmg the equal t1me wave

R . q’(‘”) = /dpo ‘I’(P,Po) L (94)
leads to the Salpeter equatlon [27] RS SRS SR

AT Ay Iﬂ(P,q‘) ‘I>(q)”/o A“

<I> ~ d3 :
(”) / [ B~ Hy(p) — Ho(2) -
Af Yo K(P,q) ®(q) v0 ATS]
. E+ Ho(.m) + Ho(pa). -

(9, '7

where A¥ are the energy pro_]ectlon operat01s correspondmg to pos1t1ve'
or negative, .energy of the partlcle 5, i=1,2. o :
Neglectlon of the second term on the rlght hand s1de of the Salpeter

equatlon—whlch corresponds to partlcle-antlpaltlcle anmhllatlon and -

potential:—on. the grounds of.the. reasonable assumptlon that the denom-
1nator 1n the ﬁrst term 1s much smaller 'than that in. the second term,

‘ E Ho(Pl) = ﬂo(m) << E' + HO(PI) + Hod(Pz) : (96)

leads to the so- called reduced Salpeter equatlon

[E HO(PI) — Hy(p2)] ‘I’(P) ~ /d3q A1 Yo K (p,q) ‘I’(q) 70 AZC

L BIT oREL 5 G e g T (97)

The BS amphtude <]§(p) isa(4x4) matr1\ Very sumlarly as any Dirac
spinor may be decomposed into a “large ‘and a “small”. component, the
BS amplitude ®(j7') consists of “large large”, * large*small ,and ¢ ‘small-
small” ‘components In the latter case, ho\\eyer, these components are
related by the energy projection operators A:E Usmg these relations in
order to express everything in terms of the “large:large” component w(p)
one ends up with an equatlon of motron B T LR

(B~ Ha(p) = Ho(p] 11'(17 / CqTHHE) | (98)
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“which i is formally 1dent1cal to the Schrodmger equatlon with our effectlve_ -

’ Hamlltonlan (27)

e e
H W
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